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Summary

Discovering the structure and dynamics of transcriptional regulatory events in the genome with 

cellular and temporal resolution is crucial to understanding the regulatory underpinnings of 

development and disease. We determined the genomic distribution of binding sites for 92 

transcription factors (TFs) and regulatory proteins across multiple stages of C. elegans 

development by performing 241 ChIP-seq experiments. Integrating regulatory binding and 

cellular-resolution expression data yielded a spatiotemporally-resolved metazoan TF binding map. 

Using this map, we explore developmental regulatory circuits that encode combinatorial logic at 

the levels of co-binding and co-expression of TFs, characterizing (1) the genomic coverage and 

clustering of regulatory binding, (2) the binding preferences of and biological processes regulated 

by TFs, (3) the global TF co-associations and genomic subdomains that suggest shared patterns of 
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regulation, and (4) key TFs and TF co-associations for fate specification of individual lineages and 

cell-types.
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In multi-cellular organisms, transcription factors (TFs) bind at cis-regulatory elements in the 

genome to mediate diverse gene expression programs with exquisite spatiotemporal 

control1–3. However, owing to the paucity of in vivo developmental stage TF binding data 

and cellular TF expression data, the integrated maps required to study transcriptional control 

of development with spatiotemporal resolution are lacking.

In this work, we analyzed regulatory activity of a broad set of C. elegans TFs in one or more 

developmental stages. Exploiting recently developed methods4–6, we integrate TF binding 

data with an initial cellular-resolution map of TF expression in the embryo. Our integrated 

analyses support the discovery of many key TFs and candidate TF co-associations for fate 

specification, providing insights into the temporal and spatial dynamics of regulatory 

interactions in development.

Large-scale survey of regulatory binding

As part of the modENCODE consortium, we performed 241 chromatin 

immunoprecipitation-sequencing (ChIP-seq) experiments to identify in vivo binding sites for 

92 (10%) C. elegans TFs and regulatory proteins (collectively termed factors) in one or 

more stages of development or treatments (Fig. 1a, Supplementary Table 1). To identify 

factor binding from the ~5.1 billion raw reads, we developed a uniform processing pipeline 

(Extended Data Fig. 1a–e, see Methods) that allows comparison of orthologous TF 

properties7, such as sequence preferences (Extended Data Fig. 1f–h). Eight previously 

reported8 experiments failed to pass our quality controls and were thus removed from 

consideration.

We focused our analyses on embryonic and larval (L1-L4) stages, examining a total of 

397,539 reproducible binding sites distributed across 33,833 binding regions in the genome. 

Collectively, factor binding (excluding RNA polymerases) is spread throughout 21.7% of 

the C. elegans genome (Fig. 1b), an upper-bound defined by ChIP-seq resolution9. We 

estimate that –within our ChIP-seq resolution and sensitivity– we have identified ~90% of 

the regulatory binding regions (albeit not the majority of binding events; Extended Data Fig. 

1i). Consistent with this estimate, we observe binding within 2 kb upstream of a 

transcription start site (TSS) for 91.3% of genes (Extended Data Fig. 1j) 10.

HOT regions are dynamic in development

Previous studies8,11–13 have revealed regions in metazoan genomes with heavily clustered 

factor binding, termed high-occupancy target (HOT) regions. The availability of multiple 

data sets across stages allowed us to examine the dynamics of HOT regions through 

development. We identified high- (HOT) and extreme- (XOT) occupancy target regions for 
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each developmental stage, where significant (5% and 1%, respectively) enrichments in TF 

binding sites are observed (Extended Data Fig. 2a–c). We found a total of 9,142 HOT 

regions in at least one developmental stage, and 858 constitutive HOT (cHOT) regions 

occurring across all stages assayed (Supplementary Table 2). cHOT regions are enriched in 

promoters of genes with housekeeping functions (Extended Data Fig. 2d, Supplementary 

Table 3). However, most HOT regions are dynamic across development: 31–56% of HOT 

regions change between sequential stages and occupancy at larval L4-specific HOT regions 

increases as development progresses (Fig. 1c).

Across developmental stages, 77–85% of HOT regions occur within 2 kb upstream of an 

annotated TSS (Extended Data Fig. 2e). Furthermore, 88.7% and 88.8% of cHOT regions 

occur in promoter or enhancer states in L3 larvae (Fig. 1d) and embryos, respectively 

(Extended Data Fig. 2f,g). These results indicate that HOT regions reside at important 

regulatory locations in the genome and are dynamic during development (Extended Data 

Fig. 3a–c).

Preferences and roles of regulators

Factors displayed a range of chromatin state14 preferences, with a general bias towards 

promoter and enhancer states (Extended Data Fig. 3d,e). Though generally clustered near 

TSSs, many factors display enrichments for upstream or downstream binding (Extended 

Data Fig. 3f). Proximal and downstream binders include RNA Pol II (AMA-1) and other 

regulators of transcription initiation and elongation, respectively. Upstream binders may be 

enriched for chromatin remodelers and factors that recruit the transcriptional machinery. For 

example, binding of BLMP-1 – the ortholog of the human repressor PRDM115,16– is tightly 

concentrated upstream of TSSs (Fig. 1e). Likewise, ALY-2, a human THOC4 mRNA export 

factor ortholog17, exhibits an enrichment in binding downstream of TSSs during 

development (Fig. 1e) and is increased at elongation chromatin states relative to other 

factors. Generally, TFs assayed in multiple stages retain their upstream and downstream 

binding preferences. Remarkably, RNA Pol II positioning shifts (Fig. 1f) from a strong 

elongating distribution in the early embryo to weaker elongation distributions in later stages, 

consistent with its previously observed continued presence at promoters that are down-

regulated during development8,18.

Gene ontology (GO) analysis of the candidate protein-coding gene targets revealed 6,347 

functional associations (BH-corrected, P < 0.05) for 75 factors (Extended Data Fig. 4a, 

Supplementary Table 4), suggesting biological roles for TFs of previously unknown 

function. The unstudied factors FKH-10, KLU-1, and C34F6.9 group with the established 

neuronal fate regulators SEM-4 (ZNF236), MAB-5 (HOXA2/B2), CES-1 and ZAG-1 in 

targeting neurotransmission genes, with C34F6.9 additionally regulating muscle 

development and sex differentiation (Fig. 1g). Most of these factors, including SEM-4 and 

C34F6.9 in L2 larvae, appear to regulate the neuronal kinesin UNC-104 (human KIF1A/C, 

Fig. 1h). Although expression of FKH-10 is restricted to six neuronal cells near the terminal 

bulb of the pharynx19, its specific molecular role in neuronal regulation and its regulatory 

targets were heretofore unknown.
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Functional associations also demonstrate malleability of regulation. For example, UNC-62 

transitions from regulating diverse muscle and neuronal development genes in embryos to 

regulating lipid metabolism processes in L4 larvae (Extended Data Fig. 4b). These changes 

are consistent with known diverse UNC-62 roles in motor neuron and vulval development, 

as well as locomotion, and aging20,21. Similarly, the C2H2 zinc-finger protein KLU-1 

transitions from targeting neuronal genes in L2 larvae to targeting carbohydrate and lipid 

metabolism genes in L4 larvae. The change in UNC-62 regulatory targets coincides with 

increased expression of the UNC-62 (7a) isoform in late larval and adult intestine20, which 

has been shown to affect lifespan 22. Such early development regulators may often target 

metabolic regulation in later developmental stages23.

Global and sub-domain TF co-associations

Global analyses of pairwise TF co-associations24 revealed a multitude of established and 

novel co-associations (Fig. 2a), many stage-specific clusters of co-association (Extended 

Data Fig. 5a), as well as differences in co-associations between expressed and repressed 

promoters (Extended Data Fig. 5b). FOS-1:JUN-1 as well as GEI-11:LIN-15B co-

associations are readily apparent in L1 and L3 larvae, but not in L4 larvae. Likewise, ELT-3 

and BLMP-1, which preferentially reside at molting and cuticle development gene 

promoters, co-localize in L1 larvae but not in embryos. The neuronal regulators CES-1 and 

FKH-10 co-associate across larval stages (L1, L3-L4) but their co-association is not 

apparent in late embryogenesis (Fig. 2a). Changes in co-association are often correlated with 

the presence of additional factors, e.g., in the embryo to larval L1 transition, the increased 

ELT-3:BLMP-1 co-association is also accompanied by increased GEI-11 co-associations 

with these factors (Extended Data Fig. 5c–f). Other factors remain largely invariant through 

multiple stages, e.g., ZTF-11, a human MTF1 ortholog.

Functionally-related factors were often co-associated. For example, FOS-1, NHR-77 and 

PQM-1 target promoters of genes in cellular lipid and ketone metabolic processes. Similarly, 

EFL-1 and LIN-35, the known interacting orthologs of human E2F and RB, show a strong 

co-association in L1 larvae, where they target membrane organization and endocytosis 

genes.

We observed strong similarities in RNA Pol II binding within embryonic (early and late 

embryo) and within larval L1-L4 stages, but larval RNA Pol II binding is only marginally 

and weakly co-associated with embryonic binding, reflecting the dynamic establishment of 

the transcriptional machinery through development (Fig. 2a).

To uncover higher-order co-associations (involving ≥ 2 factors), and their genomic 

subdomains, we applied self-organizing maps (SOMs), an unsupervised machine learning 

technique25. For each developmental stage, we trained SOMs to cluster genomic regions 

with shared TF co-association patterns (Fig. 2b, Extended Data Fig. 6a–d), thereby 

concomitantly identifying TF co-association patterns (Fig. 2c) and their target regulatory 

regions.

We performed GO analysis of the target regulatory regions for 240, 390, 439, 390, and 409 

clusters in the embryo, larval L1, L2, L3, and L4 SOMs, respectively, revealing enrichments 
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across 1,209 GO terms (BH-corrected, P < 0.05, Extended Data Fig. 6e, Supplementary 

Table 5). As illustrated in the embryo, higher-order co-association patterns show a richness 

of functional associations, with 137 clusters spanning 273 GO terms. A close examination of 

UNC-62 co-association patterns reveals how diverse patterns for individual factors can 

result in specialized functional targeting (Fig. 2d). Regions bound exclusively by UNC-62 

and HLH-1 are highly-enriched at muscle development promoters. In contrast, genes 

targeted by more complex UNC-62 co-associations are enriched in synaptic transmission, 

regulation of cell death, and chromatin assembly functions. Higher-order co-associations are 

largely stage-specific (Fig. 3), a feature modulated by changes in the observed number of 

binding sites for individual factors between stages (Extended Data Fig. 7).

Spatiotemporal TF expression analysis

Although studies in C. elegans and D. melanogaster have led analyses of organismal-level 

regulatory binding circuits, such studies have generally lacked cell-type and tissue 

resolution. We sought to remedy this deficiency by tracking5,6 the expression of 180 diverse 

genes (mostly TFs) through early embryogenesis with cellular resolution(Extended Data Fig. 

8a–d, Supplementary Table 6). Our expression data, from previously published5,6 and newly 

acquired series, includes 36 factors with genome-wide binding measurements (13 embryo, 

23 larval).

We observed common and distinctive cellular expression patterns amongst a wide 

distribution of broadly- and narrowly-expressed genes (Extended Data Fig. 8e,f). For 

example, expression of DMD-4, an ortholog of the vertebrate spinal circuit configuration 

regulator DMRT326, is tightly limited to posterior regions of the pharynx. Similarly, 

F49E8.2 expression is exclusive to the Z2/Z3 germ cells (Extended Data Fig. 8a). 95.7% of 

pairs of tracked cells show distinct gene expression signatures (R < 0.75).

Cellular expression mapped the regulatory activity of 16 assayed factors to specific tissues 

(Fig. 4a). As expected, the known regulators of pharynx and muscle development, PHA-4 

and HLH-1, were respectively enriched in these tissues. The co-associated factors, MEP-1 

and DPL-1 (human TFDP1/2), although broadly-expressed, are enriched in neuronal 

lineages. This is consistent with the observed MEP-1 targeting of neuronal function genes in 

the larvae, and provides further support for the coordinate activities of MEP-1 and DPL-1 in 

targeting membrane organization, receptor-mediated endocytosis, and cell-cycle genes (Fig. 

1f, Supplementary Table 4).

More complex patterns of co-expression and co-association were observed in epidermal 

tissues, where CEH-16 (human Engrailed), and particularly ELT-1 and NHR-25 expression 

is concentrated. In both L2 and L3 larvae, ELT-1 and NHR-25 are modestly co-associated. 

ELT-1 targets transcriptional regulators, including NHR-25, and tail morphogenesis genes, 

whereas NHR-25 targets nuclear organization and genitalia development genes 

(Supplementary Table 4). However, L2 larval binding of ELT-1 and NHR-25 is co-

associated with that of CEH-16, whose early embryonic expression is primarily concentrated 

in a subset of pharynx and epidermal cells.
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In early embryo (Fig. 4a) and L1 larvae27, HLH-1, is primarily and broadly expressed in 

muscle tissues whereas posterior-specific HOX factors MAB-5, and EGL-5 are expressed in 

a small subset of posteriorly placed muscle, epidermal and neuronal precursors. We 

observed modest co-association signals between embryonic HLH-1 and MAB-5 binding, 

and larval L3 EGL-5 binding, perhaps reflecting the intersection of tissue-specific and 

positional regulatory programs. As expected, HLH-1 targets muscle differentiation genes 

(together with UNC-62); however in GO analysis, we only detect MAB-5 targeting of 

diverse neuronal functions (in mixed embryos and L2 larvae), consistent with its later role in 

neuron specification28. CO5D10.1, whose early embryonic expression is also restricted to 

muscle tissues is not co-associated with the above factors, and neither C05D10.1 or EGL-5 

showed specific functional associations. Thus, although co-associated factors were often 

expressed in the same tissue, this is not pervasive and factors with diverse binding targets 

are frequently co-expressed. Moreover, these co-expression patterns are dynamically 

established during embryogenesis (data not shown).

Refinement of embryonic co-associations

Despite extensive studies in metazoan regulatory networks, the relationship between 

regulator binding in overlapping genomic regions and co-expression in cell-types is not 

well-studied. We examined this relationship among 13 ‘focus’ factors, for which both 

embryonic binding and cellular expression were assayed. This analysis is limited to the first 

half of embryogenesis, where expression was directly measured in 696 ‘focus’ cells. Later 

events may occur that would not be identified in our analysis. We found a poor correlation 

between TF co-expression and co-association (R=0.07, Fig. 4b), consistent with precise 

coordination of these separate processes underlying the differential establishment of cell- 

and lineage-specific regulatory circuits (Fig. 4b).

Integrated analysis show that MEP-1 is co-associated and co-expressed with similarly 

broadly-expressed factors (LIN-13, CEH-39) and narrowly-expressed factors (CES-1, 

CEH-26), suggesting MEP-1 often works in cis with these additional factors. MEP-1 

binding is co-associated with CES-1 and CEH-26 in embryos, and expression of these 

factors is narrowly restricted within the MEP-1 expressing population. These MEP-1:CES-1 

and MEP-1:CEH-26 co-associations are reminiscent of MEC-3:UNC-86 interactions in 

which the classic ‘terminal selector’ MEC-3 heterodimerizes with the broadly-expressed 

UNC-86 exclusively in touch sensory neurons29. Thus, the co-association and co-expression 

of MEP-1:CEH-26 suggests CEH-26 may function as a terminal selector in head and tail 

neurons, and the excretory cell. The spatiotemporally-resolved co-association analyses 

demonstrate how broadly-expressed factors, such as MEP-1 and LIN-13 –which targets both 

neurotransmission functions and genitalia development– can play diversified functional 

roles during development through co-associations with narrowly-expressed factors.

To determine how co-binding and co-expression coordinately define regulatory patterning in 

distinct cell-types and genomic regions, we intersected cellular expression and binding data 

by mapping focus factor binding to in silico genomes for cells where the factors are 

expressed. This procedure resulted in 4,779,810 binding sites distributed across 2,858,477 

cell-resolved binding modules. We applied an SOM approach to cluster the cell-resolved 
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binding modules by co-association patterns, uncovering 161 TF co-association patterns and 

the genomic subdomains and specific cellular subsets of the embryo in which they may 

occur (Fig. 4c). The cellular distribution of TF co-association patterns revealed co-

associations shared among and specific to particular cell-fates (Fig. 4d). For example, we 

found that distinct MEP-1, CEH-26, and NHR-2 co-associations were specific to neuronal 

tissues. Similarly, muscle cells were enriched in various HLH-1 co-associations (Fig. 4d).

We identified 39 co-association patterns whose cellular distribution coincides with the 

cellular expression of at least one of 124 target genes (non-focus factors; Bonferroni-

corrected, P < 0.01). Focus factor binding allowed us to analyze co-association patterns at 

the promoters of 44 of these genes (where binding is observed). For 28 (63.6%) of these 

genes, co-association patterns were detected at the promoter and the gene’s cellular 

expression matched the cellular distribution. Moreover, the overlap between the expression 

cells for a gene and the co-association cells is higher in cases where the co-association 

occurs in the promoter of the gene (Wilcoxon, P=5.1×10−6, Extended Data Fig. 8g). This 

result suggests that co-associations at promoters are correlated with cellular expression 

patterns for genes, and indicates a functional regulatory role of the discovered co-

associations.

Discussion

We have generated a high-coverage TF binding map of the C. elegans genome, revealing 

regulatory targets, co-associations, and dynamics across five developmental windows for 92 

diverse factors. Gene targets suggest a multitude of functional associations for 75 factors, 

many previously unannotated and with clear mammalian homologs. Our work reveals 

extensive regulatory rewiring through development, with temporal differentiation of HOT 

regions in the genome, factor positioning preferences, regulatory targets, and co-

associations.

A systematic analysis of TF co-associations through developmental reveals sets of factors 

that assemble at genomic regions associated with >1,200 biological functions (GO terms), 

with likely spatiotemporal specificity. As illustrated with UNC-62, these higher-order co-

associations reveal how individual TFs can participate in distinct TF co-associations patterns 

at promoters of functionally diverse genes.

Lastly, cellular-resolution expression tracking allowed us to map the activity of 35 factors to 

precise cell- and tissue-types, demonstrating lineage-specific activities for 16 factors in the 

early embryo. Importantly, co-associations that are observed in whole-organism binding 

data are not always evident at the cellular level, highlighting the need to incorporate such 

information in our understanding of regulatory circuits. As additional expression patterns 

and TF binding sites are determined, and methods to track TF binding with cell-type 

specificity are developed, the broader and more precise regulatory logic of development 

should emerge.
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Methods

Strain construction

C. elegans strains were constructed essentially as described by Sarov et al. 33. Briefly, each 

transgene fosmid constructed contains the entire transcription factor tagged at its C-terminus 

with an in-frame GFP:3xFLAG tag. Transgenic strains were generated by microparticle 

bombardment of transgene fosmids. 20–50 μg of fosmid DNA was use per transformation. 

The fosmid contained the unc-119 marker for selection of transgenic animals.

Strain growth and staging

Worms were grown on NGM media using standard growth protocols. Worms were 

synchronized by bleaching and L1 starvation, and grown to the desired developmental stage 

as determined by visual inspection34. Briefly, animal populations consisting mostly of 

embryo-bearing adults were bleached and eggs were harvested. Embryos were hatched in 

the absence of food to synchronize larval development, and then placed on food and grown 

for specified times to reach the appropriate larval or adult stage for collection and ChIP. To 

collect early stage embryos, young adult animals bearing relatively few embryos were 

collected and bleached. The subsequent embryos were mesh-purified and immediately fixed. 

To collect predominantly late stage embryos, the same procedure was used, except the 

embryos were incubated for six hours before fixing. All procedures result in a population 

synchronized within a 2-hour developmental window. The vast majority of animals (>80%) 

are within this window.

Chromatin-immunoprecipitation

C. elegans ChIP-Seq assays were performed essentially as described by Zhong et al. 23. 

Briefly, wild-type (N2) and transgenic worms expressing GFP tagged factors were grown to 

the desired developmental stage under controlled conditions (Extended Data Fig. 10) and 

cross-linked with 2% formaldehyde. Cell extracts were sonicated to yield predominantly 

DNA fragments in the range of 200–500 bp. For most experiments (~93%), factor 

expression was driven by the endogenous promoters. With the exception of RNA Pol II 

(AMA-1), RNA Pol III (RPC-1), TBP-1, EOR-1, and EFL-1, where native antibodies were 

used, the sonicated lysates were immunoprecipitated using α-GFP antibody. Most 

immunoprecipitations were performed in 5% Triton, although a few were performed in 1% 

Triton. Direct comparison indicated that different concentrations of Triton had minimal 

effect on IP efficiency (data not shown). At least two biological replicates were performed 

for each ChIP, with parallel genomic DNA controls prepared from the same strain.

Library construction and sequencing

Sequencing libraries were prepared from independent biological replicates of IP enriched 

and input DNA fragments. Libraries were multiplexed using four 4bp barcodes35 and 

sequenced on an Illumina Genome Analyzer II.
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Sequencing data pre-processing

FASTQ files were aligned to the C. elegans ws220 genome with BWA36 and quality-filtered 

to retain only high-quality alignments (Q ≥ 30). Because numerous ChIP and input DNA 

libraries were sequenced multiple times, we merge the sequencing files of re-sequenced 

libraries using the heuristics that follow. For each library with multiple re-sequencing files 

(instances), the following parameters are determined for each instance:

   aligned.reads: number of aligned reads

   qc.reads: number of quality-filtered reads

   qc.percent: percent of reads that pass quality-filtering

   qc.duplicates: fraction of quality-filtered reads that are duplicates 

(non-distinct)

For these libraries, these same metrics are calculated for all possible combinations of 

instances. Two additional metrics are calculated. Status is defined as “pass” unless any of 

the constituent instances has <106 aligned reads or <20% quality-filtered reads (in which 

case the combination status is set to “fail”). In addition, we calculate the percent of effective 

alignments (qc.score) as a quality control score for each combination.

   qc.score: qc.percent x (1 - qc.duplicate)

To select the best combination of instances, we choose the “passing” combination that has ≥ 

106 uniquely aligned reads. If no combination has status equal to “pass”, we choose the 

combination that has ≥ 106 uniquely aligned reads with the highest percent of effective 

alignments (qc.score). If no combination yields ≥ 106 uniquely aligned reads, all instances 

are used (i.e., the combination with the highest number of reads is chosen). To perform 

uniform binding site identification on each data set (see below), we merge input DNA files 

from replicates into a single merged input DNA control.

Uniform binding site identification

All ChIP-seq experiments were scored against an appropriate input DNA control. For worm 

datasets, we used the SPP binding site caller to identify and score (rank) potential binding 

sites37. As described in7, we used the Irreproducible Discovery Rate (IDR) framework for 

obtaining optimal thresholds and determine high confidence binding events by leveraging 

the reproducibility and rank consistency of binding site identifications across replicate 

experiments of each dataset38. Code and detailed step-by-step instructions to call binding 

sites using the IDR framework are available at https://sites.google.com/site/anshulkundaje/

projects/idr.

The SPP caller37 was used with a relaxed threshold (FDR=0.9) to obtain a large number of 

binding sites (maximum of 30K for worm) that span true signal as well as noise (false 

identifications). Binding sites were ranked using the signal score output from SPP (which is 

a combination of enrichment over control with a penalty for binding site shape). The IDR 
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method analyzes a pair of replicates, and considers binding sites that are present in both 

replicates to belong to one of two populations: a reproducible signal group or an 

irreproducible noise group. Binding sites from the reproducible group are expected to show 

relatively higher ranks (ranked based on signal scores) and stronger rank-consistency across 

the replicates, relative to binding sites in the irreproducible groups. Based on these 

assumptions, a two-component probabilistic copula-mixture model is used to fit the bivariate 

binding site rank distributions from the pairs of replicates38.

The method adaptively learns the degree of binding site rank consistency in the signal 

component and the proportion of binding sites belonging to each component. The model can 

then be used to infer an IDR score for every binding site that is found in both replicates. The 

IDR score of a binding site represents the expected probability that the binding site belongs 

to the noise component, and is based on its ranks in the two replicates. Hence, low IDR 

scores represent high-confidence binding sites. An IDR score threshold of 5% for worm 

datasets was used to obtain an optimal binding site rank threshold on the replicate binding 

site sets (cross-replicate threshold). If a dataset had more than two replicates, all pairs of 

replicates were analyzed using the IDR method. The maximum binding site rank threshold 

across all pairwise analyses was used as the final cross-replicate binding site rank threshold.

Any thresholds based on reproducibility of binding site calling between biological replicates 

are bounded by the quality and enrichment of the worst replicate. Valuable signal is lost in 

cases for which a dataset has one replicate that is significantly worse in data quality than 

another replicate. Hence, we used a rescue strategy to overcome this issue. In order to 

balance data quality between a set of replicates, mapped reads were pooled across all 

replicates of a dataset, and then randomly sampled (without replacement) to generate two 

pseudo-replicates with equal numbers of reads. This sampling strategy tends to transfer 

signal from stronger replicates to the weaker replicates, thereby balancing cross-replicate 

data quality and sequencing depth. These pseudo-replicates were then processed using the 

same IDR pipeline as was used for the true biological replicates to learn a rescue threshold. 

For datasets with comparable replicates (based on independent measures of data quality), the 

rescue threshold and cross-replicate thresholds were found to be very similar. However, for 

datasets with replicates of differing data quality, the rescue thresholds were often higher 

than the cross-replicate thresholds, and were able to capture more binding sites that showed 

statistically significant and visually compelling ChIP-seq signal in one replicate but not in 

the other. Ultimately, for each dataset, the best of the cross-replicate and rescue thresholds 

were used to obtain a final rank threshold. Reads from replicate datasets were then pooled 

and SPP was once again used to call binding sites on the pooled data with a relaxed FDR of 

0.9. Pooled-data binding sites were once again ranked by signal-score. The final rank 

threshold (best of cross-replicate and rescue threshold) was then used to threshold the ranked 

set of pooled-data binding sites.

All binding site sets were then screened against specially curated empirical blacklists for the 

worm genome. Briefly, these blacklist regions typically show the following characteristics:

1. Unstructured and extreme high signal in sequenced input DNA and control datasets 

as well as open chromatin datasets irrespective of developmental stage/treatment.
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2. An extreme ratio of multi-mapping to unique mapping reads from sequencing 

experiments.

The worm blacklist can be downloaded from: http://www.broadinstitute.org/~anshul/

projects/worm/blacklist/ce10-blacklist.bed.gz

ChIP-seq quality control

A number of quality metrics for all replicate experiments of each dataset were computed39. 

In brief, these metrics measure ChIP enrichment and signal-to-noise ratios, sequencing depth 

and library complexity and reproducibility of binding site identification. These metrics will 

be available through the ENCODE portal at http://encodeproject.org/ENCODE/

qualityMetrics.html. We examined multiple quality control thresholds, flagging datasets 

with low signal-to-noise ratios as determined by normalized strand cross-correlation scores 

(NSC < 1.03), low rank correlations between binding site scores across replicates (BSR < 

0.3), or poor IDR models as indicated by a low correlation between binding site ranks and 

IDR ranks (BIR < 0.3). A poor IDR model fit is a result of a pair of replicates having 

inseparable signal and noise components and abnormally low binding site rank consistency. 

Experiments that passed all quality control thresholds were automatically scored as high-

quality experiments. Experiments that passed most but not all quality control thresholds 

where scored as medium-quality experiments. Experiments that did not pass multiple quality 

control thresholds were discarded, excluded from further analyses with a few exceptions. 

Because factors with genuinely few binding sites inherently have lower genome-wide 

signal-to-noise ratios, datasets with low NSC scores were rescued if the number of binding 

sites was low (<1,000). Analogously, high reproducibility scores (i.e. low NP/NT ratios) 

were occasionally allowed to rescue experiments where the IDR models appeared to have 

poor BIR values (<0.3) due to low numbers of binding sites.

A summary of relevant quality metrics computed is provided below:

NP/NT : Ratio of number of binding sites passing 5% IDR thresholds based on 

comparison of pairs of pooled pseudo-replicates to pairs of biological replicates. 

The NP/NT ratio is a measure of reproducibility, computed as max(NP) / max(NT), 

where:

NP = Number of binding sites passing the 5% IDR threshold by comparing binding sites 

from a pair of pooled pseudo-replicates. The pair of pseudo-replicates are created by pooling 

reads from all replicates of a sample and randomly subsampling two equally sized sets of 

reads.

NT = Number of binding sites passing the 5% IDR threshold by comparing binding sites 

from the best pair of biological replicates.

A high NP/NT ratio indicates that pooling replicates and subsampling substantially 

increased reproducibility in comparison to true replicates. This usually implies that 

at least one of the replicates has significantly higher enrichment as compared to 

others. The correlation between NP and NT across all experiments analyzed is 

shown in Extended Data Fig. 1b.
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Normalized strand cross-correlation (NSC)—A genome-wide measure of ChIP 

enrichment or signal-to-noise ration measure. A strand cross-correlation profile is computed 

as the Pearson correlation (y-axis) between per-base read-start count vectors on the + and – 

strand over a wide range of strand shifts (x-axis). The cross-correlation profile peaks at the 

predominant ChIP fragment length. The NSC is computed as the ratio of this maximal strand 

cross-correlation at the estimated fragment length (signal) to the minimum background 

cross-correlation over all shifts (noise). Samples for which both replicates had NSC < 1.03 

are flagged as potential low signal-to-noise datasets. However, these can be rescued if the 

sample passes peak reproducibility criteria especially in cases where the number of binding 

sites is low (<1,000).

Binding Site Rank Correlation (BSR)—Using the pre-IDR relaxed set of binding sites 

from the best pair of replicates, we find all binding sites that are present in both replicates. 

This set includes binding sites from the signal and noise components learned by the IDR 

model. We then compute the rank correlation of the binding site scores across the pair of 

replicates. Datasets with BSR < 0.3 are flagged as potentially low in binding site 

reproducibility.

Binding Site vs. IDR Rank Correlation (BIR)—Using the pre-IDR relaxed set of 

binding sites from the best pair of replicates, we find all binding sites that are present in both 

replicates. These binding sites have scores from each of the replicates as well as an IDR 

score indicating the likelihood that the binding sites are not from the signal component. We 

rank the binding sites using the IDR scores and original binding site scores. For valid IDR 

models with good fits, the IDR scores and original binding site scores have a strong 

monotonic relationship and hence high rank correlation. Hence, we compute BIR as the rank 

correlation between the IDR scores and the original binding site scores as a measure of 

stability of the IDR models. Poor IDR model fits are usually a sign of abnormal rank 

consistency of binding sites and poor reproducibility. BIR is estimated as the primary data 

quality metric in that if a sample shows a poor IDR model fit no statements can be made 

about reproducibility. Datasets with BIR < 0.3 are considered to have poor IDR models. We 

make one exception for samples involving factors that bind few sites (<1000) in the genome. 

In such cases, stable IDR models can obtain artificially low BIR scores. We perform 

additional tests of model stability for such samples, and allow for rescue if the models are 

deemed stable and if the NP/NT ratio is low.

ChIP-seq experiment selection

We uniformly processed ~5.1 billion raw reads from 323 worm ChIP-seq experiments, 

removing 82 (25%) low quality experiments that failed to meet our quality control standards 

(described above, Extended Data Fig. 1c). Examining approved experiments (NR=241), 

~89% of the binding sites are shared between a pair of duplicate (redundant) experiments 

where binding was assayed for the same TF and development stage (NU=22, Extended Data 

Fig. 1d). True biological duplicates –in which binding was assayed for the same 

developmental stage and factor, as driven by same promoter, and assayed with the same 

ChIP protocol– share 77–92% of the binding sites. Thus, the identified binding sites have 

demonstrably reliable reproducibility rates.
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We focused our analysis on a refined set of approved experiments (for 86 factors), selecting 

the highest-quality ChIP-seq data to produce a non-redundant set of embryo and larval 

experiments (NA=187) with unique factor and developmental stage combinations, prepared 

with the same ChIP protocol, and in which TF expression is driven by the native promoter 

(Extended Data Fig. 1e). As such, the released collection corresponds to the top ~75% 

highest-quality worm ChIP-seq experiments performed by the modENCODE consortium. 

Furthermore, the biological observations presented in this work stem from analysis of a top, 

non-redundant selection of embryo and larval experiments that collectively encompass 

~58% of the worm ChIP-seq experiments performed.

Binding sites and reports for the released (NR=241) and analyzed (NA=187) sets of non-

redundant ChIP-seq experiments are available online through the modENCODE DCC 

(www.modencode.org) and at tapanti.stanford.edu/cetrn.

Signal profiles

We generated signal track files for each ChIP-seq experiment using MACS2 (available at 

https://github.com/taoliu/MACS/) on pooled data (for ChIP and control), as follows:

   macs2 callpeak -t ChIP.bam -c CONTROL.bam -B --nomodel --shiftsize 

round(FRAGLEN/2) --SPMR -g ce

Where, (1) --nomodel and --shiftsize round(FRAGLEN/2) tell MACS2 to use the estimated 

fragment length as fragment size (FRAGLEN, estimated in the uniform binding site 

identification pipeline) to pileup sequencing reads, (2) -g ce lets MACS2 consider the C. 

elegans genome as background, and (3) -B --SPMR indicate MACS2 to generate pileup 

signal files of ‘fragment pileup per million reads’ in bedGraph format.

To examine factor positioning preferences at high-resolution in each ChIP-seq experiment, 

we collected signal values per position (bp) within 1000 bp of enzymatically-enriched 

TSSs30 for protein coding genes. For visualization purposes(Fig. 1e, Extended Data Fig. 3f–

h), we graph the scaled, mean signal density at each position, P(signal.density), calculated 

as:

   P(signal.density) = (P(signal.mean) - min(signal.mean))/(max(signal.mean)-

min(signal.mean))

Where the average signal at any given position, P(signal.mean), is normalized to represent 

the fraction of the signal distance between the maximal average signal, max(signal.mean), 

and the minimal average signal, min(signal.mean). This normalization serves to correct 

signal:noise differences between ChIP-seq experiments.

For each factor and each ChIP-seq experiment, we calculated the log2-ratio of upstream to 

downstream binding in the windows >50 bp upstream and downstream from TSSs, 

respectively (Fig. 1e).
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Sequence preferences (motifs)

We examined C. elegans and H. sapiens binding sequence preferences7 among 21 TF 

families, available from http://www.broadinstitute.org/~pouyak/motif-disc/integrate-cold/. 

Briefly, these sequence preferences (motifs) were obtained by analyzing sequence 

enrichment in the top 200 TF binding sites from uniformly processed C. elegans (analyzed 

here) and H. sapiens ChIP-seq experiments7. Sequence preferences were determined7 from 

TF binding sites outside of HOT regions, un-mappable and blacklist regions, 3′ UTRs, and 

exons, and motif discovery was conducted using five discovery tools: AlignACE48 (v4.0 

with default parameters), MDscan49 (v2004 with default parameters), MEME50 (v4.7.0 

with -maxw 26 and -nmotifs 6), Weeder51 (v1.4.2 with option large), and Trawler52 (v1.2 

with 200 random intergenic blocks for background). The top three motifs for each factor 

(and species) are selected after ranking by the enrichment in the datasets for the species and 

excluding motifs for which a similar motif was already selected (R > 0.7). The discovered 

motifs were augmented with known literature motifs in each gene family.

Among the 21 TF families evaluated, C. elegans motifs were discovered for 15 TF families 

(Extended Data Fig. 1f). We evaluated the prevalence of the discovered sequence 

preferences among binding sites from corresponding factors, scoring the fraction of binding 

sites with matches to the discovered motif for the top 200, 400, 600, 800 and 1,000 binding 

sites (Extended Data Fig. 1g). Motif matches in sequences were scored using the MAST 

module40 from MEME (v4.4), and applying an E-value cutoff equivalent to 10% of the input 

binding sites (FDR=10%). For TF families with multiple ChIP-seq experiments, we report 

the prevalence for the motif/ChIP-seq experiment combination with the highest 

correspondence. Across all binding site numbers evaluated, ~85% of the learned motifs have 

a prevalence exceeding 30% of the binding sites.

The C. elegans and H. sapiens motifs discovered for 12 TF families in the Boyle et al. study 

allow direct analysis of sequence preference conservation between these distant species 

(Extended Data Fig. 1f,h). We scored the similarity between the sequence preferences 

(motifs) of C. elegans and H. sapiens orthologous TFs within each family using the 

TOMTOM module41 from MEME (v4.4), qualifying significantly similar (P < 0.05) 

orthologous TF sequence preferences as conserved (Extended Data Fig. 1f,h).

Chromatin states

Chromatin state and enhancer calls from C. elegans early embryos (EE) and stage 3 larvae 

(L3) were obtained from Ho et al., 201314. As recommended by the authors, we make use of 

the hierarchically-linked infinite hidden Markov model (iHMM) segmentations reported14, 

examining 16 chromatin states derived from 8 histone marks.

Transcript expression analysis (RNA-seq)

The RNA-seq predicted transcripts per developmental stage, DCPM (depth of coverage per 

million reads) expression measurements for each gene/exon, transcription start site (TSS), 

transcription end site (TES), splice junctions, polyAs, and splice leader sites for C. elegans 

N2 early embryos (EE), late embryos (LE), and L1-L3 larvae were obtained as integrated 

transcript files from: ftp://encodeftp.cse.ucsc.edu/users/akundaje/worm/transcription/.
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HOT and XOT region determination

To identify regions with higher than expected binding occupancies, we first determined for 

each developmental stage the number and size distribution of observed binding sites for each 

factor assayed, as well as the total number and size distribution of binding regions in which 

these binding sites from all factors are clustered. For each developmental stage, we first 

analyzed the number and size distribution of target binding regions (in which factor binding 

sites are concentrated). For each developmental stage simulation, we randomly select an 

equivalent number of random binding regions with a matched size distribution. Next, for 

each factor assayed (in the target developmental stage), we evaluated the number and size of 

observed binding sites, and simulated an equivalent number and size distribution of target 

binding sites, restricting their placement to the simulated binding regions. We collapsed 

simulated binding sites from all factors into binding regions, verifying that these cluster into 

a similar number of simulated binding regions as the target binding regions. For each 

developmental stage simulation, the occupancy (number of binding sites), density (binding 

sites per kb), and complexity (diversity of factors) in the simulated binding regions are 

annotated. This procedure was repeated 1000x for each developmental stage. For each 

developmental stage, we constructed expected binding region occupancy (and density) 

distributions from the corresponding simulations (NS=1000). We determined the cutoffs at 

which fewer than 5% and 1% of the simulated binding regions have higher occupancies 

(Extended Data Fig. 2a). We classified observed binding regions with occupancies higher 

than the 5% and 1% cutoffs as high-occupancy target (HOT) and extreme-occupancy target 

(XOT) regions, respectively (Extended Data Fig. 2b,c). As such, HOT regions include XOT 

regions.

Recently, Teytelman et al.42 have suggested regions with artefactual enrichment of ChIP-seq 

signals calling into question the validity of regions of high-occupancy where multiple ChIP-

seq experiments produce enrichments. Using uniformly processed from human cell-lines, we 

have dutifully established that our HOT regions are not an artifact of “hyper-ChIPable” 

regions as described by Teytelman et al. In Boyle et al. 7, we have demonstrated that (a) 

there is no correlation between our non-specific binding controls (IgG) and our measured 

transcription factor occupancy, (b, c) our HOT regions are not enriched in non-specific 

binding at any cutoff, and (d) that non-specific binding can account at most for 0.5% of the 

binding signal as observed in RNA PolII experiments. We note that the Teytelman et al. 

procedures are very different from ours and many others in the field. A brief discussion of 

these differences, and their potential relationship to the Teytelman et al. results ensues:

The regions determined by Teytelman et al. 42 represent regions with a very low 

enrichment (2x or less) of non-specific immuno-precipation (IP) in anti-GFP 

antibody controls over input DNA evaluated using a non-standard sliding-window 

approach. Importantly, IP/Input ratios at this level are typically not considered 

enriched for binding at all in modern peak-calling procedures. For example, the 

median IP/Input ratio for our human RNA PolII experiments is 20x, and only 

0.033% of human RNA PolII peaks contain an IP/Input ratio ≤ 2x. Thus, it is 

essential to note that the term ‘hyper-ChIPable’ coined by Teytelman et al. is quite 

misleading, as a correctly performed ChIP experiment will evaluate statistically 
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enriched regions, with higher IP/Input ratios. Put bluntly, the so-called hyper-

ChIPable regions in the Teytelman et al. study are not even binding regions as 

determined under ChIP-seq best practices. Tellingly, when Teytelman et al., 

performed statistical peak-calling (using the established MACS peak-caller) to 

evaluate signals only at significantly-enriched regions (Table S1) only 17 (<7.5%) 

of the 238 claimed “hyper-ChIPable” regions were called significant by all three 

Sir proteins. In fact, 68% of their 238 regions do not contain a binding site for any 

Sir protein as determined with MACS, despite even very liberal settings used (P-

value <10−5, no fold enrichment cutoff). Thus, their own data contradict their major 

claim that all three Sir proteins showed enrichment at the 238 sites. Furthermore, as 

indicated in Teytelman et al. Table S3, the Sir2, Sir3, and Sir4 ChIP-seq 

experiments were performed only once each, which raises the question as to 

whether enrichment of Sir proteins at the 238 sites is reproducible. More 

rigorously, even for the remaining 17 genomic loci, their status as hyper-ChIPable 

is questionable as each region would first have to be established as a reproducible 

binding site in replicate experiments for each individual Sir protein. If you consider 

Sir2-4 ChIP-seq are three replicates of Sir proteins, their data show that most of 

their claimed sites were not reproducibly enriched.

In addition to the analytical differences outlined above, other potential sources for 

the marked differences between our data and the Teytelman et al. Sir-enriched 

regions are deviations from a typical ChIP protocol. In particular, Teytelman et al. 

employed a significantly longer cross-link time (1 hour as opposed to the typical 

10–20 min). This might contribute to formation of large non-specific protein-DNA 

complexes, which can in turn increase non-specific immunoprecipitation.

We believe HOT regions (as other binding regions) likely reflect something other than a 

simple static model of TF binding to DNA. Naturally, in the light of steric hindrances for 

large numbers of TFs in and the dynamic nature of molecular interactions, these high-

occupancy regions may represent regions with diverse transient, or population-level diverse, 

binding. Such model is consistent with a known affinity for accessible DNA (as would be 

present in enhancer and promoter regions) and scanning mechanisms of TF binding43. An 

alternative argument proposes HOT regions arise from multimeric TF complexes that 

coordinately enrich genomic DNA from distinct loci. Thus, it is not clear that these regions 

are a meaningless artifact. In particular, these regions seem to segregate to enhancer and 

promoter regions with different chromatin architectures and different sets of TFs. 

Understanding how association and dissociation rates coordinately define residence time of 

TF binding at individual sites, genome-wide and how chromosomal interactions relate to 

ChIP-seq signals will prove paramount to regulation but such analyses are outside the scope 

of this study.

Nonetheless, we have excluded HOT and XOT regions from sequence preference, 

functional, and global pairwise co-association analyses of factor binding. However, 

HOT/XOT regions were retained in self-organizing map (SOM) analyses since these 

analyses separate regions of high and lower occupancy.
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Functional (GO term) enrichment analyses

To evaluate the functional role of regulators we performed GO enrichment analysis on the 

targets of binding of each ChIP-seq experiment. Briefly, we applied ChIPpeakAnno31 to (1) 

assign factor binding to genic targets as defined by binding within 1 kb of TSSs, and (2) 

evaluate the enrichment of genic targets for GO ontologies using standard procedures. We 

required a minimum of 20 binding sites per ChIP-seq experiment to evaluate enrichment and 

report Benjamini-Hochberg (BH) corrected P-values of enrichment (hypergeometric 

testing). We report GO terms in which at least one ChIP-seq experiment was significantly 

enriched (BH-corrected, P < 0.05). The specific enrichments per HOT regions, per ChIP-seq 

experiment, and per stage-specific SOMs (see below) are provided in Supplementary Tables 

3, 4, and 5, respectively. Because high-occupancy can mask the biological significance of 

co-binding, sequence and target-gene specificity12, we focused our GO analysis on the 

292,466 binding sites outside of XOT regions. Although we highlight GO terms in levels ≥4 

in our figures, we report GO term enrichments in Supplementary Tables 3–5 without 

correcting for redundancy. As such, the raw GO term counts represent a serious 

overestimate, several-fold, of the number of distinct biological processes, molecular 

activities, or cellular components targeted by TF binding but facilitate queries and analyses.

Global pairwise TF co-associations

We determined the similarity in binding sites between ChIP-seq experiments applying 

recently-developed interval statistics methods that allow calculation of exact P-values for 

proximity between binding sites24. Using this method, we performed all pairwise, 

directional comparisons of ChIP-seq experiments evaluating binding similarity in 34,782 

comparisons. To exclude the possibility of promiscuous binding regions and generate more 

conservative co-association estimates, we excluded binding sites from XOT regions in each 

developmental stage from these analyses. (as above, see ‘Functional (GO) enrichment 

analyses’). We restrained interval analyses to the promoter domains by excluding binding 

intervals outside promoter regions, defined as 2000 bp to 200 bp downstream of annotated 

TSSs. Focusing co-association analyses on the promoter domains serves to (1) focus co-

association evaluations on transcriptional regulatory interactions and to (2) account for the 

known biases in binding at TSSs, producing more conservative estimates of co-association 

significance. For each ChIP-seq experiment comparison (NC=34,782), the intervals of the 

query ChIP-seq experiment are compared individually against all reference intervals of the 

reference ChIP-seq experiment, calculating the probability that a randomly located query 

interval of the same length would be at least as close to the reference set. For each ChIP-seq 

experiment comparison, we compute the fraction of proximal binding events in promoter 

domains that are significant (P < 0.05). Because these comparisons are asymmetric –

depending on the assignment of experiments as query or reference sets– we report the mean 

values of the complementary (inverted query and reference) comparisons and report this 

value as the ‘co-association strength’ (NT=17,391) between ChIP-seq experiments. We refer 

to binding sites from pairs of ChIP-seq experiments as ‘co-associated’ if the co-association 

strength (unscaled) exceeds the 95th percentile of co-association strengths (CS95%=0.4266, 

Extended Data Fig. 9) among comparisons of ChIP-seq experiments from distinct factors.
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We examined co-association dynamics further by quantifying changes in co-associations 

(ΔCo-association) between factors assayed in sequential developmental stages. We were 

able to track 21 pairwise co-associations across all developmental stages and 78 across 

larval stages (Extended Data Fig. 5b–e). On average, 10% of the examined co-associations 

changed by more than 23.3% between sequential stages of development. Global co-

association analysis was performed with an updated LIN-35 (L1) dataset.

Stage-specific SOM analyses

Although global co-associations are useful surveys of factor co-binding, co-associations can 

have higher-order complexities involving three or more factors and vary between genomic 

subdomains. To uncover higher-order co-associations and the specific genomic subdomains 

in which they occur we applied self-organizing maps (SOMs), an unsupervised machine 

learning technique, in R using the kohonen package. Specifically, for each stage of 

development, we collapsed factor binding into developmental stage binding regions. For 

each binding region, we generate a binding module (e.g. EX:I:10001174-10001734) with a 

binary signature indicating the presence or absence of binding (in the region) for each factor 

assayed in the developmental stage. For each stage, we generated a matrix of binding 

modules, and randomly seeded and trained 100 large, fine-grained SOMs to cluster binding 

modules by their binary signatures into coherent units (clusters) within a toroidal map. 

SOMs concomitantly discover common combinations of co-associated factors from the 

binary signatures (which we refer to as TF co-association patterns) and assign binding 

modules (i.e., the target regulatory regions) in which these combinations occur. Therefore, 

each cluster has a TF co-association pattern (i.e., a common set of co-associated factors) and 

a collection of putative target regulatory regions.

For each stage, we select the SOM with the lowest quantization error from the 100 trials for 

downstream analysis. Because we are interested in identifying TF co-associations, we 

exclude binding modules from regions in which only one factor is bound from the matrix 

prior to SOM analyses. This approach generated maps with regulatory clusters that reveal 

how diverse TF co-association patterns relate to target regulatory regions in the C. elegans 

genome at each stage (Fig. 2b,c, Extended Data Fig. 6a–d). For visualization and analysis of 

SOMs, we used a modified kohonen package25 and custom scripts.

Stage-comparison SOM analyses

To compare higher-order co-associations between sequential stages of development (T1 

versus T2), we evaluated the relative representation of co-association patterns involving 

factors assayed in both stages of development. First, we collapsed binding across 

developmental stages into stage-independent binding regions. For each pair of stages to be 

compared (T1, T2), we generated a matrix combining stage-specific binding modules. 

Specifically, for each binding region we generated a T1 and a T2 binding modules (e.g., 

EX:I:10001174-10001734 and L1:I:10001174-10001734) with the respective T1 and T2 

binary signatures indicating the presence or absence of binding for each factor assayed in the 

two stages. We exclude binding modules from regions in which ≤1 factor is bound. We 

applied this approach to perform two types of comparative SOMs. In the first, we 

constructed such binding modules using all binding sites for each factor (i.e., raw binding 
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site model). In the second, we corrected for differences in binding site numbers for 

individual factors by sub-sampling binding sites from the stage with the higher binding site 

count (to those of the stage with lower binding site count). For this second approach 

(matched binding site model), we generated 100 such sub-sampled binding matrixes, and 

select the most representative matrix as that in which frequency of the individual binary 

signatures is best correlated with the frequency of binary signatures across the 100 sub-

sampled matrixes (R > 0.9997). For both analyses, we then randomly seed and execute 100 

SOMs to cluster binary signatures and select the SOM with the lowest quantization error for 

downstream analysis. To examine the stage-specificity of co-association patterns, we 

examined the relative abundance of T1 versus T2 binding modules per SOM cluster for each 

approach. Such stage-comparison SOMs were performed for sequential stages of 

development only (Fig. 3, Extended Data Fig. 7a–c).

Cellular-resolution expression imaging and tracing

Embryonic lineage tracing and gene expression tracking were performed from both 

promoter reporter and protein fusion strains as previously described4–6,33,44. Briefly, for 

target genes in promoter reporter strains, we cloned 2250–5750 bp upstream intergenic 

sequences (UIS) into pJIM20 (containing a cloning site followed by histone-mCherry and a 

permissive let-858 3′ UTR) 44 using standard cloning methods. For each target promoter, we 

fixed the gene-proximal primer to the translation start site (including up to 6 aa of the 

endogenous protein). The resulting plasmids were used to generate transgenic C. elegans by 

microparticle bombardment of the strain CB4845[unc-119(ed3)] and histone::mCherry 

expression was tracked for at least three generations to verify stable inheritance. Promoter 

reporter strains were crossed with RW10029 to generate strains homozygous for the H3.3-

GFP lineage tracing marker as well as for the histone-mCherry reporter. For protein fusion 

strains generated as part of the modENCODE project, we used strain RW10226 for the 

lineage tracing marker, and the colors were reversed for downstream analyses.

Strain imaging and lineage tracing was performed as previously described5,6,44, with 

lineages curated to at least the 350-cell stage. Expression values per cell were corrected for 

z-bias using a calculated attenuation level of 3.3% per plane5,44. Lineage data from each 

embryo was aligned to a reference lineage with standard cell cycle lengths45. We combined 

these data with previously published lineage data. The number of genes and image series 

from which expression data was derived is indicated below. The corresponding numbers of 

genes and image series previously published5,6 and recently acquired is shown:

Compiled tracked genes: 180 (512 image series)

Previously published genes: 130 (324 image series)

Original report genes: 50 (188 image series)

The cellular-resolution gene expression data are freely available for download through the 

Expression Patterns in C. elegans (EPIC) database (http://epic.gs.washington.edu) and via 

WormBase.
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Cellular-resolution expression post-processing

For each gene, we obtained cellular-resolution expression measurements by assigning to 

each cell the average fluorescence signal from corresponding reporter experiments, and 

normalizing the signal in each cell by the maximum signal observed among imaged cells 

(Extended Data Fig. 8a,b, Supplementary Table 6).

We combed our imaging data to identify the set of cells tracked across all genes assayed 

(‘tracked’ cells), as well as the developmental time-point with the highest number of tracked 

cells. We directly measured expression of all 180 genes in a common set of 596 tracked 

cells, with maximal coverage of the embryo at 244 minutes of development, when 344 

(98.3%) of the existing cells in the embryo have fluorescence measurements for all genes 

(Extended Data Fig. 8c,d). We refer to the set of factors (FF=13) whose binding by ChIP-

seq and expression by GFP reporters was measured in the embryo as the ‘focus’ factors. We 

identified the set of 696 cells for which expression of all 13 focus factors was directly 

measured and refer to this set of cells as the ‘focus’ cells.

As a heuristic to determine the population of cells in which a gene is expressed, referred to 

as the expressing population for the gene, we explored a range of expression cutoffs. We 

required a fluorescence signal ≥2000 and chose 10% of maximal expression as the cellular 

expression cutoff on the basis of previous analysis5, as well as the strong and broad 

correlation in expression overlap with higher expression cutoffs, and its robust correlation 

with the quantitative expression of genes (Extended Data Fig. 8f). These expression calls 

revealed both distinctive and shared expressing populations for individual genes, and 

clusters of genes (such as a MEP-1, CEH-39, NHR-2, NHR-28, and F23F12.9-containing 

cluster) with similar expressing populations (Extended Data Fig. 8e).

We derived gene expression values for the 671 terminal cells born during embryogenesis by 

ascribing to each cell its measured expression signal or that of its last measured ancestor. To 

examine lineage-specificity of regulatory factors, we evaluated the enrichment of broad 

tissue classes in the expressing population of terminal cells of each gene.

Cellular-resolution expression data quality

For the vast majority of genes (~80%), cellular expression signals were derived from 

multiple time-series (Extended Data Fig. 8b). Genes with multiple time-series have, on 

average, 5 time-series recorded. Replicate time-series (for 145 genes), allowed us to 

examine the correlation in cellular-resolution expression-signals between NPR=762 pairs of 

replicates (Extended Data Fig. 8b), revealing a median replicate signal correlation of 

R=0.83. For all genes with replicate time-series (NGR=145), replicate time-series correlated 

at a significance level of P < 10−11 were found. The cellular overlap coefficient and Jaccard 

index between expressing populations of cells (A, B) as shown in Fig. 4b are calculated as:

   Coefficient(A, B) = (A ∩ B)/min(A, B)

   Jaccard(A, B) = (A ∩ B)/(A ∪ B)
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As with the binding data, our embryonic, cellular expression data is unique in both its 

resolution and scale. As such, homologous –quantitative, cellular-resolution, embryonic 

expression– measurements are not available (do not exist) for direct comparison. 

Nonetheless, we observe a high-degree of correspondence between the cellular expression 

patterns of factors and previously published lineage involvements. Owing to our focus on 

integrating binding and expression data, only examples of correspondence for factors with 

both data types are highlighted in the main text. These include the previously known 

regulator of pharynx and muscle, PHA-4 and HLH-1, respectively. Our expression data 

show also shows consistencies between known, wide-spread roles of factors and cellular-

expression breadth, as illustrated for MEP-1, an oocyte development zinc-finger protein 

required for maintenance of somatic versus germline differentiation46 that is broadly-

expressed (Ncells=379, 52% of examined cells). Undiscussed (but correlated) controls 

include the known regulators of intestine fate initiation and maintenance, ELT-2 and 

ELT-747, the cell-body muscle-expressed helix-loop-helix factor, HND-148, the pharyngeal-

cell expression factor, CEH-3449, the human NeuroD homolog, CND-150, and the 

hypodermally-expressed molting factor, NHR-2551, among others.

Cellular-resolution SOM analyses

To integrate cellular-resolution expression and binding data, we simulated in silico genomes 

for each focus cell (FC=696) and mapped (embryonic stage) focus factor (FF=13) binding to 

the genome of cells in which factors are expressed in the early embryo. To examine 

physically plausible TF co-associations and the cellular contexts wherein these may occur, 

we compiled the cellular-resolution binding data annotating binding modules per binding 

region, per cell. For each focus cell, we generate binding modules spanning each of the 

observed binding regions from the embryonic, organism-wide data, and annotate it with a 

binary signature describing which of the factors bound in the region (in the embryo) are 

expressed in the cell (in the early embryo). This approach resulted in 2,858,477 cellular-

resolution binding modules (binding regions with cell identity; e.g. ABalaa:I:

10001174-10001734). We clustered cellular-resolution binding modules by their binding 

signatures in 100 separate SOMs, and selected the SOM with the lowest quantization error 

for downstream analysis (Fig. 4c,d). As before, we exclude binding modules from regions in 

which ≤1 factor is bound.

Lineage enrichment analyses

We constructed 3,915,749 cellular lineages in silico from the C. elegans embryogenesis cell-

division tree. For each of the 696 focus cells, we generated up to 100,000 descendant 

lineages. We mined the cellular-resolution co-association map (Fig. 4c) for lineage-specific 

TF co-association patterns by examining the enrichment (hyper-geometric) of cells in the 

co-association patterns discovered among the cells of each cellular lineage. We discovered 

significant overlaps involving 8 TF co-association patterns and 5 lineage nodes (Bonferroni-

corrected, P < 0.01).
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Extended Data

Extended Data Figure 1. 
(a) ChIP-seq raw read data were processed using a uniform processing pipeline with 

identical alignment, filtering criteria, and standardized IDR binding site identification using 

SPP. (b) Comparison of conservative (replicate) and pooled (pseudo-replicate) binding site 

calls –from the cross-replicate and rescue thresholds, respectively. (c) Distribution of NSC 

scores across 323 ChIP-seq experiments. Experiments are classified as high- (blue, 

Araya et al. Page 22

Nature. Author manuscript; available in PMC 2015 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NHI=181), medium- (green, NMD=60), and low-quality (yellow, NLO=82), and the relative 

fractions of each is indicated in the inset. High and medium quality experiments were 

approved for downstream analysis. (d) The fraction of binding sites shared between 

duplicate, approved ChIP-seq experiments with (NU=22) unique factor and stage 

combinations is shown. The fraction shared between the best-overlapping pairs of 

experiments with matched factor, stage combinations is shown in the light blue distribution. 

The fraction shared among all duplicates experiments (NP=24) with matched factor, stage, 

and promoter-driven TF expression is shown in dark blue. The range of fractions shared 

between true biological duplicates (ND=2) with matched factor, stage, promoter, and ChIP 

protocol is indicated in dashed lines. For comparison, the fraction shared between randomly 

sampled pairs (NS=500) of approved experiments from distinct factors is shown in gray. The 

median fractions for each distribution are shown. (e) Binding site histogram for 187 embryo 

and larval ChIP-seq experiments with unique factor-stage combinations, and a common 

ChIP protocol, selected for analysis in this work. The fraction of high- (blue, NHI=138) and 

medium-quality (green, NMD=49) ChIP-seq experiments selected is indicated (inset). (f) 
Analysis of sequence preferences for 21 C. elegans factors (NO) with human ortholog 

binding data7. The fraction of C. elegans factors (NM,=71.4%) for which sequence 

preferences could be determined is shown (left). The fraction of factors with conserved 

sequence preferences (66.7%, P < 0.05) from 12 human/worm orthologs with determined 

sequence preferences is shown (right). (g) The distribution in the fraction of binding sites 

with matches to the discovered preferred sequence (motif) is shown for 15 factors. The 

prevalence of the preferred sequence is evaluated among the top 200, 400, 600, 800, and 

1000 binding sites for each factor (see Methods). (h) Discovered sequence preferences for 

12 human/worm orthologs. Factors with similar (P < 0.05) and distinct sequence preferences 

are indicated in dark blue and light blue, respectively. †The consensus sequence preference 

for the ONECUT3 homeobox factor was obtained from Jolma et al. 32 (i) Saturation analysis 

of regulatory binding data. Using either binding data from embryonic and larval (L1-L4) 

stages or L2 larvae only (inset), k ChIP-seq experiments were randomly sampled (50 times 

each), collapsing overlapping binding sites into binding regions. For each k ChIP-seq 

experiments, the number of binding regions from 50 iterations is plotted (red points, ±1 

S.D.). For each series, a exponential curve (blue, dashed line) was fit to the data and used to 

estimate the total number of binding regions. The percent of the binding regions (CBP) 

observed in the acquired data is reported for each series. (j) Amongst genes with annotated 

TSSs, the fraction of genes with binding observed within the specified window upstream of 

a TSS is shown. Promoter regions examined correspond to the windows (1) 1000/100 bp, (1) 

2000/200 bp, (3) 3000/300 bp, (4) 4000/400 bp, and (5) 5000/500 bp upstream/downstream 

of the TSS, respectively.
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Extended Data Figure 2. 
Stage-dependent determination and analysis of HOT and XOT regions. (a) Correlations in 

occupancy (number of binding sites, x-axis) and density (number of binding sites per kb, y-

axis) in embryo and larval L1-L4 binding regions. Quantiles for occupancy and density 

derived from binding site simulations are indicated on each axis. The fraction of binding 

regions (b) and the fraction of binding sites in regions (c) exceeding the significance cutoffs 

(quantiles from simulations) is indicated for both occupancy (yellow) and density (blue). 

Fractions exceeding cutoffs for both metrics are shown in red. Specific occupancy and 
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density cutoffs for each significance level are indicated above each point. HOT (5% 

significance) and XOT (1% significance) regions exceed the specific occupancy thresholds 

indicated with arrows. (d) GO enrichment analysis of constitutive HOT (cHOT), embryo, 

and larval L1-L4 HOT regions. For each stage, the non-cHOT stage-derived HOT regions 

were analyzed. GO enrichments in stage-specific HOT regions are available in 

Supplementary Table 3. (e) The distribution of HOT region distances from annotated TSS in 

the C. elegans genome (ws220) is indicated for cHOT regions, non-constitutive HOT 

regions (non-cHOT), and stage-specific HOT regions. With the exception of larval L1-

specific HOT regions, stage-specific HOT regions tend to be more distal. The overlap of 

HOT regions with embryonic (f) and larval L3 (g) chromatin states14 is indicated for cHOT, 

stage-derived HOT regions, and stage-specific HOT regions. With the exception of larval 

L1-specific HOT regions, cHOT regions show stronger promoter-associated chromatin 

states than non-constitutive HOT regions.
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Extended Data Figure 3. 
(a) Chromatin state distribution (y-axis) of embryonic binding regions as a function of 

binding region occupancy (x-axis). Embryonic binding regions with occupancies spanning 

1–20 were mapped to 16 hiHMM chromatin states14 discovered in embryos. Regulator 

binding regions (RGB), HOT region, and XOT region occupancy levels are indicated along 

the x-axis as blue, yellow, and red bars, respectively. Chromatin state identities are indicated 

underneath. (b, c) Fold change in frequency of chromatin states as a function of occupancy 

in embryos (b) and in L3 larvae (c). HOT and XOT cutoffs for each stage are indicated in 
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dashed lines. (d, e) Chromatin state distribution of factor binding in embryonic and larval L3 

stages. Embryonic (d) and larval L3 (e) binding sites from individual ChIP-seq experiments 

were mapped to chromatin states derived from embryos and L3 larvae, respectively14. (f) 
Signal densities near enzymatically-derived TSSs30. The log2-ratio of upstream (red) versus 

downstream (blue) binding is color-coded below. Factors discussed in the text are 

highlighted.

Extended Data Figure 4. 
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(a) Gene ontology (GO) enrichment matrix for 150 binding experiments (75 factors) 

spanning 6,347 significant GO enrichments (BH-corrected, P < 0.05) across 713 GO terms 

(level ≥4). For each experiment, GO-term enrichment was performed on gene targets as 

defined by binding within 1 kb of TSSs (ChipPeakAnno) 31. Enrichments for biological 

process (BP) and molecular function (MF) ontologies are shown, with distinct sets of 

enrichments highlighted (i–viii). (b) GO term enrichments among targets of UNC-62 

binding show dramatical changes in the functional role of UNC-62 regulatory activity 

through development. Biological process (BP) terms (levels ≥4) enriched in UNC-62 

libraries are shown. The number of UNC-62 binding sites identified per stage is indicated in 

parenthesis. Although changes in targets between mid-larval and adult stages have been 

suggested previously22, our analyses (performed with uniformly called binding sites) and 

expanded data indicate that the most dramatic changes occur between embryo and L4 larval 

stages. (+) MEP-1 indicates experiments performed in strain OP102.
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Extended Data Figure 5. 
(a) Clustering patterns in pairwise TF co-associations. Clustered libraries from shared 

factors are colored blue. Clustered embryonic libraries are colored yellow. ChIP-seq 

libraries that cluster in embryonic groups and with distinct stages for the same factor are 

colored green. BLMP-1 and ELT-3 libraries are colored purple. FOS-1 and JUN-1 libraries 

are colored red. All other libraries are colored gray in the dendrogram. The clustering 

dendrogram is derived from Fig. 2a. (b) Difference in pairwise TF co-associations at 

expressed and repressed promoter domains. For embryonic and larval L1 stages, we 

computed co-association strength 2kb upstream and 200bp downstream domains of TSSs 

associated with expressed and repressed genes, from stage-specific binding experiments 

with IntervalStats24. For each comparison (and each domain), the difference in the strength 
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of co-associations between the expressed and repressed domains is shown for embryo 

(bottom left) and larval L1 stages (top right). Positive values indicate stronger co-

associations in the expressed domain whereas negative values indicate stronger co-

associations in the domain of repressed promoters. (c–f) Change in pairwise TF co-

associations across sequential developmental stages. For factors assayed in sequential 

developmental stages, the difference in the co-association strengths for pairs of factors is 

shown. The change in co-association strengths are shown for the embryo to larval L1 (c), 

larval L1 to L2 (d), larval L2 to L3 (e), and larval L3 to L4 transitions (f). Co-association 

strengths for pairs of factors at each stage are derived from Fig. 2a.
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Extended Data Figure 6. 
Stage-specific analysis of higher-order co-associations in the larvae. For each larval stage of 

development, binding regions were annotated with binary signatures indicating the presence 

or absence of factor binding and clustered into SOMs describing the co-association patterns 

amongst factors assayed in each stage. SOMs (a–d) are colored by number of factors per co-

association pattern with respective patterns in each cluster are indicated underneath. (e) For 

each co-association pattern discovered in stage-specific SOMs, GO enrichment analysis was 

performed on genes associated by binding within 1 kb of TSSs (ChipPeakAnno) 31. GO 
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terms are arranged along the circumference of the graph, and their enrichment is indicated in 

each stage. The inner-most layer contains the gene ontology color key as indicated and 

subsequent layers (from the center) indicate embryonic (EX), L1, L2, L3, and L4 enrichment 

of each GO term. For visualization purposes, only GO terms with 5 ≤ annotated genes ≤25 

(NGO= 419) are shown.

Extended Data Figure 7. 
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Stage-comparison SOMs highlight patterns in the specificity of higher-order TF co-

associations. (a) Abundance of co-association patterns is graphed as function of the number 

of factors in each co-association in stage-comparison SOMs for the embryo versus larval L1 

stage comparison. Similar patterns are observed in all stage-comparisons SOMs. (b) 

Difference in binding sites between embryos and L1 larvae for each factor (gray dots). The 

fractional difference, calculated as fraction of the larger set of binding sites represented by 

the difference in binding sites, is shown. Factors are rank-ordered by their difference in 

binding sites. The fraction of co-association patterns that are stage-specific (≥90% 

embryonic or larval L1) in SOMs is indicated for the raw binding sites with all factors (Fig. 

3a, dashed line), in SOMs with individual factors removed (blue), and in SOMs with factors 

sequentially removed (red). (c) Embryonic and larval L1 binding SOM with matched 

numbers of binding sites. Briefly, binding data for the 15 factors assayed in the embryo and 

L1 larvae was sub-sampled to generate stage-specific binding modules with equal numbers 

of binding sites for each factor (see Methods). Stage-specific binding modules with matched 

binding sites were clustered in an SOM describing 140 co-association patterns. SOM is 

colored as in (Fig. 3a). (d) Binding signatures (fraction of modules bound by each factor) are 

shown for each co-association pattern from (c). Sidebar indicates the embryonic (versus L1) 

stage-specificity of each co-association pattern as in (c). Stage-comparison SOMs with raw 

and matched binding sites are presented for the (e) larval L1 versus L2 comparison, (f) 
larval L2 versus L3 comparison, and (g) larval L3 versus L4 comparison. Binding region 

comparisons are performed as in Fig. 3. Briefly, binding data for factors assayed in 

sequential stages are assigned to stage-resolved binding modules (i.e. L1:I:

10001174-10001734). Stage-resolved binding modules are clustered into SOMs describing 

shared and stage-specific co-association patterns. SOMs are colored by the T1 versus T2 (for 

example, L1 versus L2) stage-specificity of the learned co-association patterns, measured as 

the fraction of binding modules that are T1. T1- and T2-specific co-association patterns are 

shown in red and blue, respectively. Sidebars indicate the T1 (versus T2) stage-specificity of 

each co-association pattern. As in Fig. 3, SOMs with matched binding sites were generated 

by sub-sampling binding sites to generate stage-resolved binding modules with equal 

numbers of binding sites for each factor. For each comparison, the most representative 

sampling (from 100 iterations) was selected to seed SOM analyses. For each of the stage-

comparison SOMs with matched binding sites (e–g), the matrix of learned co-association 

patterns (fraction of modules bound by each factor) are shown below each SOM. (h–j) The 

fraction of co-association patterns that are stage-specific (≥90% either stage) in SOMs is 

indicated for the raw binding sites with all factors assayed in both stages (dashed line), in 

SOMs with individual factors removed (blue), and in SOMs with factors sequentially 

removed (red) are shown for the larval L1 and L2 stage (h), larval L2 and L3 stage (i), and 

larval L3 and L4 stage (j) comparisons.
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Extended Data Figure 8. 
(a) Cellular-resolution, protein expression levels for 180 genes (x-axis) in terminal embryo 

cells (N=671, y-axis). For each gene, the normalized expression signal in each cell is shown 

(see Methods). For each gene, expression signals in cells not measured directly corresponds 

to the expression signal of the last measured ancestor. Focus factors (FF=13) whose binding 

was assayed in embryonic stages are labeled red. Factors whose binding was assayed only in 

larval stages are labeled blue (FL=23). The broad tissue class of each cell is indicated in the 

sidebar. (b) Embryonic, cellular-resolution expression data quality controls. The number of 
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time-series recorded per gene (x-axis) is shown. For genes with multiple time-series 

(NGR=145), the Pearson correlation coefficient (R) in the fluorescence signals of cells 

recorded was calculated between NPR=762 pairs of time-series (replicates). The distribution 

of correlation coefficients is shown. The median correlation co-efficient among replicate 

experiments is shown (R = 0.8310). The number (c) and percentage (d) of embryonic cells 

with expression measurements across any of the assayed genes (assayed cells, gray), all of 

the assayed genes (tracked cells), and all of the 13 genes (focus factors) for which both 

embryonic binding data and cellular-resolution expression data was acquired (focused cells) 

are plotted as a function of developmental time (Sulston minutes). The specific 

developmental times with the maximum coverage of the cells in the embryo are indicated 

for the tracked (TT) and focused cells (TF). (e) Previous reports5 have suggested that a robust 

heuristic to identify cells in which individual genes are expressed can be obtained by 

requiring a fluorescence signal ≥ 2000 and a fluorescence signal that is ≥ 10% of the 

maximum signal observed for each reporter (gene). To confirm these recommendations, we 

calculated the overlap in the expressing cell populations for pairs of genes at 10% (f=0.1) 

and 20% (f =0.2) of the maximal signal for each gene, and computed the correlation between 

calculated overlaps per gene-pair between the two thresholds (R=0.94). This analysis was 

extended to compare a wide range of expression cutoffs (f) in (e), where we observed robust 

correlations for the 10% cutoff (f =0.1). (f) Cellular expression overlap matrix for 180 genes 

in the early embryo. For each pairwise gene comparison, we calculated the significance of 

the overlap between the population of cells expressing each gene. The overlap enrichment 

and depletion P-values between gene pairs were determined using directional Fisher’s exact 

tests and were Benjamini-Hochberg corrected. To generate a final overlap score, we select 

the most significant of the enrichment and depletion scores, reporting either the -log10(P-

value of enrichment) or the log10(P-value of depletion) to obtain positive and negative 

values for enrichment and depletion, respectively. (g) Overlap between co-association cells 

and the gene-expressing cells (the expressing population) for non-focus factors (NNF=168). 

For each cellular-resolution co-association pattern discovered (Fig. 4c), the set of co-

association cells is defined as the population of cells in which the co-association is observed 

in the SOM. For 39 co-association patterns, co-association cells significantly overlap 

(hypergeometric test, Bonferroni-corrected, P < 0.01) the gene-expression cells of at least 

one of 124 non-focus factor target genes. Co-association patterns and target gene pairs with 

significant overlaps between the co-association cells and gene-expression cells were 

classified as ‘Co-association in promoter’ if the co-association pattern with the significant 

enrichment was observed at the promoter at the target gene, and as ‘Co-association not in 

promoter’ if this was not the case. The distribution of overlap significance values for the two 

classes and the respective Wilcoxon test P-value for similarity between the two distributions 

is shown. MEP-1 (+) indicates experiments performed with strain OP102.
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Extended Data Figure 9. 
Full-resolution view of global pairwise TF co-association matrix. As outlined in Fig. 2a, the 

significance of co-binding (co-association strength) 2kb upstream and 200bp downstream of 

TSSs was measured reciprocally between all binding experiments (IntervalStats24, see 

Methods). For each comparison (NC=34,782), the fraction of significant (P < 0.05) co-

binding events was computed and the mean fraction of reciprocal tests is reported 

(NT=17,391). Co-association scores are scaled by the standard deviation (uncentered) for 

visualization purposes. Co-associations were examined among 292,466 binding sites outside 

of XOT regions. Inset (i) shows the distribution of global TF co-association strengths from 

pairwise comparisons of 187 ChIP-seq experiments. The distribution of co-association 

strengths is shown from comparisons of all (distinct) ChIP-seq experiments (NDE=17,391, 

light blue) and from comparisons of ChIP-seq experiments from distinct factors 

(NDF=17,197, dark blue). The 75th, 90th, and 95th percentiles from comparisons between 

distinct factors (CS75%=0.2437, CS90%=0.3589, and CS95%=0.4266) are indicated as light 

red, red, and dark red dashed-lines, respectively. Co-association strengths between 

FOS-1:JUN-1 in L1, L3 and L4 larvae are indicated with arrows. Inset (ii) highlights the 

similarity (Wilcoxon test, P=0.4913) between distributions from distinct factors and distinct 

experiments.
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Extended Data Figure 10. 
Representative samples of staged, transgenic C. elegans embryos and larvae expressing 

GFP-tagged fusion proteins. GFP fluorescence images, DIC images, and merged (GFP/DIC) 

images are labeled with green, white, and blue dots, respectively. The 10 μm scale bar is 

shown in GFP fluorescence images. Images were selected independent of binding 

experiment results. Approved binding experiments include: MEP-1 (mixed embryo, L2 

larvae), DPL-1 (L1 larvae), C27D6.4 (L2 larvae), NHR-23 (L3 larvae), and CEH-16 (L4 

larvae) experiments.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Ghia Euskirchen at the Stanford Center for Genomics and Personalized Medicine for sequencing ChIP 
libraries and members of the Reinke lab for contributing ChIP-seq data. We thank members of the Waterston lab, 
Sarov lab, and Kim lab for tagged constructs and generating C. elegans strains. We thank J. Reuter, D. Phanstiel, H. 
Tilgner, and D. Fowler for critical comments on the manuscript. This work is supported by the NHGRI as part of 
the modENCODE project (U01 HG004267).

References

1. Davidson EH. Emerging properties of animal gene regulatory networks. Nature. 2010; 468:911–
920. [PubMed: 21164479] 

2. Spitz F, Furlong EEM. Transcription factors: from enhancer binding to developmental control. Nat 
Rev Genet. 2012; 13:613–626. [PubMed: 22868264] 

3. Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013; 
152:1237–1251. [PubMed: 23498934] 

4. Bao Z, et al. Automated cell lineage tracing in Caenorhabditis elegans. Proc Natl Acad Sci USA. 
2006; 103:2707–2712. [PubMed: 16477039] 

5. Murray JI, et al. Multidimensional regulation of gene expression in the C. elegans embryo. Genome 
Res. 2012; 22:1282–1294. [PubMed: 22508763] 

6. Mace DL, Weisdepp P, Gevirtzman L, Boyle T, Waterston RH. A High-Fidelity Cell Lineage 
Tracing Method for Obtaining Systematic Spatiotemporal Gene Expression Patterns in 
Caenorhabditis elegans. G3 (Bethesda). 2013; 3:851–863. [PubMed: 23550142] 

7. Boyle AP, et al. Comparative analysis of regulatory information and circuits across diverse species. 

8. Gerstein MB, et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE 
project. Science. 2010; 330:1775–1787. [PubMed: 21177976] 

9. Rhee HS, Pugh BF. Comprehensive genome-wide protein-DNA interactions detected at single-
nucleotide resolution. Cell. 2011; 147:1408–1419. [PubMed: 22153082] 

10. Allen MA, Hillier LW, Waterston RH, Blumenthal T. A global analysis of C. elegans trans-
splicing. Genome Res. 2011; 21:255–264. [PubMed: 21177958] 

11. Moorman C, et al. Hotspots of transcription factor colocalization in the genome of Drosophila 
melanogaster. Proc Natl Acad Sci USA. 2006; 103:12027–12032. [PubMed: 16880385] 

12. Nègre N, et al. A cis-regulatory map of the Drosophila genome. Nature. 2011; 471:527–531. 
[PubMed: 21430782] 

13. Yip KY, et al. Classification of human genomic regions based on experimentally determined 
binding sites of more than 100 transcription-related factors. Genome Biol. 2012; 13:R48. 
[PubMed: 22950945] 

14. Ho JWK, et al. Comparative analysis of metazoan chromatin architecture. 

15. Ohinata Y, et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature. 2005; 
436:207–213. [PubMed: 15937476] 

16. Smith MA, et al. PRDM1/Blimp-1 controls effector cytokine production in human NK cells. J 
Immunol. 2010; 185:6058–6067. [PubMed: 20944005] 

17. Kuersten S, Segal SP, Verheyden J, LaMartina SM, Goodwin EB. NXF-2, REF-1, and REF-2 
affect the choice of nuclear export pathway for tra-2 mRNA in C. elegans. Mol Cell. 2004; 
14:599–610. [PubMed: 15175155] 

18. Baugh LR, Demodena J, Sternberg PW. RNA Pol II accumulates at promoters of growth genes 
during developmental arrest. Science. 2009; 324:92–94. [PubMed: 19251593] 

19. Hope IA, Mounsey A, Bauer P, Aslam S. The forkhead gene family of Caenorhabditis elegans. 
Gene. 2003; 304:43–55. [PubMed: 12568714] 

Araya et al. Page 38

Nature. Author manuscript; available in PMC 2015 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Van Auken K, et al. Roles of the Homothorax/Meis/Prep homolog UNC-62 and the Exd/Pbx 
homologs CEH-20 and CEH-40 in C. elegans embryogenesis. Development. 2002; 129:5255–
5268. [PubMed: 12399316] 

21. Curran SP, Ruvkun G. Lifespan regulation by evolutionarily conserved genes essential for 
viability. PLoS Genet. 2007; 3:e56. [PubMed: 17411345] 

22. Van Nostrand EL, Sánchez-Blanco A, Wu B, Nguyen A, Kim SK. Roles of the developmental 
regulator unc-62/Homothorax in limiting longevity in Caenorhabditis elegans. PLoS Genet. 2013; 
9:e1003325. [PubMed: 23468654] 

23. Zhong M, et al. Genome-wide identification of binding sites defines distinct functions for 
Caenorhabditis elegans PHA-4/FOXA in development and environmental response. PLoS Genet. 
2010; 6:e1000848. [PubMed: 20174564] 

24. Chikina MD, Troyanskaya OG. An effective statistical evaluation of ChIPseq dataset similarity. 
Bioinformatics. 2012; 28:607–613. [PubMed: 22262674] 

25. Xie D, et al. Dynamic trans-acting factor colocalization in human cells. Cell. 2013; 155:713–724. 
[PubMed: 24243024] 

26. Andersson LS, et al. Mutations in DMRT3 affect locomotion in horses and spinal circuit function 
in mice. Nature. 2012; 488:642–646. [PubMed: 22932389] 

27. Liu X, et al. Analysis of cell fate from single-cell gene expression profiles in C. elegans. Cell. 
2009; 139:623–633. [PubMed: 19879847] 

28. Salser SJ, Kenyon C. A C. elegans Hox gene switches on, off, on and off again to regulate 
proliferation, differentiation and morphogenesis. Development. 1996; 122:1651–1661. [PubMed: 
8625851] 

29. Hobert O. Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. 
Proceedings of the National Academy of Sciences. 2008; 105:20067–20071.

30. Gu W, et al. CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. 
elegans piRNA precursors. Cell. 2012; 151:1488–1500. [PubMed: 23260138] 

31. Zhu LJ, Gazin C, Green MR. 7. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and 
ChIP-chip data. BMC Bioinformatics. 2010; 11:237–237. [PubMed: 20459804] 

32. Jolma A, et al. DNA-binding specificities of human transcription factors. Cell. 2013; 152:327–339. 
[PubMed: 23332764] 

33. Sarov M, et al. A Genome-Scale Resource for In Vivo Tag-Based Protein Function Exploration in 
C. elegans. Cell. 2012; 150:855–866. [PubMed: 22901814] 

34. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974; 77:71–94. [PubMed: 4366476] 

35. Lefrançois P, et al. Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC 
Genomics. 2009; 10:37. [PubMed: 19159457] 

36. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics. 2009; 25:1754–1760. [PubMed: 19451168] 

37. Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq experiments for 
DNA-binding proteins. Nat Biotechnol. 2008; 26:1351–1359. [PubMed: 19029915] 

38. Li Q, Brown JB, Huang H, Bickel PJ. Measuring reproducibility of high-throughput experiments. 
The Annals of Applied Statistics. 2011; 5:1752–1779.

39. Landt SG, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. 
Genome Res. 2012; 22:1813–1831. [PubMed: 22955991] 

40. Bailey TL, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009; 
37:W202–8. [PubMed: 19458158] 

41. Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs. 
Genome Biol. 2007; 8:R24. [PubMed: 17324271] 

42. Teytelman L, Thurtle DM, Rine J, van Oudenaarden A. Highly expressed loci are vulnerable to 
misleading ChIP localization of multiple unrelated proteins. Proceedings of the National Academy 
of Sciences. 2013; 110:18602–18607.

43. Hammar P, et al. Direct measurement of transcription factor dissociation excludes a simple 
operator occupancy model for gene regulation. Nat Genet. 201410.1038/ng.2905

Araya et al. Page 39

Nature. Author manuscript; available in PMC 2015 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



44. Murray JI, et al. Automated analysis of embryonic gene expression with cellular resolution in C. 
elegans. Nat Methods. 2008; 5:703–709. [PubMed: 18587405] 

45. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode 
Caenorhabditis elegans. Dev Biol. 1983; 100:64–119. [PubMed: 6684600] 

46. Unhavaithaya Y, et al. MEP-1 and a homolog of the NURD complex component Mi-2 act together 
to maintain germline-soma distinctions in C. elegans. Cell. 2002; 111:991–1002. [PubMed: 
12507426] 

47. Sommermann EM, Strohmaier KR, Maduro MF, Rothman JH. Endoderm development in 
Caenorhabditis elegans: the synergistic action of ELT-2 and -7 mediates the 
specification→differentiation transition. Dev Biol. 2010; 347:154–166. [PubMed: 20807527] 

48. Mathies LD, Henderson ST, Kimble J. The C. elegans Hand gene controls embryogenesis and 
early gonadogenesis. Development. 2003; 130:2881–2892. [PubMed: 12756172] 

49. Hirose T, Galvin BD, Horvitz HR. Six and Eya promote apoptosis through direct transcriptional 
activation of the proapoptotic BH3-only gene egl-1 in Caenorhabditis elegans. Proceedings of the 
National Academy of Sciences. 2010; 107:15479–15484.

50. Hallam S, Singer E, Waring D, Jin Y. The C. elegans NeuroD homolog cnd-1 functions in multiple 
aspects of motor neuron fate specification. Development. 2000; 127:4239–4252. [PubMed: 
10976055] 

51. Brooks DR, Appleford PJ, Murray L, Isaac RE. An essential role in molting and morphogenesis of 
Caenorhabditis elegans for ACN-1, a novel member of the angiotensin-converting enzyme family 
that lacks a metallopeptidase active site. J Biol Chem. 2003; 278:52340–52346. [PubMed: 
14559923] 

Araya et al. Page 40

Nature. Author manuscript; available in PMC 2015 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Large-scale regulatory analysis of the C. elegans genome. (a) Factors assayed per 

developmental stage (or treatment) in 241 quality-filtered ChIP-seq experiments. Stages and 

treatments are abbreviated as Early Embryo (EE), Late Embryo (LE), Embryo Mixed (EM; 

EE and LE), larval L1 (L1), larval L2 (L2), larval L3 (L3), larval L4 (L4), Young Adult 

(YA), mixed Larval and Young Adults (LY), Day 4 Adult (D4), and Starved L1 (S1). 

Embryonic datasets were combined into a compiled embryonic stage (EX). Analyses in this 

report focus on embryonic (yellow) and larval (blue) experiments (NA=187). (b) Genomic 

coverage (percent of genomic bases) of regulatory binding (excluding RNA polymerases) in 

181 C. elegans (outer circle) and 339 H. sapiens (inner circle) ChIP-seq experiments. 

Genomic coverage of cHOT, HOT, and other regulatory binding (RGB) regions are 

highlighted in red, yellow, and blue, respectively. cXOT and XOT percentages are shown in 

parenthesis. cHOT, HOT and RGB region coverage in the human genome are 0.17%, 1.4%, 

and 6.1%, respectively7. (c) Cutoff-normalized, occupancy levels in 126 embryo-specific 

(yellow) and 91 larval L4-specific (blue) HOT regions. Error bars indicate the 25th and 75th 

percentiles. (d) Chromatin state14 distribution of L3 larvae binding regions by occupancy. 

RGB, HOT, and XOT region occupancy levels are indicated along the x-axis as blue, 

yellow, and red bars, respectively. (e, f) Signal densities near enzymatically-derived TSSs30 

for BLMP-1 and ALY-2, and RNA Pol II. (g) Functional (GO term) enrichment for gene 

targets of binding31. A subset of biological process (BP) terms (levels ≥ 4) are shown for 

factors enriched (BH-corrected, P < 0.01) in synaptic transmission; Early MEP-1 and DPL-1 

data sets are included for comparison. (h) Example signal tracks near the UNC-104 locus.
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Figure 2. 
Global and domain-specific patterns of TF co-association. (a) Global pairwise TF co-

association matrix (NT=17,391) as defined by promoter interval statistics24. Co-association 

scores are scaled by the standard deviation (uncentered) for visualization purposes. Co-

associations of interest and discussed in the text are highlighted. LX indicates larval stages 

L1-L4. A higher-resolution version is available in Extended Data Fig. 9. CES-1:FKH-10 co-

associations are highlighted in inset (i). Co-association strengths (unscaled) between early 

embryo and later stages are shown in inset (ii) for RNA Pol II-specific binding (blue), and 

for all factor-specific binding (light-blue). (b) Embryonic (EX) binding regions (NR=6,555) 
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were clustered into a SOM describing 240 co-association patterns among 26 factors. (c) 

Binding signatures (fraction of modules bound by each factor) of the learned co-association 

patterns are shown. The relative number of factors per co-association pattern, expression 

from overlapping promoters, distance to TSSs, and number of modules with each co-

association pattern are indicated as a fraction of the maximum observed across co-

association patterns. (d) Functional enrichment for regions with UNC-62-bound co-

association patterns of the embryo SOM.
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Figure 3. 
Stage-specificity in higher-order TF co-associations. (a) Embryonic (EX) and larval L1 

binding SOM with raw binding sites. Binding data for factors (NF=15) assayed in embryos 

and L1 larvae was assigned to stage-specific binding modules (NM=25,261) as diagramed in 

the inset. Stage-specific binding modules were clustered into an SOM describing 192 co-

association patterns. The SOM is colored by the embryonic (versus L1) stage-specificity of 

the learned co-association patterns, measured as the fraction of binding modules that are 

embryonic. (b) Histogram of preceding (T1) versus subsequent (T2) stage-specificities.
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Figure 4. 
Cell-type and lineage resolution of regulator activity and TF co-associations. (a) Tissue 

enrichment (−log10, P-value) and depletion (log10, P-value) scores for the expressing 

population of each gene are shown (Fisher’s exact, Bonferroni-corrected). Only genes with 

significant enrichments (or depletions) are shown. (b) Co-association strength (Fig. 2a) 

versus cellular overlap coefficient for 13 focus factors. The Jaccard index for the cellular 

overlap is indicated for each gene pair by ring size and color. (c) Cellular-resolution 

regulatory binding SOM. Cellular-resolution binding modules were generated by annotating 

in each cell, the binding of focus factors expressed in the cell. Cellular-resolution binding 

modules (inset) were clustered into a SOM with 268 learned co-association patterns, 161 

(68%) of which were discovered in the data. The SOM is colored by the number of factors 

in the learned co-association patterns. (d) Tissue classes and co-association signatures are 

shown for 43 co-association patterns with significant enrichments. Tissue enrichments of 

interest are highlighted red.

Araya et al. Page 45

Nature. Author manuscript; available in PMC 2015 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


