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Abstract

Honey bees are significant pollinators of agricultural crops and other important plant species. High 

annual losses of honey bee colonies in North America and in some parts of Europe have profound 

ecological and economic implications. Colony losses have been attributed to multiple factors 

including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the 

development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms 

include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal 

transduction cascades, and reactive oxygen species generation. However, the relative importance 

of these and other pathways is largely uncharacterized. Herein we review the current 

understanding of honey bee antiviral defense mechanisms and suggest important avenues for 

future investigation.

Introduction

Honey bees (Apis mellifera) are fascinating insects that play a critical role in agriculture as 

pollinators of crops (U.S. value over $15 billion/year) and plant species that enhance the 

biodiversity of both agricultural and non-agricultural landscapes [1]. Since 2006, honey bee 

populations in the U.S., Canada, and in some parts of Europe have experienced high annual 

losses [2–4]. An average of 33% of U.S. honey bee colonies die each year, and a fraction of 

these losses are attributed to Colony Collapse Disorder (CCD) [5–9]. Multiple biotic and 

abiotic factors contribute to colony health and survival (i.e., viruses, mites, microbes, bee 

genetics, weather, forage quality and availability, management practices, and agrochemical 

exposure) [9–12]. Understanding the most influential factors and potential synergistic effects 

on honey bee health is critical to developing pollinator management and conservation 

strategies that limit bee colony losses [13].

Several epidemiologic and temporal monitoring studies indicate the important role of 

pathogens in colony loss including viruses, bacteria, fungi, trypanosomatids, and mites 
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[4,9,12,14–21]. The majority of honey bee infecting pathogens are RNA viruses, including 

Acute bee paralysis virus [22], Black queen cell virus [23], Israeli acute bee paralysis virus 

[24], Kashmir bee virus [25], Deformed wing virus [26], Kakugo virus [27], Varroa 

destructor virus-1 [28], Sacbrood virus [29], Slow bee paralysis virus [30], Cloudy wing 

virus [31], Big Sioux River virus [17,20], Aphid lethal virus (strain Brookings) [17,20], 

Chronic bee paralysis virus [32] (reviewed in [33,34]) and the Lake Sinai viruses (LSV1 and 

LSV2 [20], LSV3 [12], LSV4 [17], and LSV5 [35]. Honey bee virus infections may cause 

deformities, paralysis, death, or remain asymptomatic [33]. Bee viruses are transmitted via 

vertical and horizontal routes [36], including co-foraging with wild and managed bee 

populations [37–39]. The ectoparasitic mite Varroa destructor serves as a vector for several 

honey bee viruses [40–42] and causes colony loss by feeding on bee hemolymph and killing 

bee brood [43]. Several studies indicate that combinatorial effects of mites and viruses result 

in colony loss (reviewed in [34,44–46]). The relationship between colony health and 

pathogen prevalence and abundance is complex and dependent upon season, geographic 

location, pathogen strain, and both individual and colony level bee immune responses. Thus, 

temporal monitoring studies are key to understanding the relative impact of these variables 

on honey bee colony health.

The focus of the review is to summarize our current understanding of honey bee antiviral 

responses. Honey bees, like all other organisms, have evolved mechanisms to detect and 

limit virus infection. Knowledge of honey bee immune mechanisms is largely derived via 

comparison to the better-characterized immune responses in fruit-flies and mosquitoes. 

While comparative genomics is a useful approach for evaluating honey bee immune gene 

function, it is important to note that Western honey bees (Apis mellifera) are eusocial 

Hymenopteran insects, an order that diverged from the solitary Dipteran insects including 

fruit-flies and mosquitos approximately 300 million years ago [47–50]. General aspects of 

immunity, including detection of pathogen associated molecular patterns (PAMPs) and 

production of effector molecules are conserved in mammals, plants, and insects, and both 

plants and insects employ RNA interference (RNAi) as a major mechanism of antiviral 

defense [51–53]. These immune pathways provide a framework for understanding honey 

bee host – virus interactions.

Insect Immune Pathways

RNA interference (RNAi) is the major mechanism of antiviral defense in fruit-flies and 

mosquitos (reviewed in [53–58]). RNAi is a sequence specific, post-transcriptional gene and 

virus silencing mechanism that is triggered by double-stranded RNA (dsRNA). Direct 

evidence of the antiviral role of RNAi in insects has predominantly come from studies in 

Drosophila melanogaster, Aedes aegypti, and Anopheles gambiae, which involved 

experimental infections via injections with pure virus inocula, mutant-flies, or gene knock-

down in mosquitos [59–63]. Likewise, field and laboratory based studies in Apis mellifera 

(Western honey bee) [64–69] and Apis cerana (Eastern honey bee) [70] indicate that RNAi-

mediated antiviral immunity is important in honey bees (reviewed in [71]). In addition, 

dsRNA may serve as a non-sequence-specific virus associated molecular pattern (VAMP) 

that triggers innate antiviral immune pathways in fruit-flies [72] and honey bees [73,74], 

similar to the mammalian interferon response [75] (Figure 1, Tables 1 and S1).
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Other insect immune responses include melanization, encapsulation, reactive oxygen species 

production, and activation of signal transduction cascades that result in the production of 

antimicrobial peptides (AMPs) and other effector proteins (Figure 1, Tables 1 and S1). 

These pathways include the Toll, Imd (Immune Deficiency) and Jak/STAT (Janus kinase 

and Signal Transducer and Activator of Transcription) innate immune response pathways 

(Figure 1) (reviewed in [52,56,76–80]). There are numerous orthologous proteins utilized in 

plant, insect, and mammalian immune defense mechanisms (reviewed in [51,81]), and 

discovery of the Drosophila Toll pathway led to the identification of a repertoire of 

mammalian Toll-like receptors (TLRs) (reviewed in [81], [82]). The importance of the Toll, 

Imd, Jak/STAT, and other pathways in antiviral defense is variable and specific to individual 

virus-host interactions [76,80,83]. For example, the Toll pathway is involved in D. 

melanogaster and Aedes aegypti defense against Drosophila X virus [84] and Dengue [85], 

respectively, as dif loss of function mutants were more susceptible to virus infection. The 

Drosophila Imd pathway plays a larger role than the Toll pathway in limiting Sindbis virus 

[86] and Cricket paralysis virus (CrPV) [87], and the Jak-Stat pathway is critical to 

combating Drosophila C virus infection [88]. AMPs are small cationic peptides that 

penetrate microbial membranes, serve in innate immune signaling, and play additional 

uncharacterized functions (reviewed in [77,89]). While the role of AMPs in virus infection is 

not known, changes in AMP expression are used as indicators of immune pathway 

regulation. AMP induction in D. melanogaster varies, as some viruses induce expression 

(i.e., DXV and SINV) and others do not (i.e., CrPV and Rhabidovirus [90]). Numerous 

studies suggest the role of additional pathways in insect antiviral defense [72,80,88,90–92].

Honey Bee Antiviral Immune Responses

Bioinformatic analysis of the honey bee genome identified A. mellifera orthologs of insect 

immune genes and suggests that bees have fewer immune genes than D. melanogaster, Ae. 

aegypti, or An. gambiae [47,48,93]. The honey bee genome encodes the suite of genes 

required for RNAi including dicer-1, ago-2, r2d2, and dicer-like, which shares 30% 

nucleotide identity with Dm dicer-2 [47,94]. All the main components of the Toll, Imd, 

JNK, Tor, and Jak-STAT pathways have been identified (except upd), as well as immune 

effector proteins including AMPs (i.e., abaecin, hymenoptaecin, apidaecin, and defensin) 

and prophenoloxidases [48]. RNAi, Toll, Imd, endocytosis, MAPK, and non-specific 

dsRNA-mediated immune pathways have been implicated in honey bee antiviral defense 

(Figure 1, Tables 1 and S1).

A distinguishing feature of virus infection is the presence of long, double-stranded RNA 

molecules in the cytosol of the infected cell. Since long dsRNAs are not typical products of 

eukaryotic gene expression, these molecules are recognized as PAMPs in hosts including 

plants, arthropods, insects, and mammals [95]. Mammals have several receptors (e.g., TLR3, 

PKR, RIG-I, MDA-5) that upon binding dsRNA, activate signal transduction cascades, 

resulting in the transcriptional activation of genes involved in generating an “antiviral state” 

including thousands of interferon stimulated genes (reviewed in [96,97]). Importantly, long 

dsRNAs also serve as the substrate for RNAi-mediated antiviral responses. This first step of 

the antiviral small interfering RNA (siRNA) pathway is cleavage of cytosolic dsRNA by the 

Dicer enzyme (Figure 1). Initial studies implicating the role of RNAi in honey bee antiviral 
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defense demonstrated that feeding sucrose solutions containing IAPV-specific dsRNA 

resulted in increased bee survival, lower levels of IAPV [64], larger colony size, and 

increased honey yields [67]. This also sparked commercial interest in dsRNA/RNAi-

mediated antiviral treatments [67], and raised concerns regarding potential off-target effects 

and the use of RNAi-based insecticidal crops [98]. A subsequent laboratory-based study 

demonstrated that pre-treatment of larvae and adults with DWV-specific dsRNA prior to 

DWV-infection via feeding resulted in increased survival and decreased virus titers [65]. 

Likewise Apis cerana larvae pre-treated with virus-specific dsRNA had reduced levels of 

Chinese Sacbrood virus following infection via feeding [70].

One of the hallmarks of RNAi-mediated antiviral responses in insects is siRNA production. 

Small interfering RNAs produced by Dicer-2 cleavage are 21–22 bps in length, with an 

approximately 19 bp double-stranded RNA core, 5′-monophoshate ends, and two-nucleotide 

single-stranded overhangs at the 3′ hydroxyl ends; the single-strand siRNA retained in the 

holo-RNA Induced Silencing Complex (RISC) is modified (2′-O-methylated) at the 3′-end 

(reviewed in [99]). The first molecular evidence of virus-specific siRNAs in honey bee 

samples was obtained by Northern blot analysis [64,70]. Recently, Chejanovsky et al. 

evaluated siRNA populations isolated from bees obtained from either CCD-affected or 

unaffected colonies using high throughput sequencing and determined that there were more 

virus-specific (i.e., IAPV, KBV, and DWV) siRNA reads in CCD-affected samples [66,69]. 

These siRNAs were predominantly 22-nt long and distributed throughout the virus genome 

[66], indicating that the dsRNA replicative intermediate form of the IAPV genome was the 

Dicer substrate (reviewed in [100]). Further analysis of the IAPV-siRNAs from CCD-

affected samples determined that most were negative-sense, and may thus serve as guide 

sequences that target the (+)ssRNA IAPV genome [66]. High throughput sequencing of 

small RNAs obtained from Varroa-infested, DWV-like, and VDV-1-infected bees identified 

a greater number of positive sense virus-specific siRNAs than negative sense siRNAs, and 

showed that DWV-like virus and siRNA abundance were proportional [69]. Interestingly, 

pupae with low virus levels that were exposed to few Varroa mites had 5-times more 

siRNAs than viral genomes, suggesting that when mite-pressure was low, the honey bee 

RNAi-mediated defense system was able to overcome virus replication [69].

Results to date indicate that honey bees utilize RNAi as an antiviral defense mechanism. 

Future studies that show increased virus copy number in response to experimental knock-

down of dicer-like and/or argonaute-2 would provide additional evidence of an RNAi-

mediated defense strategy in honey bees. Likewise, demonstrating siRNA incorporation into 

the RISC by sequencing only 2′-O-methylated siRNAs would provide additional 

experimental support for honey bee antiviral RNAi. The relative contribution of RNAi and 

other immune mechanisms requires further examination in the context of specific viruses, in 

different developmental stages and castes, and in a range of colony health (i.e., weak, 

healthy, CCD-affected). Genome integration of IAPV also requires further examination [64], 

since in D. melanogaster, both genome-integrated RNA viral sequences and RNAi are 

involved in limiting and maintaining persistent virus infections [63]. Together, these and 

other studies will reveal the relative role of RNAi in reducing or eliminating viruses in 

individual bees and colonies.
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In D. melanogaster, Dicer-2 not only participates in RNAi, it also serves as a dsRNA sensor 

that upon binding results in the transcriptional activation of genes with antiviral function 

including vago [72] (Figure 1). Interestingly, Dicer-2 is a DEAD-box helicase motif 

containing protein, similar to the RIG-I-like family of mammalian cytosolic dsRNA sensors 

[72]. Recent evidence in honey bees suggests that dsRNA, regardless of its sequence-

specificity, triggers an antiviral response that decreases viral burden [73]. Also, vago 

expression was increased in pupae that were orally infected with DWV [69]. Transcriptional 

profiling of Sindbis virus-infected and dsRNA-treated bees three days post-infection 

indicated that metabolic pathways were perturbed in both treatment groups. In addition, 

endocytosis and eicosanoid signaling pathways were differentially regulated in virus-

infected bees, and dsRNA-treated bees differentially regulated genes involved in oxidative 

phosphorylation. The majority of differentially expressed genes were not involved in 

characterized innate immune pathways, albeit AMP expression was reduced (i.e., apidaecin 

and hymenoptaecin). Transcriptional changes in response to non-virus specific dsRNA (i.e., 

dsRNA-GFP) in developing honey bee workers were evaluated in a study aimed at 

investigating the off-target effects in RNAi-mediated gene knock-down experiments [74]. 

This study identified 1,400 differentially expressed genes, and gene ontology analyses 

determined that the affected genes included those involved in development, metabolism, 

immunity, stress response, and RNA processing and transport [74].

Several transcriptional level studies in honey bees implicate the involvement of 

uncharacterized genes/pathways in antiviral responses [18,69,73,101,102]. However, the 

roles of genes in the Toll, Imd, Jak-STAT, JNK, and RNAi pathways are the best 

characterized. Central players in honey bee immune signal transduction cascades include 

insect orthologs of a well-characterized mammalian transcription factor NF-κB, including 

Dorsal-1A, Dorsal-1B, and Relish (Figure 1, Tables 1 and S1). Nazzi et al. determined that 

dorsal-1A expression is key in limiting DWV infection [102]. Activation of NF-κB-family 

transcription factors results in the production of AMPs, which have unknown roles in 

antiviral immunity, and numerous other less well-characterized genes [19,48,103–105]. 

Symptomatic young bees experimentally infected with IAPV via feeding exhibited increased 

expression of Toll pathway members (i.e., toll-6, cactus, and hymenoptaecin) [101], whereas 

transcriptional profiling of IAPV positive bees from naturally infected colonies did not 

implicate either the Toll or Imd pathways in antiviral defense [18]. Young bees 

experimentally infected with Sindbis virus via injection and harboring very low levels of 

other bee pathogens expressed less apidaecin and hymenoptaecin than mock-infected 

controls [73]. Similarly, neither ABPV-challenge nor ABPV and E. coli co-challenge via 

injection resulted in AMP production (i.e., Defensin-1, Abaecin, and Hymenoptaecin) in 

adults or larvae, indicating that ABPV may suppress bee immune responses [106].

There are few general trends in the transcriptional response of honey bees to viruses due in 

large part to the relatively small number of studies performed to date and due to differences 

in virus-challenge methodologies (e.g., infection via injection, oral infection), experimental 

vs. natural infections, tissues examined, post-infection assay time, and developmental stage 

of the bee [107] (i.e., IAPV [18,101,108], DWV [44,69], SBV [70], CCD-affected [109], 

Sindbis virus [73]). Furthermore, variability between experimentally infected-bees may be 
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attributed to differences in immune gene regulation between individuals within and between 

colonies, purity and strain of virus inoculum, varied microbiomes, and prevalence of pre-

existing pathogens. In addition, there are relatively few predicted genes (~25%) that are 

involved in well-annotated pathways; 33% of the DEGs in naturally IAPV-infected adults 

had Drosophila orthogs and could be assigned putative function [18]. That said, differential 

expression of genes in immune, endocytic, and metabolic pathways are common to several 

data sets, but the directionality of regulation varies between studies and bee developmental 

stage [18,73,101]. Several investigations have focused on IAPV due to its association with 

colony health and the development of methods to produce IAPV-augmented infectious 

stocks via passaging bee viruses in pupae [108]. In adult bees, IAPV abundance is highest in 

the gut and hypopharyngeal gland and low in hemocytes (insect blood/immune cells) and the 

fat body, a tissue involved in metabolic activities (insect liver) [18,77,110,111]. 

Transcriptional profiling of IAPV-infected adults revealed differential expression of over 

3,000 genes [18]. Functional analysis determined that genes involved in signal transduction 

and immune responses exhibited increased expression and that genes involved in 

metabolism and mitochondrial dysfunction had reduced expression [18]. In addition, IAPV-

infection resulted in increased expression of genes involved in the TCA cycle II, protein 

ubiquitination, and eIF2 signaling, and that IAPV-infection reduced expression of genes in 

the γ-glutamyl cycle [18]. Chen et al. determined that IAPV-infection also perturbed 

expression of genes involved in insect immune pathways (i.e., oxidative phosphorylation, 

ABC transporter function, endocytosis, phagocytosis, TGF-beta signaling, Tor signaling, 

MAPK signaling, Jak-STAT signaling, and lysosomal degradation) [18]. Specific immune 

genes with increased expression in IAPV-infected adult honey bees include Jak/STAT 

pathway members (i.e., cbl, stat, pias, and hopscotch), Tor pathway members (i.e., gbl, 

mo25, dmel, and eIF4B), MAPK members (i.e., pointed, phi, and corkscrew), and genes 

involved in endocytosis (i.e., egfr, pastI, rabenosysn, and vacuolar protein sorting-

associated protein 37B-like) [18] (Figure 1, Tables 1 and S1). It is noteworthy that IAPV-

infected larvae had a different suite of DEGs with little overlap in the adult dataset [18]. 

Pupae infected with IAPV exhibited variable expression of ribosomal RNAs and increased 

expression of ribosomal protein S5a (RPS5), and glutathione S-transferase 1 [108]; bees 

from CCD-affected colonies also had increased rRNA expression [109]. The transcriptional 

profiles of the fat bodies from young, IAPV-infected worker bees [101] shared the most 

genes with IAPV-infected adult bees [18], and had little overlap with DEGs in bees infected 

with either E. coli bacteria [112] or microsporidia (Nosema spp.) [113], indicating that 

honey bee antiviral responses are distinct from immune responses mounted against other 

parasites. Increased expression of argonaute-2 and dicer-like in response to IAPV-infection 

also supports the role of a distinct antiviral response involving RNAi, Toll, and Jak-STAT 

pathways [101]. The research performed to date is informative, but additional studies are 

needed to better understand honey bee antiviral immune mechanisms at the transcriptional 

level (e.g., mechanisms of regulation of gene expression and the role of splice variants) and 

beyond.
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Viruses and Other Stressors

The focus of this review is honey bee host – virus interactions, and honey bee antiviral 

responses, but honey bees live in a complex environment. The effects of viruses on bees, 

and the functionality of the bee immune responses, may be affected by the presence of other 

pathogens [12,19,20], the microbial context of infection (microbiome [114–117]), 

environmental factors including agrochemical exposure [104,118–121], and adequate 

nutrition [122–124]. Several studies indicate that bees infected with multiple pathogens have 

increased mortality and CCD-affected samples have a greater number of pathogens than 

control colonies [9,12,14]. While it is widely accepted that mite infestation is detrimental to 

honey bee colonies and that mites also serve as virus vectors [40–42], the mechanism(s) of 

synergistic detrimental interactions have not been fully elucidated [34,44,45,102,105].

Nazzi et al. investigated the combinatorial effects of mites and virus in both field and 

laboratory settings from the colony to the molecular level [102]. They determined that high 

mite infestation coupled with increasing levels of DWV from June to October resulted in 

increased colony mortality [102]. Transcriptome (RNASeq) analysis of adult bees in these 

colonies revealed lower expression of 19 immune genes including dorsal-1A, pathogen 

recognition receptors (AmSCR, B5 and B7 scavenger receptors, and C-type lectin 8), and 

immune signaling pathway members including hem, tak1, and socs [102] (Figure 1). Bees 

from colonies with both high mite and DWV levels exhibited increased expression of other 

immune genes including genes involved in pathogen recognition (PGRP-S2, nimC2, eater-

like) and serine proteases [102]. Laboratory experiments confirmed that a combination of 

mites and DWV, but not mites alone, reduced dorsal-1A expression in adult bees [102]. 

Also, larvae in which dorsal-1A expression was reduced by RNAi-mediated knock-down 

harbored a greater number of DWV genome copies [102]. Recent studies by Kuster et al. 

demonstrated that DWV virus abundance increased up to 72 hours post experimental 

wounding or Varroa mite exposure [44]. Assessment of the transcriptional responses to 

wounding and mite exposure at times ranging from 24 – 240 hours post-capping 

demonstrated increased expression of immune genes (i.e., abaecin, apidaecin, defensin, 

hymenoptaecin, PGRPs, PPOact, and relish) and DWV infection (up to 72 hours) and 

reduction of mite numbers in conjunction with immune activation [44]. Cluster analysis 

suggested co-regulation of defensin and relish, and apidaecin and hymenoptaecin, whereas 

abaecin and PPOact were not associated with other immune gene regulation [44]. 

Interestingly, results to date indicate that mite pressure, independent of transmission, results 

in increased levels of DWV-like viruses with a VDV-1 CP coding region [69]. The 

interactions between the honey bee host, Varroa destructor, and viruses are not fully 

understood and require further investigation. Since honey bee colonies located in 

Newfoundland and Labrador, Canada [125], and several Hawaiian islands lack V. destructor 

[126], these populations provide unique opportunities to examine the effects of viruses on 

colony health and immune regulation.

Two sides to the story – Host vs. Virus Genetics

The genetic background of the host has implications on susceptibility to virus infection and 

disease severity. This is particularly relevant for honey bees as they live in colonies of ~ 
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30,000, the majority of which are sterile, genetic-half sisters, since queens typically mate 

with 12 drones [127]. Colony level diversity due to queen polyandry reduces the prevalence 

of honey bee diseases [128] and may result in varying transcriptional responses, variation 

between individual hemocyte populations, and differences in social immune mechanisms 

(e.g., grooming behavior, propolis production) [110,129]. Moreover, genetic diversity is not 

limited to the host, as the majority of honey bee viruses are RNA viruses with error prone 

polymerases that generate virus quasispecies over the course of infection [130]. Different 

virus variants within particular quasispecies populations may have greater or lesser 

pathogenicity in a particular host organism. In addition, different strains of honey bee 

viruses exhibit differential pathogenicity (i.e., DWV and IAPV) [18,69,126]. Recent studies 

determined that DWV strain prevalence was reduced in the presence of mites [126] and the 

recombinant strain of DWV, DWVv, is more virulent than other DWV-like viruses [69]. A 

greater appreciation of the existing virus genomic diversity across the globe is needed to 

better evaluate the effects of distinct virus strains on colony health. The development of 

infectious virus clones that are amenable to mutation (reverse genetic systems) are needed to 

verify strain-specific virulence and determine mechanism(s) of enhanced virulence or 

increased tolerance. Honey bees may vary in their degree of virus tolerance [79,131]. This 

should be explored at both the individual and colony levels, since the information gained 

may guide the use of virus susceptibility as an additional selectable trait in honey bee 

breeding programs [129,132,133]. In addition, further use and development of immortalized 

honey bee lines (i.e., AmE-711) [134], long-term cell cultures [135], and primary cell 

cultures [136,137], are required to further the field of honey bee virology. Future use of 

immortalized cell lines and infectious honey bee virus clones will serve to normalize future 

studies and lead to a better understanding of honey bee antiviral defense mechanisms.

Conclusion

Investigating virus-host interactions throughout all domains of life has led to a greater 

biological understanding of fundamental cellular processes and host-virus coevolution. 

Honey bee host – virus interactions likely depend upon bee age or developmental stage, 

additional biotic and abiotic variables, and genetics of both host and pathogen. Only with 

additional research in laboratory and field settings at both the individual bee and colony 

level, will the mechanisms of honey bee antiviral defense be understood. Undoubtedly, 

continued investigation of honey bee host-virus pairs will lead to the discovery of 

evolutionarily conserved immune defense strategies, as well as reveal numerous unique co-

evolved relationships that are specific to each host-virus combination. It is a critical and 

exciting time to investigate honey bee antiviral response mechanisms.
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Highlights

• Honey bee colony losses have been attributed to multiple factors including RNA 

viruses.

• The RNAi, Toll, Jak/Stat, and non-specific dsRNA mediated immune pathways 

have been implicated in honey bee antiviral defense.

• Transcriptional profiling of virus-infected bees illustrates differential expression 

of numerous uncharacterized honey bee genes.

• Honey bee antiviral responses likely involve general response mechanisms, as 

well as unique co-evolved interactions; all require further investigation.
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Figure 1. Honey Bee Immune Pathways - Highlighting Genes Implicated in Antiviral Immune 
Responses
The honey bee genome encodes major members of insect immune pathways including: 

RNAi (RNA interference); Jak/STAT (Janus kinase/Signal Transducer and Activator of 

Transcription); Toll; NF-κB (Nuclear Factor κB); JNK (c-Jun N-terminal kinase); and 

MAPK (Mitogen-Activated Protein Kinases), as well as orthologs of genes involved in 

autophagy, eicosanoid biosynthesis, endocytosis, and melanization. Bold text indicates 

genes and proteins differentially expressed in virus-infected honey bees. Additional 

information including Apis mellifera (Am) gene accession numbers is provided in Tables 1 

and S1. The first step in immune activation is host recognition of pathogen associated 

molecular patterns (PAMPs) including viral dsRNA, bacterial peptidoglycans, and fungal β-

glucans. In general, the Toll pathway is involved in defense against Gram(+) bacteria and 

fungi and the Imd pathway is activated by Gram(−) bacteria, but specific host-pathogen 

interactions are unique. This is particularly true for host – virus interactions since data from 

fruit-flies, mosquitoes, and honey bees indicate differential activation of immune genes and 

pathways. The Jak/STAT pathway is activated via ligand binding to the Domeless 

receptor; while Drosophila melanogaster (Dm) express Domeless ligands (unpaired, upd, 

upd2, and upd3), a honey bee upd ortholog has not been identified. Following Domeless-

ligand binding, Hopscotch Janus kinases are transphosphorylated, leading to 

phosphorylation and dimerization of STAT92E-like proteins. Activated STATs 

transcriptionally regulate antimicrobial effectors TEP7 (Thioester-containing protein 7), 

TEPA, TEPB, and the Jak/STAT inhibitor SOCS (Suppressor of Cytokine Signaling). The 

honey bee genome also encodes for D-PIAS (Protein Inhibitor of Activated STAT), another 

inhibitor of the Jak/STAT pathway. The RNAi-pathway is initiated by Dm Dicer-2 cleavage 

of viral dsRNA into 21–22 bp siRNAs; Am Dicer-like share ~30% aa identity with Dm 

Dicer-2. The siRNAs are then loaded into AGO2 (Argonaute-2), the catalytic component of 

the RISC (RNA Induced Silencing Complex). A single strand of the siRNA is retained in the 

RISC and used to specifically target cognate viral genome sequences for cleavage. In 

addition, Dm Dicer-2 serves as a dsRNA sensor that mediates a signal transduction cascade 

resulting in increased expression of Dm Vago and suppression of viral replication. Am 
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Dicer-like may serve as a dsRNA sensor, and honey bees have a vago ortholog (Table S1), 

but the mechanism(s) of honey bee non-specific dsRNA-mediated antiviral responses 

require additional characterization. The Toll pathway is activated by a family of pathogen 

recognition receptors (PRRs) (e.g., peptidoglycan receptor proteins and Gram(−) binding 

proteins) that bind fungal and bacterial PAMPs. The Toll pathway is activated in some 

insect host-virus combinations, although the activation mechanism is unknown. Following 

PAMP binding, a serine protease cascade results in cleavage of pro-Spaetzle into mature 

Spaetzle. The honey bee genome encodes two putative spaetzle orthologs, which bind the 

membrane-anchored Toll receptor. Toll dimerization results in the recruitment of dMyD88, 

Tube, and Pelle. Pelle is likely involved in degradation of NF-κB inhibitors (e.g., Cactus-1, 

Cactus-2, Cactus-3), resulting in the release of transcription factors Dorsal-1A and 

Dorsal-1B. Nuclear translocation of Dorsal results in increased expression of antimicrobial 

peptides (AMPs). The Imd pathway is activated by Peptidoglycan recognition protein LC 

(PGRP-LC) binding to diaminopimelic-containing peptidoglycan of Gram(−) bacteria, 

followed by activation of the adaptor protein Immune deficiency (IMD), Relish 

phosphorylation by the IKK complex (IkB kinase), and cleavage of Relish by the caspase 

Dredd (Death-related ced-3/Nedd2-like). Relish transcriptionally regulates expression of 

AMPs and other genes involved in antimicrobial defense. The JNK pathway is also 

activated by TAB (Transforming growth factor-activated kinase 1) and TAK1 

(Transforming growth factor-activated kinase 1 binding protein), resulting in AMP 

expression and/or apoptosis. In Drosophila, binding of vesicular stomatitis virus to the 

Toll-7 receptor promotes autophagy, likely by inhibiting the PI3/Akt/Tor 

(phosphatidylinositol 3-kinase/Protein kinase B/Target of rapamycin) pathway which 

suppresses autophagy. The honey bee genome encodes for one gene of the Toll-7/2 clade, 

18-wheeler (am18w), which shares ~49% aa identity with Dm Toll-7 and ~45% aa identity 

with Dm Toll-2. The role of Am18w protein in antiviral defense and autophagy in honey 

bees is unknown. In insects, Eicosanoid biosynthesis begins with the induction of PLA2 

(Phospholipase 2) from signal cascades downstream of viral, fungal, or bacterial PAMP 

recognition. Activated PLA2 hydrolyzes arachidonic acid (AA) from cellular phospholipids. 

Eicosonoid production likely occurs via oxidation of AA by an unidentified enzyme. 

Eicosanoids are critical for nodulation and aid in phagocytosis, micro-aggregation, adhesion, 

and release of prophenoloxidase (PPO) from hemocytes. Experimental evidence also 

suggests endocytosis, melanization, and MAPK pathways are involved in honey bee 

antiviral defense.
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Table 1
Honey bee immune genes

The Apis mellifera genome encodes major members of insect immune pathways including those depicted in 

Figure 1 and listed by gene name, pathway, and accession number in this table. Bold text indicates genes 

differentially expressed in virus-infected honey bees, and the specific virus and citation are provided for each. 

Transcript variants, the majority of which were predicted using Gnomon and the NCBI RefSeq Database, are 

listed although many have not been experimentally verified as expressed transcripts, nor been specifically 

implicated in antiviral defense. A list of additional honey bee immune related genes is provided in Supporting 

Table S1.

Gene name Pathway Accession Number Virus Reference

abaecin AMP NM_001011617.1 SINV Flenniken and Andino 2013

apidaecin 1 (apid 1) AMP NM_001011613.1 SINV, DWV Flenniken and Andino 2013, Kuster et al. 
2014

apidaecin 1 (apid73) AMP XM_006572699.1 SINV, DWV Flenniken and Andino 2013, Kuster et al. 
2014

apidaecin type 22 (apid22) AMP NM_001011642.1 SINV, DWV Flenniken and Andino 2013, Kuster et al. 
2014

hymenoptaecin AMP NM_001011615.1 SINV, DWV Flenniken and Andino 2013, Kuster et al. 
2014

defensin-2 AMP NM_001011638.1 DWV Kuster et el. 2014

apisimin AMP NM_001011582.1

defensin-1 AMP NM_001011616.2

vago antivir XM_395092.4 DWV Ryabov et al. 2014

nimrod c1 (nimc1) EGF Family XM_006561053.1 SINV Flenniken and Andino 2013

phospholipase a2 (pla2) Eicosanoid NM_001011614.1

unc-80/endocytosis Endocytosis XM_006558847.1 SINV Flenniken and Andino 2013

dscam IG superfamily * see caption SINV Flenniken and Andino 2013

relish (rel), var x1 IMD XM_006562219.1 DWV Kuster et el. 2014

relish (rel), var x2 IMD XM_006562220.1 DWV Kuster et el. 2014

relish (rel), var x3 IMD XM_006562221.1 DWV Kuster et el. 2014

fadd IMD GB30399

imd IMD NM_001163717.1

ikkγ-kenny IMD XM_001120619.3

ird5 IMD XM_623132.3

pgrp-lc IMD XM_392452.5

dredd IMD XM_001120830.1

tab, var x1 IMD XM_001122664.3

tab, var x2 IMD XM_006565777.1

tak1, var x1 IMD XM_006572294.1

tak1, var x2 IMD XM_397248.5

d-pias, var x1 Jak/STAT XM_006561055.1 IAPV Chen et al. 2014

d-pias, var x2 Jak/STAT XM_006561056.1 IAPV Chen et al. 2014
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Gene name Pathway Accession Number Virus Reference

d-pias, var x3 Jak/STAT XM_623568.4 IAPV Chen et al. 2014

hopscotch (hop), var x1 Jak/STAT XM_001121783.3 IAPV Chen et al. 2014

hopscotch (hop), var x2 Jak/STAT XM_006567688.1 IAPV Chen et al. 2014

hopscotch (hop), var x3 Jak/STAT XM_006567689.1 IAPV Chen et al. 2014

hopscotch (hop), var x4 Jak/STAT XM_006567690.1 IAPV Chen et al. 2014

stat92e-like Jak/STAT XM_397181.5 IAPV Chen et al. 2014

domeless Jak/STAT XM_003251652.2

socs-5, var x1 Jak/STAT XM_006570603.1

socs-5, var x2 Jak/STAT XM_624416.4

tepb Jak/STAT XM_006570965.1

tep7, var x1 Jak/STAT XM_006565440.1

tep7, var x2 Jak/STAT XM_006565441.1

tepa, var x1 Jak/STAT XM_006571765.1

tepa, var x2 Jak/STAT XM_397416.4

lysozyme 1 (lys) Lysozyme NC_007082.3

lysozyme 2 (lys-2) Lysozyme NM_001120136.3

lysozyme 3 (lys-3), var x1 Lysozyme XM_393161.5

lysozyme 3 (lys-3), var x2 Lysozyme XM_006571783.1

nimrod b (nimb) Phagocytosis GB12454

nimrod a (nima) Phagocytosis XM_001120328.3

nimrod c2 (nimc2), var x1 Phagocytosis XM_006561040.1

nimrod c2 (nimc2), var x2 Phagocytosis XM_006561041.1

nimrod c2 (nimc2), var x3 Phagocytosis XM_006561042.1

nimrod c2 (nimc2), var x4 Phagocytosis XM_006561043.1

pi3k, var x1 PI3K-Akt-Tor XM_006570469.1

pi3k, var x2 PI3K-Akt-Tor XM_623894.3

target of rapamycin (tor) PI3K-Akt-Tor XM_006566642.1

akt-interacting protein-like PI3K-Akt-Tor XM_625206.4

raptor PI3K-Akt-Tor XM_624057.4 IAPV Chen et al. 2014

phenoloxidase subunit a3 (ppo) PPO NM_001011627.1

argonaute 2 (ago2) RNAi XM_395048.5 DWV Galbraith et al. 2015

dicer-like RNAi XM_006571316.1 DWV Galbraith et al. 2015

lysyl oxidase-like 2 (lox2), var x1 Scav. Receptor A XM_006560641.1

lysyl oxidase-like 2 (lox2), var x2 Scav. Receptor A XM_392090.4

nf-κ-β inhibitor cactus 1 Toll/TLR NM_001163712.1 DWV Galbraith et al. 2015

toll-6 Toll/TLR XM_393712.4 DWV Galbraith et al. 2015

dorsal, var a Toll/TLR NM_001011577.1 DWV Nazzi et al 2012

dorsal, var b Toll/TLR NM_001171006.1

dorsal-2 (dl-2), var x1 Toll/TLR XM_006565455.1
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Gene name Pathway Accession Number Virus Reference

dorsal-2 (dl-2), var x2 Toll/TLR XM_395180.5

ikappab kinase-like 2 (ik2) Toll/TLR XM_396937.5

myd88, var x1 Toll/TLR NM_006560439.1

myd88, var x2 Toll/TLR XM_006560440.1

nf-kappa-β inhibitor cact1, var x1 Toll/TLR XM_006567107.1

nf-kappa-β inhibitor cact1, var x2 Toll/TLR XM_006567108.1

nf-kappa-β inhibitor cact2 Toll/TLR XM_394485.5

nf-kappa-β inhibitor cact3, var 2 Toll/TLR XM_625153.4

spaetzle-like, var x1 Toll/TLR XM_003250921.2

spaetzle-like, var x2 Toll/TLR XM_006566961.1

pelle, var x1 Toll/TLR XM_006565164.1

pelle, var x2 Toll/TLR XM_623999.4

traf6, var x1 Toll/TLR XM_006562507.1

traf6, var x2 Toll/TLR XM_624204.4

toll interacting protein (tollip) Toll/TLR XM_624414.4

toll-1 Toll/TLR XM_006562720.1

toll-10 Toll/TLR XM_006562853.1

toll-8 Toll/TLR XM_393713.3

tube protein (tub) Toll/TLR XM_001121229.3

18-wheeler (18-w)/toll like receptor Toll/TLR NM_001013361.1

*
Note dscam has 104 transcript variants: NM_001014991.1; XM_006567003.1-XM_006567105.1.
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