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Abstract

The recent increase in the use of high field MR systems is accompanied by a demand for
acquisition techniques and coil systems that can take advantage of increased power and
accuracy without being susceptible to increased noise. Physical location and anatomical
complexity of targeted regions must be considered when attempting to image deeper struc-
tures with small nuclei and/or complex cytoarchitechtonics (i.e. small microvasculature and
deep nuclei), such as the brainstem and the cerebellum (Cb). Once these obstacles are
overcome, the concomitant increase in signal strength at higher field strength should allow
for faster acquisition of MR images. Here we show that it is technically feasible to quickly
and accurately detect blood oxygen level dependent (BOLD) signal changes and obtain
anatomical images of Cb at high spatial resolutions in individual subjects at 7 Tesla in a sin-
gle one-hour session. Images were obtained using two high-density multi-element surface
coils (32 channels in total) placed beneath the head at the level of Cb, two channel transmis-
sion, and three-dimensional sensitivity encoded (3D, SENSE) acquisitions to investigate
sensorimotor activations in Cb. Two classic sensorimotor tasks were used to detect Cb acti-
vations. BOLD signal changes during motor activity resulted in concentrated clusters of
activity within the Cb lobules associated with each task, observed consistently and indepen-
dently in each subject: Oculomotor vermis (VI/VIl) and Crusl/Il for pro- and anti-saccades;
ipsilateral hemispheres IV-VI for finger tapping; and topographical separation of eye- and
hand- activations in hemispheres VI and VIIb/VIIl. Though fast temporal resolution was not
attempted here, these functional patches of highly specific BOLD signal changes may
reflect small-scale shunting of blood in the microvasculature of Cb. The observed improve-
ments in acquisition time and signal detection are ideal for individualized investigations
such as differentiation of functional zones prior to surgery.
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Introduction
Cerebellar Function

The cerebellum (Cb) has a uniform architecture throughout and is divided into the cerebellar
vermis (v) along the medial portion and cerebellar hemispheres (h) laterally with the paraver-
mis (or intermediate zone) located between the two; these regions are divided into ten lobules,
arranged dorsoventrally (Fig 1a). In general, Cb is able to update motor commands using on-
line mechanisms to constantly adjust our participation with the external environment. For
example, vision relies fundamentally on changing inputs in order to update visual information
from the external environment; for this reason we constantly sample different locations in our
visual world using fast eye movements (saccades). It is well known that the Cb is intimately
involved in motor control [1-3] and that different regions of Cb react to or elicit distinct senso-
rimotor activity in different body parts (i.e. finger, arm, and eye movements, etc.) at both the
cortical and nuclear layers [4-9]. A sensory/motor homunculus in Cb is mirrored in dorsal and
ventral cortex [10] and somatotopic organization with specific regard to arm, hand, finger, and
eye areas are all well defined in human and animal Cb—with hand and finger movements
found topographically in dorsal motor areas (around ipsilateral #V); with a second, less strict,
representation in AVIII, and eye movements in vII/III through VI ([9,11-18]; see [19] for
review).

Different regions of Cb are implicated in higher order functions such as counting, timing,
cognitive learning, and memory [2,19,22,23]. Many studies have implied that (lateral) Cb cor-
tex is critical to cognitive or goal-directed neocortical processes involved in controlling voli-
tional eye movements and/or appropriate suppression of reflexive eye movements, such as
memory-guided saccades, anti-saccades, and saccade adaptation [24-28]. However, this view-
point can be challenged, as attention and eye movements are an integral part of most studies
on cognition [29-32]. Though it has been difficult to pinpoint the location(s) of different
aspects of cognitive processes within Cb, relating the cognitive planning components of voli-
tional movements (versus reflexive movements [33]) and/or motor learning are a good starting
point.

While the general topography of functional zones in Cb is widely accepted, detailed location
of function is not consistent across individuals [7,18] and this results in larger areas of activa-
tion in normalized space when assessing group analyses [34,35]. Enabling high-resolution
structural and functional delineations for individualized assessment can be beneficial for many
clinical procedures; e.g. for pre-surgical assessment of cerebellar infarcts related to vertebroba-
silar stroke [36,37], tumor resection [38], or for individual lesion-symptom mapping [39,40].
Localizing these functional activations as quickly and succinctly as possible can further benefit
this type of assessment.

Imaging Cerebellum Is Difficult

The anatomical complexity and physical location of Cb creates many challenges to successful
imaging of this structure. Differentiating the small-scale foliation of Cb cortex amongst local
magnetic field inhomogeneities arising from neighboring air pockets (such as the ear canal),
coil edge effects leading to loss of B1 power (which together can lead to significant ventral and
lateral signal drop out), and tissue artifacts from neck muscle activity are important concerns
when imaging these areas [15,34,41-43]. Minute structures and inhomogeneous location also
make functional imaging of Cb more susceptible to physiological and movement artifacts [43-
45], a particular confound when long acquisition times are required to obtain a significant con-
trast-to-noise ratio (CNR). With the advance of ultra-high field magnetic resonance (MR),
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Fig 1. Experimental Design. a) Cb is divided into three main parts—vermis (medial Cb; will be denoted in the text with a “v”), paravermal (medio-lateral Cb)
and hemispheres (lateral Cb; both of which will be denoted collectively in the text with an “h”)—which are then further divided into ten numbered lobules,
arranged dorsoventrally I-X. Task-related activations were expected in five regions of interest: oculomotor vermis (vVI-VIl) & hVIIb for the PA task, with
possible cognition-related activation in lobules Crusl & Crusll (hVII), and in AV & hVIII for the FT task. These lobules are color-coded and overlaid on an
average Cb from the SUIT toolbox [20] and listed, in matching colors, on the right. b) top—Two high-density surface coils with 16 elements each were used for
signal reception (adapted from [21]), bottom—the coils were placed beneath Cb using the inion of the skull as a landmark and accurate placement was
confirmed with a scout scan. ¢) The stimulus sequence was identical for both eye- and finger-movement tasks: In the pro-/anti-saccade (PA) task subjects
made eye movements to locations which were either identical to (pro-saccade) or opposite from (anti-saccade) the location of a white target that appeared
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after a red or a blue central cue; color and movement direction pairings were counterbalanced across subjects. In the finger tapping (FT) task subjects moved
their thumb at 2 Hz whenever the dots were moving. In each task the active period lasted for 20s and alternated with 20s of fixation for one full run of eight

minutes.

doi:10.1371/journal.pone.0134933.g001

high-resolution anatomical images and detailed localization of functional activations are possi-
ble. The increased spatial resolution enabled by high field MR systems has already fostered
interest from the Cb research community, enabling feats such as visualizing granular and
molecular layers of cerebellar cortex, creation of a probabilistic atlas for locating the deep cere-
bellar nuclei (DCN) and activity therein, relating activation of these nuclei to activations in Cb
cortex, and visualization of somatosensory representations of the hand in lobules hV and hVIII
in individual subjects [18,46-49]. These studies exemplify the ability to target deeper structures
with small nuclei and/or complex cytoarchitechtonics (i.e. small microvasculature and/or deep
nuclei) at high field strengths. Despite these advances, high-field Cb studies typically focus on
either structure or function of a single system (e.g. somatosensory finger topography). Thus the
ability to clearly differentiate the entire region of interest (ROI; in our case, both Cb cortex and
DCN) structurally and acquire functional information about multiple systems within a single
session remains unseen.

Combining Techniques to Tackle the Challenge

These concerns demonstrate the need for acquisition methods and coil systems that can take
advantage of the increased signal at high field strengths whilst controlling for increases in sig-
nal dropout and artifacts, such as those arising from local B0 (constant, homogenous magnetic
field) or B1 (applied radio frequency (RF) energy field) inhomogeneities, especially at the level
of Cb. Recent developments in acquisition schemes, such as the use of multiple receiving coils
and accelerated (3D) parallel imaging employing sensitivity encoding (SENSE), allow for
increases in the spatial resolution of images without increasing acquisition time. These acquisi-
tion schemes are also able to maintain a high signal-to-noise ratio (SNR) and bolster image
attributes such as blood oxygenation level-dependent (BOLD) signal specificity and temporal
SNR (tSNR) [50-52]. A second advance which successfully combats inhomogeneity problems
is the use of multiple RF amplifiers to steer constructive and destructive B1 field patterns, sub-
sequently increasing B1 homogeneity and allowing uniform excitation of the volume and fur-
ther reducing signal dropout [53,54].

Despite advances in acquisition techniques, spatial restrictions of scanner hardware remain
as a technical barrier that must be overcome to facilitate many experimental paradigms. For
example, when imaging the whole brain, the solid head coils required to provide a uniform B1
field whilst receiving signals from the entire head limit the ability to easily present visual stimuli
to subjects and are sometimes too small for subjects with large head circumference. However,
concentrating coil density over a posterior ROI in the brain can clear up space for presentation
of visual stimuli and/or subject comfort whilst increasing the local homogeneity of the B1 field
around the ROI [18,21,55]. Moreover, studies using a high-density multi-element surface coil
to detect BOLD signal changes at ultra-high spatial resolution benefit from increased SNR and
CNR, indirectly decreasing acquisition time.

Here we aimed to clearly reveal subject-specific task-related activity in Cb associated with
two well-documented motor subsystems, eye-movements and finger-movements. The end goal
was to confirm that high-density surface coils maintain improved and uniform tSNR and
BOLD contrast over the entire Cb in healthy individuals. The combinatorial methodology used
in this study also overcomes the aforementioned challenges of imaging deeper structures,
shortening acquisition times to increase experimental efficiency and subject comfort, and
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relieving spatial constraints within the transmit coil. The acquisition scheme utilizes two
16-channel surface coils of [21] integrated in a volume transmit coil (Nova, USA) powered by
two RF amplifiers, which were shimmed separately, and a 7 Tesla (7T) scanner. Images were
acquired with 3D-parallel imaging using SENSE and BO shimming. A task including both pro-
saccades and anti-saccades (PA task; inducing both reflexive and volitional saccades, respec-
tively) was used to confirm eye-movement-dependent activations in oculomotor vermis
(OMV, vVIc and vVII) and DCN [9,32,56-58]. Additionally, the role of lateral Cb cortex in
goal-directed eye-movement planning was also probed with this task, with expected activations
in hVI and/or CrusI/II relating to volitional saccades, visual attention, and/or saccadic errors
from anti-saccades [25,59,60]. A finger-tapping (FT) task was used to confirm activations in
ipsilateral dorsal and ventral (sensory-) motor hand areas of Cb cortex [11,15,17,18], hIV-V
and hVIII, which should not overlap with the oculomotor system.

Materials and Methods

This study was approved by the Medical Ethics Committee of the University Medical Center
Utrecht (METC approval no. 07-235/C) and all subjects gave written informed consent prior
to participation.

Subjects

Seven right-handed subjects with normal or corrected-to-normal vision participated in the
experiment (four male). The average age of subjects was 31. No subject had a history of mental
or neurological illness; all were screened for implanted metal objects before entering the fMRI
experiment.

Acquisition

Scanning was performed on a Phillips 7T scanner (Phillips, Best, NL) with a gradient strength
of 40 mT/m and a slew rate of 200 T/m/s, using two dedicated 16-channel surface receiving
coils (MR Coils BV, Drunen, the Netherlands; for a total of 32 channels; see Fig 1b and [21] for
more details on coil arrangement and design, respectively) with a volume transmit coil (Nova
Medical, MA, USA) and dual transmission for excitation. Cb was located using the inion as a
landmark, and placed on the center of the surface coils. Before shimming, accuracy of place-
ment was confirmed with a scout scan and subjects were repositioned if Cb was not within the
field of view (FOV) of the surface coils. (For an example of data of one subject acquired when
the Cb was below the FOV of the coils, see S1 Fig) RF transmit phases were adjusted separately
to homogenize the Bl field around Cb and the B0 field was shimmed separately on the FOV
using pre-defined shim tools built in house for both procedures [61]; these shimming parame-
ters were then applied to all subsequent acquisitions, including the coil sensitivity profile acqui-
sition. Functional and structural scans were obtained with a 3D acquisition protocol (see
[51,52] for examples) using SENSE [50]. FMRI data were acquired using a segmented 3D-echo
planar imaging (EPI) sequence with the following parameters: effective TR/TE = 42/25 ms;
FOV (right-left, foot-head, anterior-posterior) = 140 x 160 x 50 mm?; flip angle (FA) = 20°%
with an EPI factor of 29 and 40 coronal slices; voxel size = 1.25 mm isotropic (BW 1355.1 Hz);
SENSE factors R = 2.3 (Right-Left) and R = 1.5 (Anterior-Posterior). The echo-train duration
was 28 ms, and total acquisition time per volume was 2940 ms, yielding 164 acquisitions for
one eight-minute run. Anatomical T1-weighted (T1w) MPRAGE parameters were: TR/

TE = 8.0/3.1 ms; FOV = 140 x 160 x 50 mm?; FA = 10°; voxel size = 0.63 mm isotropic; R =11in
all directions; total acquisition time was 5’52”. T2-weighted (T2W) scan parameters were: TR/
TE = 3182.5/2.6ms; FOV = 180 x 180 x 58 mm”’; FA = 50° EPI factor = 13 and 10 coronal slices;
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voxel size: 0.28 x 0.28 x 4 mm with a 2mm gap; total acquisition time was 4'46”. Anatomical
T2*-weighted (T2*w) scan parameters were: TR/TE = 50.91/27 ms; FOV = 152 x 152 x 35
mm?>; FA = 24° with an EPI factor of 13 and 70 coronal slices; voxel size = 0.5 x 0.5 x 0.5 mm°;
total acquisition time was 46.2 seconds. T2W and T2*w scans were only collected from the last
two subjects to investigate DCN and vasculature. Total time in the scanning room, including
shimming, was 40 to 55 minutes.

Task-Related Changes in BOLD Sensitivity

Task-related changes in BOLD sensitivity and specificity were assessed in seven subjects using
a block-based design of two motor tasks well known to activate specific areas of the cerebellum
(ROIs, Fig 1a): vVI and vVII for pro-saccades versus anti-saccades (PA), and hV and hVIII for
finger tapping (FT). See Fig 1a for structural locations of ROIs and 1c for a schematic of stimu-
lus timing. The same visual stimuli were used for both tasks. In the active block of both tasks, a
colored central cue was presented at fixation for 500 ms, and at the offset of the cue a white tar-
get appeared on the left or right at 3 or 10 degrees of visual angle (DOV) from fixation for 950
ms; a white central cue guided the eyes back to the center of the screen for 250 ms. Both cue
and target subtended approximately 3 DOV. Each active block lasted 20 seconds, and active
blocks were alternated with rest blocks (20 seconds of fixation) for one full run lasting eight (8)
minutes. For the PA task, subjects were instructed make a pro-saccade (towards the target)
when the cue is red and to make an anti-saccade (away from the target, to the un-cued mirror
location) when the cue is blue; color cues were counterbalanced over subjects. For further task
details see [62]. For the FT task, subjects were instructed to move their thumb at 2 Hz whenever
they saw dots moving on the screen, and to rest during the fixation period. Visual stimuli were
presented on a screen above the transmit coil. Images were reflected from the screen via an
adjustable intermediate mirror and viewed through prism goggles, which re-directed the image
from this mirror towards the eyes.

Spatial Preprocessing

All image processing and statistical modeling was done with SPM8 (Wellcome Trust Center
for Neuroimaging, London, UK) on MATLAB 7.12.0 (Mathworks, Natick, MA, USA). Func-
tional images were realigned and resliced at their original voxel size and all structural and ana-
tomical images were coregistered to the mean functional image. Using the full-head scout scan
as a guide, the anterior commissure (AC) was moved to [0 0 0] xyz coordinate and the head
was rotated to approximate a common atlas position by eye, these transformations were
applied to the header of all images to approximate Montreal Neurological Institute (MNI)/
Talairach space. Cb was isolated from the T1w-image using the SUIT toolbox [20]. Note that
though the AC of each scan was centered, no normalization was applied to any scans for indi-
vidual analyses. Functional images were smoothed at 2mm FWHM and nuisance regressors
were extracted from the time series on a per-subject basis using 3 x 3 x 3 mm? samples from
white matter in the left and the right hemisphere and from cerebral spinal fluid (CSF) in ventri-
cle IV, the superior cerebellar cistern and the cisterna magna. The parameters from the SUIT
isolation were later used to normalize functional acquisitions to common SUIT space on a per-
subject basis to confirm individual results in a common space and for analyses at the group
level (see Spatial post-processing and group statistics, below).

Statistical Analyses

Evaluation of signal quality and stability. Signal quality of these surface coils has been
previously defined for visual cortex [21,55] showing boosted tSNR close to the coil, yet with a
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limited depth of view, which is required to cover the entire Cb. While the performance assess-
ment in those studies was obtained with a single 16 channel surface coil, we required deeper
penetration in order to reach Cb and therefore used two sets of 16 channel surface coils and
two transmission amplifiers. To confirm sufficient SNR over the Cb with this arrangement,
tSNR was computed from one run of PA acquisitions in a single subject (S05), after motion
correction and removal of the task-induced signal, by calculating the residual variance of the
remaining signal and normalizing the average signal intensity by this variance (over time), for
each voxel in the brain. This subject also completed both tasks in a standard 32-channel full
head coil (Nova Scientific, USA) with identical scan parameters and analyses (see below), and
the resulting activation maps were compared to the surface coil acquisition; see S1 Methods for
details.

Changes in brain activation. A GLM contrasting 20s task against 20s rest was created
using the block design from each experimental run convolved with the canonical hemody-
namic response function (HRF), and a high-pass filter of 80s was applied to each timeseries;
this model also included the aforementioned WM and CSF nuisance regressors. Timeseries
from all voxels within the imaged volume were included when estimating the model. The
resulting T-maps from this active versus rest contrast were overlaid on the T1w images using
MRIcron [63]. Voxels with significance above p < 0.05 (voxel-based family-wise error (FWE)
false discovery rate (FDR) corrected, automatically calculated with SPM interface, further
referred to as ‘SPMT’) frequently occurred in extremely small clusters that are difficult to make
out at any scale without significant prior knowledge of Cb anatomy. This default FDR is a very
strict correction for individual analyses and does not weigh the individual variations in noise.
Therefore a cluster-based FDR correction utilizing the intercepts of the noise Gaussian distri-
bution with the positive and negative gamma signal was also applied, specified for each subject
individually (adaptive thresholds, ‘AT’ [38]). The AT maps were then thresholded, removing
voxels below the AT and/or not surviving FDR cluster thresholds. Voxel clusters surviving
SPMT therefore needed to exceed the minimum size of corresponding AT clusters to survive
this thresholding method. Individual T-values in each figure therefore range from cluster-
based AT FDR to voxel-based SPMT FDR values representing p < 0.05 in both instances.

Spatial post-processing and group statistics. To assess the stability of the results across
the sample size of this experiment, statistical maps from each subject were created from the
SUIT-normalized and smoothed functional images masked inclusively for voxels within the
standard SUIT Cb mask. All resulting maps were overlaid on the SUIT atlas to investigate the
validity of the individual activations in common (MNI) space. These maps were then entered
into two simple second level analyses (Paired t-Test and multiple regression only) in SPM to
evaluate activations at the group level. No additional second level analyses were run, as the goal
of this study was to investigate activations at the single-subject level.

Results

The data of one subject were acquired when the Cb was below the FOV of the coils and these
data are not displayed in the figures of the main text; see S2 Fig for complementary panels of
structural and functional images from this subject.

Task-Related Signal Changes

Reliable signal changes were observed within Cb when contrasting active versus rest periods
for both tasks in all subjects. Figs 2-6 show the specificity of task-related Cb activation in each
subject in non-normalized space as overlays on individual T1w structural scans. In all images,
overlays are cluster-thresholded AT maps and the color bar(s) denote a range of T-values
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Fig 2. Functional Accuracy of Pro-Anti Activations in Cb, Oculomotor Vermis and Paravermis VI. Activity in OMV (medial posterior Cb, layers vVIc and
vVII, central panel) and paravermis VI and Crusll/Vlla during the PA task is displayed on sagittal slices (vertical lines dissecting rightmost coronal view).
Ventral OMV is active in all subjects besides S05 during this task while activity is also present in dorsal OMV for all subjects besides S03 and S04; slices are
through Cb vermis and paravermis only. Slice locations (sagittal non-normalized MNI space, x-plane) are displayed at the top of each panel. Refer to Fig 1a

for a guide to anatomical lobule definitions.

doi:10.1371/journal.pone.0134933.g002

encompassing the p < 0.05 thresholds for the two types of FDR thresholding analyses run:
from cluster-based AT FDR values (lower-value hash mark on each color bar) to voxel-based
family-wise error (FWE) SPMT FDR values (higher-value hash mark on each color bar). In Figs
2-6, subject-specific data are displayed in the panels beside the subject ID and activations for
both tasks are shown in all panels: PA activation is displayed in red-to-yellow colors while FT
activation is displayed in blue-to-green colors (each representing low-to-high significance,
respectively). Hash marks through the color bars indicate the lower (cluster-based) and upper
(voxel-based) FDR thresholds. See S1 Table for a list of AT and SPMT values for each task for
each subject. In addition, the maximum T-value at the crosshairs or within the circles in Figs
3-7 is displayed on the axial slice, color-matched to the color bar representing each task.

Fig 2 displays sagittal slices through the paravermis and OMV (vVI-VII) and Table 1 lists
the maximum T-value per cross-section for each subject. Fig 3 displays crosshairs in
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Fig 3. Functional Accuracy of Pro-Anti Activations in Cb, Bilateral VI. Bilateral hVI is activated during PA; crosshairs denote an active cluster in left
paravermis VI and distinct clusters can be seen aligned along lobule VI in the axial (rightmost) panels. Slice locations (in non-normalized MNI space) are
displayed at the top of each panel and T-values at the crosshairs are displayed at the bottom of the axial panels. Refer to Fig 1a for a guide to anatomical
lobule definitions.

doi:10.1371/journal.pone.0134933.9003

paravermis (left hVI) where activity was indeed observed in each subject during PA eye move-
ments. Note that activations were confined to the grey matter and that the pinpoint PA-related
activity is located in clusters bilaterally along lobule VI in the axial plane (rightmost panels: ver-
mis, paravermis, and hemispheres), seen as bright yellow activations in line with the curvature
of the lobule marked by crosshairs in the axial panels of Fig 3. Aside from the differences in
sagittal (left-right) locations dissecting the PA-related clusters, the PA-clusters are themselves
located at slightly different axial (foot-head) locations. Ventral OMYV is active in all subjects
besides SO5 during this task while activity is also present in dorsal OMYV for all subjects besides
S3 and S04 (Fig 2).

Crosshairs in Fig 4 denote an active cluster in right &V where finger-movement related
activity was also observed as expected and reliably in each subject. Also note the restriction of
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Fig 4. Functional Accuracy of Thumb Tapping Activations in Cb, Ipsilateral IV-VL. Ipsilateral hIV-VI is activated during the FT task; crosshairs denote an
active cluster in or adjacent to right AV (S04 —hVI-VII). Activations for both tasks are shown in all images, with PA activity denoted by red-yellow and FT
activity by blue-green color bars. Note the large structural and functional (with regard to both location and strength) variability between subjects; maximum
FT-clusters can be located anywhere between the V-V border (S03, S05 and S06) to the V-VI border (S01, S02, S04). Slice locations (in non-normalized
MNI space) are displayed at the top of each panel and T-values at the crosshairs are displayed at the bottom of the axial (rightmost) panels. Refer to Fig 1a
for a guide to anatomical lobule definitions.

doi:10.1371/journal.pone.0134933.9004

FT-related activity to a small number of folia within ipsilateral (R) hV-VI (Fig 4). Although
activity was observed in or around the expected lobule of each subject, the location of peak
activity varied between subjects. For instance, the PA-clusters that spill over from ventral V to
dorsal VI in SO1 lie more dorsally in layer V in S03 and S04 (sagittal sections, Fig 2), and maxi-
mum Cb FT-clusters can be located anywhere between the IV-V border (S03, S05 and S06) to
the V-VI border (501, S02, S04; Fig 4)

In addition to the expected motor-related activity mentioned above, lateral Cb was found to
be active during the PA task for most subjects (particularly prominent in S01, S03, S04 and
S06; Fig 5), presumably representing the cognitive load of planning volitional anti-saccades
and/or visual attention. Clusters of activity were observed in hCrusl and/or hCruslII as well as
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Fig 5. Functional Delineation of Task-Related Activity, Pro-Anti Activations in Crusl and Crusll. PA-related activity is also seen in hCrusl and/or
hCrusll (crosshairs); presumably due to the cognitive component required to plan and execute a volitional anti-saccades. Clusters occur in either dorsal Crusl
(S01, S03 and S06) or medioventral Crusll (S02, S04 and S05). Slice locations (in non-normalized MNI space) are displayed at the top of each panel and T-
values at the crosshairs are displayed at the bottom of the axial (rightmost) panels. Refer to Fig 1a for a guide to anatomical lobule definitions.

doi:10.1371/journal.pone.0134933.9005

hVIIb during the PA task (Figs 5 and 6, respectively). Note that the most active clusters occur
in either dorsal CrusI (S01, S03 and S06) or medioventral CrusII (S02, S04 and S05) and that
activity in lateral Cb was also significant with the head coil (S05, S1 Fig) though FDR clusters
are smaller and more localized with the surface coils. Eye-movement and finger-movement
activations were also consistently non-overlapping in ventrolateral Cb. It can be seen through-
out Fig 6 that FT activity in ipsilateral hVIIL, the secondary motor lobule, is consistently differ-
entiated from PA activity in bilateral #VIIb with the exception of S04 where this differentiation
was only visible in contralateral Cb, and S05 where ventral FT activity was extremely low over-
all and separation in dorsolateral VI is displayed instead (this dorsal separation is also visible in
Fig 4 for other subjects). Once again, though differentiation is consistent across subjects, the
relative strength and positions of the activations are not. For example, the separable activations
in Fig 6 are located more anteriorly in half of the subjects (S02, S05 and S06, axial slices) and
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Fig 6. Functional Delineation of Task-Related Activity, Separation of Eye and Finger Movements in Ventrolateral Cb. Example of the specificity of
localized activity resulting from the two motor systems (in addition to the obvious distinctions visible in Figs 2-5): differentiation of FT-related hVIII activity
from PA-related hVIIb activity is displayed for each subject (zoomed-in area denoted by a dotted box); activations from separate tasks do not overlap.
Separable activations are located more anteriorly in some subjects (S02, S05 and S06, axial slices) and the proximity and arrangement of the clusters also
varies between subjects. Slice locations (in non-normalized MNI space) are displayed at the top of each panel and maximum T-values from within the
zoomed areas are displayed at the bottom of the axial (rightmost) panels, color-coded by task—PA in red-orange and FT in blue-green. Refer to Fig 1a fora

guide to anatomical lobule definitions.

doi:10.1371/journal.pone.0134933.g006

more posteriorly in the other half; and the proximity and arrangement of the clusters are closer
together in some subjects than in others.

BOLD signal changes were also detectable in the DCN. The inhibitory nature of Purkinje
cell (PC) afferents from Cb cortex to ipsilateral dentate nucleus (D) mean that activations in
the PC layer (middle Cb cortex layer) should result in deactivation of D. Fig 7 displays the den-
tate (D) and surrounding DCN identified on the T2W structural scan of a single subject. Acti-
vations are shown as voxels from the original (un-thresholded) SPM T-maps since no D
activations survived the AT cluster-thresholding; hash marks denote the AT (lower value) and
SPMT (upper value) for positive (top color bar) and negative (bottom color bar) activations
and deactivations (anticorrelations), respectively. It can be seen in Fig 7 that activity in D is
anticorrelated with activity for both tasks: when Cb cortex is active, D is not as seen during PA
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Table 1. Oculomotor Vermis Coordinates and Maximum T Values.

So1

S02

S03

S04

S05

S06

S07

x =-21
7.4614
X =-27
6.137
X =-28
5.8972
X =-27
9.3242
X =-26
5.0573
X =-22
7.8266
x=-8
NA

doi:10.1371/journal.pone.0134933.t001

x=-9 X=2 x=16 X =26
8.8765 3.0502 71134 9.4295
X=-7 X =-3 X=9 x=25
6.1186 6.1169 5.0553 4.9984
X=-7 x=3 x=9 x=25
6.7514 4.1853 7.9593 6.5249
x=-9 X=-2 x=7 x=27
6.0276 4.9292 7.5602 7.8195
x=-9 x=5 x=9 x =25
4.6583 3.9448 5.4824 5.5194
x=-15 x=-3 x=13 x =24
5.2332 6.5102 5.9104 4.6537
x=-5 X=6 x =30 x =31
3.0536 3.5386 3.5286 2.9817

at -57 mm (circled in green) and during FT at -48 mm (circled in purple). The (cognitive) goal-
directed eye movement connections (PA) are located more caudally than finger-movement
motor connections (-57 versus -48mm, respectively), yet both occur in ventral D. It should be
noted, however, that positive activity is also seen in more rostral D during PA and that no
activity was observed in interposed or fastigial nuclei of this subject.

Structural Detail, Signal Quality and Stability

The conspicuity of structural detail in the T1w scan is apparent, with remarkable definition of
the folia, especially around the edges of the Cb (Figs 2-7) where inhomogeneity was most
likely. Both SNR and tSNR have previously been validated in visual cortex for the surface coils
[21,55]. S1 Fig shows the advantage of the high-density surface coils in Cb functional imaging
—PA-related activity in lateral Cb was detected using both the head and surface coils (see also
S05 in Fig 5 and S3 Fig). With regard to tSNR throughout Cb, signal loss further than 5cm
from the surface coils (anterior cerebellum, towards the center of the brain) was indeed an
issue, but a minimal one. T2*w and T2W images were collected from the last subjects to visual-
ize differences in local vasculature and anatomy. S3 Fig displays functional activations from the
PA run of S05 overlaid on T1w images (‘Funct’) and aligned with separate panels displaying
tSNR and T2*w structural images for six defined locations. Task-related activity was neither
directly related to local tSNR nor to the proximity of large vessels, as revealed by comparing
the location of functional activity with the tSNR and blood vessels/veins at the same location
(crosshairs for each defined location are aligned for all images types). As described in the previ-
ous section, the T2W anatomical image was used to visualize the DCN with great clarity, par-
ticularly D, in S06 (Fig 7), and functional activations and deactivations were observed within
these deep nuclei.

Inter-Subject Variability and Statistical Post-Processing

The activation loci and T values for activations in each lobule of interest (in native/non-nor-
malized space) are visible on the top of each panel and just below the axial slice, respectively,
for each subject (Figs 2-6). Despite moving each individual brain into a common space (AC to
[0 0 0], dorsal vermis in axial plane with orbitofrontal cortex), due to the structural discrepan-
cies between individual Cb lobules, it is still difficult to infer how variable individual activations
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Fig 7. Concomitant Correlation of Task-Related Cb Cortex Activity and Anticorrelation of DCN Activity. The detail of the T2W scan allows
visualization of DCN revealing increases (+) and decreases (-) in task-related functional activity in Cb cortex and within the dentate (respectively) of a single
subject. Correlation of task-related activity (+) in the Cb cortex is concomitant with anticorrelation of activity (-) in the dentate and that cognitive depression
(PA, green at -57) is located more caudal in the dentate than (the stronger) motor depression (FT, purple at -48). Slice locations (in non-normalized MNI
space) are displayed at the top of each panel and maximum T-values from clusters within the circles are displayed at the bottom of the panels; coloring
matching the respective color bar. Refer to Fig 1a for a guide to anatomical lobule definitions. FN—fastigial nucleus, IN—interpositus nucleus, D—dentate

nucleus.

doi:10.1371/journal.pone.0134933.g007

actually are. Though specifying individual variability of subject-specific functional zones is
helpful for most clinical assessments and some experimental paradigms such as the present
one, viewing individual variability in a common space may also be of interest. Fig 8 shows the
T maps created from the same individual GLM from each subject run with (SUIT) normalized
and masked functional images overlaid on the SUIT atlas; which is shaded in gray scale by lob-
ule to assist with orientation (guide at bottom right of Fig 8a). Each subject is displayed in a dif-
ferent color and T-maps were thresholded as in earlier figures (AT through T = 8.5), based on
brightness (darker—brighter). In Fig 8a, crosshairs are located at the same ROIs, left paraver-
mis VI for the PA-related activity displayed in Fig 3 (Fig 8a left) and right hV for FT-related
activity displayed in Fig 4 (Fig 8a right). Select cross sections of Cb are shown in 8b and 8c to
display the variable location of activity between individuals within these lobules.

It is clear that there is a trend for PA-activity present in distinct bilateral clumps along hV1
(axial slice of Fig 8a, left, and the leftmost axial slices in Fig 8b) and in hVIIb, and vVI-VIIb
(including OMV—central sagittal slices in Fig 8b). FT-activity is generally confined to ipsilat-
eral (R) hV-VI and hVIII (coronal slices in Fig 8a, right, and Fig 8c). Despite the fact that these
activations normalize to the expected lobules, some subjects had additional activations in other
motor and/or eye-movement lobules (i.e. hIX and hX, contralateral #V-VI). In addition, some
activity was normalized outside of Cb, and inter-subject activations infrequently overlap within
a single lobule. The remarkable differences in individual functional organization remain in
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Fig 8. Inter-Subject Variability of Normalized Cb Activations. a) /eft—Normalized PA-activity, crosshairs at left paravermis VI; right—normalized FT-
activity, crosshairs at ipsilateral (right) V; data are from all subjects, each subject is color-coded. b) PA activity is localized to oculomotor vermis (Vic and VII),
bilateral hVI, and (right) hCrusl/Il for all subjects. ¢) FT-activity in ipsilateral hV/VI for all subjects and ventral activity only for SO1, S02 and S05. Activations
from both tasks are clustered within the expected lobules yet inter-subject activations rarely overlap. Activations are T-maps from SUIT normalized functional
images with Cb mask overlaid on SUIT template Cb [20]. Each subject is represented by a single color cluster-thresholded at p < .05 (AT).

doi:10.1371/journal.pone.0134933.g008
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both individual and common MNI space analyses. For example SO1 and S06 infrequently over-
lap with any other subject, while S03 and S05 show a lot of PA overlap and S02 and S03 show a
lot of FT overlap with each other in common space (Fig 8). Neither second level analysis from
the six individual AT-thresholded nor from un-thresholded maps yielded significant activa-
tions for either task, even at the uncorrected level, and are therefore not shown.

Discussion

High-Resolution Structural and Functional Images from Multiple
Systems in One Hour or Less

In this work we demonstrate the efficacy of combining high-density multi-element surface
coils, two-channel transmission, and three-dimensional sensitivity encoded (3D SENSE) acqui-
sitions to image subsystem-related activity in Cb in individual subjects. We were able to clearly
differentiate activity throughout the entire Cb cortex including D in the DCN in a single ses-
sion lasting less than one hour per subject. BOLD signal changes during motor activity resulted
in concentrated clusters of activation observed within the expected lobules for each task in
each subject: OMV and hCrusI/II for PA and ipsilateral h/IV-VI for FT. In addition to these
findings, neighboring activity in AVIIb/hVIII was consistently separable for the PA/FT tasks,
respectively. Furthermore, depression of D activity related to computations involving more
cognitive planning of eye movements (PA) was located caudal to that related to motor (FT)
activity (Fig 7) as seen previously in both monkey and human studies [6,64,65]. To date, there
have been no reports of such comprehensive high-resolution information obtainable in such a
short time. Taken together with the uniformity of tSNR, especially for ventral and lateral Cb,
these results represent positive improvements in Cb data acquisition.

Patients with Cb disorders often show abnormalities in eye movements and finger tapping
(and/or other motor dysfunctions) [16,24], behaviors that can be readily elucidated on a case-
by-case basis for clinical assessments using the above methods. This method eliminates the
need to average across multiple patients with the same or very similar atrophy in order to asso-
ciate functional impairments with specific regions and allows for pinpointing of structural and
functional abnormalities at the level of the folium. This is also beneficial for patient-specific
pre-surgical assessment of cerebellar infarcts related to vertebrobasilar stroke or arterial anasto-
moses [36,37], tumor resection [38], or for individual lesion-symptom mapping [39,40]. The
ability to obtain structural and functional images quickly at high spatial resolution, enabling
localization of activations specific to individual anatomy such as folia, is also critical when
investigating highly specific physiological mechanisms such as patches of task-related activity
and will prove helpful in further delineating the organizational separation of neural processes
in human Cb. Therefore, the advantages of this technique apply to both research and clinical
studies.

Task-Specific Signal Changes Cluster Differently among Subjects

The current results support the topographical differentiation of functional motor planning
within Cb; confirming patches of activations in subsystem-specific lobules involved in eye- and
finger-movements. We were able to observe clearly differentiated clusters of activity specific to
each motor subsystem in each subject: VI and hCrusII/AVIIb activations during PA are con-
sistently distinct from ipsilateral hV-VI and hVIII activations during FT (Figs 3, 4 and 6). Most
of the observed activations were confined to the gray matter of the folia and loci of peak activa-
tion were aligned along one or two folium; voxels surviving FDR correction are generally con-
fined to one row of grey matter, most easily seen as the brighter colors in the sagittal panels.
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This can be seen particularly clearly for all sagittal panels in Figs 2 and 4 (central panels),
where activity from each task is confined between the white matter spines radiating out from
deep Cb, and axial (rightmost) panels in Figs 3 and 4 where peak activity follows the curvature
of these spines.

While the clarity of task differentiation is consistent across subjects, the relative arrange-
ment of active zones are not identical. The images in Figs 2-7 demonstrate not only the gross
difference in anatomical arrangement of Cb from person to person, but also the difference in
the arrangement of these activations within that anatomy, and this inconsistency holds in nor-
malized space (Fig 8). With increased CNR, anatomical areas with individual differences in
functional processes can be elucidated and explored relative to a single subject [15,18]. For
example, it has been shown (also using surface coils) that individual finger representations
maintaining hand-based topography can be separated in Cb hV and hVIII, and differ between
individuals [18]. It is likely that detecting these individualized patches is commonly hindered
due to analyses that average brain activity over a group of subjects who’s activation patches do
not overlap, or where inhomogeneity of the B1 field or reduced variation of the received signals
provides insufficient CNR. When evaluating function pre-surgery one should aim to avoid
both false-negatives and false-positives; and as seen when comparing the surface to the head
coils (with individual ATs) major loci are present with both coils and active loci are more suc-
cinct with the surface coils. The larger between-subject variation in the AT-corrected values, as
compared to the relatively stagnant SPMT-corrected values, (compare color bars, and see S1
Table) is another obvious precaution that should be further addressed in analyses of functional
signals at the individual level for accurate localization of function. Much of the data presented
here would not be visible with a standard voxel-wise FDR correction (i.e. SPMT) that does not
take into account between-subject variations in the noise signal. Although many of the signal
improvements seen here can be attributed to the high density of the coils themselves, perhaps
some of the benefits arise from the additional fact that all 32 elements (as well as Cb) can be
placed further within the volume transmit coil.

Implications of Inter-Subject Variability on Group Analyses

The decreased acquisition time of the current experiment allowed us to show that a topograph-
ical differentiation of eyes and hands (two separate systems) is also possible within #VI and
hVIIb/VIII, similar to separation of hand and foot movement seen by [4]; though the results
here are less diffuse and were acquired much more quickly. However, Fig 8 shows that there is
very little between-subject overlap of peak activations from the same task in normalized space
(i.e. lobule VI in Fig 8a and 8b), and as can be expected the individual variations in the location
of these small active zones lead to a loss of power at the group level resulting in no remaining
active clusters when regressing the normalized and thresholded T-maps. Not to mention that
the folium-specificity of the activations, as well as differentiating Cb activity from visual cortex
activity is compromised or nullified in normalized space. In addition, if the normalized activa-
tions from both tasks were overlaid together for all subjects, the task-specific differentiations
which are plainly visible within-subjects would become too jumbled to be interpreted as sepa-
rable between-subjects.

It is possible that inter-subject differences in Cb physiology and/or arrangement of func-
tional patches underlie the lack of overlap in normalized space; or this could be a result of the
normalization method. Current normalization schemes [66,67] that fit brains into common
space are standard procedure for functional image analyses at lower field strength and lower
resolution. These are neither able to capture nor match high-resolution anatomical detail of
individual subject data (see the folium-specific activations in Figs 2-7). Hence, to obtain
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meaningful functional overlap between subjects in common anatomical space and thus more
power at group level analyses, smoothing of images on a scale larger than individual Cb folia is
required, obscuring or even nullifying the variation in individual structural or anatomical
architecture found at a higher resolution, and possibly artificially shifting the strength or loca-
tion of task-related functional activations [68]. Group or cohort studies can maintain high-res-
olution by measuring signal changes within individualized functional-ROIs (task-related ROIs)
and running statistics on extracted values in place of current techniques of normalizing images
to a common space for voxel- or coordinate-based second level analyses. As investigations at
higher-field strengths proliferate, new methods are being developed such as cross-normaliza-
tion with 3T and 7T images [69] and subject-specific normalization utilizing high-resolution
EPI images [35], both of which can allow for closer investigation of activations in Cb cortex by
inflating and flattening the surface.

PA Activity in Crusl/Il: (Visual) Attention, or Cognition?

The clustered PA-related activations are located in five bilateral patches along lobule VI (LA, L
paravermis, vermis, R paravermis, R%) and are arguably most significant outside of OMV;; visi-
ble in the axial slices of Fig 3, most clearly for PO1. Previous studies targeting visual perception
and Cb have shown similar bilateral clustering throughout 4 VI in response to attending a mov-
ing grating [32], in medial Cb VI (vermis and paravermis) and hCrusl in response to saccadic
errors [60], in bilateral #V-VI, OMYV, and throughout CrusI/II in response to attended flashed
visual stimuli [59], and in CrusI/II for complex motor tasks [65]. Both PA and FT used the
same visual stimuli with moving dots cuing the motor activity, yet subsystem-specific activity
was consistently separable throughout Cb as either eye- or finger-movement related, suggesting
that observed patches of activity are related to motor planning and output rather than visual
perception or attention alone since subjects were also attending these stimuli during the FT
task. However, the location of these dots was only relevant during the PA task. It is therefore
possible that the observed PA-related clusters, acting alone or in concert with CrusI/IL, repre-
sent either possible task-relevant attention, target locations (and the return saccade, back to fix-
ation) or target awareness, or a mapping of visual space in order to monitor and/or update
performance on a visual task. Although the presence of vector mapping of saccades within Cb
is currently unknown, spatial saccade maps are known to exist in superior colliculus and fron-
tal eye fields [70,71].

The involvement of Cb in cognitive brain processes is a recently up-and-coming topic in
cerebellar research [10,72,73]. The evolutionary increase in the size of Crusl and CruslI in
humans and higher primates, as well as the anatomical and functional connections linking
these lobules with the prefrontal cortex [72-76] has supported the idea that these areas also
play some role in non-motor-related cognition and/or executive function. There has been
much difficulty coming to agreement on which lobules of Cb are involved in which aspects of
cognitive processing, possibly due to the observed individual variation in the arrangement of
functional patches within a defined lobule (Figs 5 and 8) and/or the difficulty in differentiating
attention from cognition in various experimental tasks. Topographical eye representations
classically lie along lobule VI [5,9,10] and despite the presence of salient visual inputs there is
no Crusl or CruslI activity during FT. With regard to the lucidity of these less classically
defined cognitive signals, individual PA-related activations in Crusl and II were consistently
comparable in strength to, if not stronger than, the FT-related activations in lobules V-VI. The
lateral activity seen here could also be attributed to a cognitive component of executing an
anti-saccade and/or suppression of a reflexive pro-saccade. Though the design of the PA task
did not enable separation of signals related to pro-saccades (non-cognitive, reflexive eye
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movements) from those related to anti-saccades (more cognitive volitional eye movements),
ventral activations (VIIIb) have previously been linked to anti-saccades in a group study [77].
However, neither these nor attentional mechanisms can be mutually excluded from those
required to solve cognitive problems.

Speculation on Mechanisms of Individual Variability of Functional
Patches and Interpretation of BOLD Activations

Despite the fact that both tasks in the current experiment were performed in a blocked manner,
it is surprising that T values for FT were often less than T values for PA, most notably in ventral
Cb, since finger and hand movements are classically used more frequently to activate ipsilateral
Cb ([18,46,48,49]—though acquisition times were at least three times longer in those experi-
ments). The instructions for the FT task were simply “tap your thumb up and down two times
per second”. This resulted in some subjects tapping on the bore of the scanner or on their own
hand, adding somatosensory stimulation of the thumb (and hand) to the digit motion, while
others only moved their thumb (motor-related activity, with no somatosensory input). These
differing somatosensory inputs can directly relate to sensory-driven mossy fiber activity
restricted by functional patches of PC activity, and can result in individual variability of the
strength and spread of FT-related activity.

Task-related functional patches of activity are only inferentially relatable to cellular signal-
ing due to the slow temporal resolution of our fMRI sequence and the limited number of stud-
ies investigating the behavior of Cb neurovasculature in response to cellular activity [78,79]. It
could be argued that the arrangement of clustered folial activity observed here resembles previ-
ously observed neurophysiological recordings showing microbands, beams, colonies, or
patches [80-83]. These types of zones have been related to subsystem-specific co-activation of
localized clusters of PCs which topographically project to DCN and on to prefrontal and motor
areas of the cerebrum (see [84] for review) and the activation of PCs can inhibit blood flow to
and activation of neighboring PCs [85]. Taking into account existing literature, we may assume
that the pre-defined clusters of neurons are indeed involved in topographic motor planning
and that these clusters may effectively re-direct blood flow to patches of task-related activity,
revealing the observed patches of BOLD signal change.

As previously mentioned, direct neuronal connections project activity from the PC layer in
Cb cortex to the DCN, maintaining topographic functional organization [6,84], which output
from Cb to the thalamus and other brain areas [64,86]. BOLD signal changes in D (Fig 7) were
consistent with the present understanding [65] that motor connections are located more ros-
trally, where we see the most significant FT-related decrease in BOLD, while more complex
and cognitive connections are located more caudally, where we observe a PA-related decrease.
Activity from finger tapping in D was not as strong as that from eye movements; if the strength
of cortical activity correlates to the strength of nuclear activity it is not surprising that the antic-
orrelation of FT activity was not as strong as PA anticorrelations in D (Fig 7, FT, purple circle),
as this was the case for task-related cortical activity of this subject. The dorsal anticorrelation at
-60 may reflect cortical activations related to hand position during FT, as the interposed
nucleus is dorsal to the dentate and responds to proprioceptive limb positions; however, the
dorsal deactivation occurs contralateral to the cortical activation. No changes in activity were
observed in the fastigial nucleus during PA, which is known to be involved in eye movements.
Though D is the largest and most thoroughly studied nucleus, no activations here survived
cluster thresholding and we suggest that even higher resolution imaging may be able to clarify
the separation of activations in DCN. The discrepancies in observed versus expected changes
in signals from the DCN reflect the difficulty of inferring neuronal processes from functional
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data obtained by measuring the indirect consequence of changes in blood flow resulting from
activity of many different types of Cb neurons [78,87]. It has recently been suggested that there
is a skewed distribution of synaptic signaling weights, where only a subset of neurons within a
functional network may drive the network independent of, for instance, the firing rate of most
other neurons in the network [87]. These findings further complicate the interpretation of how
neuronal signaling might be affecting blood flow.

Conclusions

Pairing 32 channels of surface coils with excitation pulses steered with dual amplifiers facili-
tated imaging of the entire Cb, including the DCN (>5cm into the skull), despite the fact that
these high-density multi-element coils only cover a part of the head. Since signal CNR was suf-
ficient to consistently differentiate eye-related from hand-related motor activity and to confirm
suspected cognition-related activity (particularly in lateral Cb) in each subject scanned, we can
conclude that these coils are beneficial for fast imaging of Cb. Furthermore, the use of localized
shimming and 3D-EPI acquisitions successfully avoided image distortion, artifacts, and signal
losses commonly observed around Cb at high field strength and the entire scanning session
lasted less than one hour.

Combining this acquisition scheme with newer analysis methodologies can allow for a
larger number of investigations within one individual in a single scan session while freeing up
space within the transmit coil. Future studies targeting event-related perception and learning
paradigms can utilize these methods, specifically in human and non-human primate Cb, to fur-
ther elucidate the neurovascular interplay of superficial and deep Cb and the dynamics and
organization of zones or patches in humans to close the gap of inference with regard to the
affects of neuronal processes on BOLD signal changes.

Supporting Information

S1 Fig. Methods: Coil Comparison Signal quality of the surface coils has been previously
defined for visual cortex [21] but not for Cb, therefore one subject completed the PA-task
twice, and images were acquired once with two of their coils and again with a standard full-
head 32-channel coil (Nova, USA). Scan parameters and image analyses were identical to the
methods in the main text. Figure: Coil Comparison—PA Functional Activations. Bottom:
OMV (vVIc and vVII, crosshairs), Top: hV1, and CruslI (circled in white on coronal panels
from both ROIs on the head coil image) are activated during the PA task—activation are
shown in red-to-yellow, Left: Activations observed using a 32-channel full head coil (Nova Sci-
entific, USA) Right: Activations observed using two 16-channel surface coils with the same sub-
ject. CruslI activations are also observed with the head coils (See Fig 5 and S3 Fig for CrusII
activation with surface coils), and all activations are more succinct with the surface coils. Slice
locations (in non-normalized MNI space) are displayed at the top of each panel and T-values
at the crosshairs are displayed at the bottom of the axial (bottom left) panels. Refer to Fig 1a for
a guide to anatomical lobule definitions.

(TTF)

S2 Fig. Importance of Correct Coil Placement. Example images from one subject where coils
were placed dorsal to Cb. Although most activation is limited to dorsal Cb, some activity in
ventral Cb is still observable. Images can be compared to activations from the other six subjects
with correct coil placement. Slice locations (in non-normalized MNI space) are displayed at
the top of each panel and T-values at the crosshairs are displayed at the bottom of the axial
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(bottom left) panels. Refer to Fig 1a for a guide to anatomical lobule definitions.
(TIF)

S3 Fig. Signal Strength and Activation Loci. T maps (Funct) and tSNR from a single PA run
are overlaid on the T1w structural scan from one subject and aligned with the T2*w (T2*)
structural images for six Cb ROIs (L and R paravermis VI, OMV, L paravermis VIIb, and R
hVIIb and R hCrusll), indicated by crosshairs. It is clear that significant changes in BOLD sig-
nal are not restricted to areas with higher tSNR (yellow-white regions of tSNR images) nor do
they occur spuriously around Cb vasculature (dark dots in the T2*w images). Slice locations
(in non-normalized MNI space) are displayed at the top of each Funct panel and coordinates
are the same for all three images. T-values and tSNR strength at the crosshairs are displayed at
the bottom of the axial (rightmost) panels. Refer to Fig 1a for a guide to anatomical lobule defi-
nitions.

(TIF)

S1 Table. Adaptive Cluster-Based (AT) versus SPM Voxel-Based (SPMT) FDR-Corrected
Thresholds. NM—Normalised and Smoothed. *Thumb was tapped during the ENTIRE ses-
sion (no rest period), so FT was not compared between head and surface coils.

(PDF)
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