
Longitudinal epigenetic variation of DNA methyltransferase 
genes associated with vulnerability to post-traumatic stress 
disorder (PTSD)

Levent Sipahi, BA1, Derek E. Wildman, PhD1,2, Allison E. Aiello, PhD3, Karestan C. Koenen, 
PhD4, Sandro Galea, MD, DrPH4, Asad Abbas, MBBS1, and Monica Uddin, PhD1,5

1Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 
Detroit, MI

2Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, 
MI

3Department of Epidemiology, University of North Carolina Gillings School of Global Public 
Health, Chapel Hill, NC

4Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, 
NY

5Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of 
Medicine, Detroit, MI

Abstract

BACKGROUND—Epigenetic differences exist between trauma-exposed individuals with and 

without posttraumatic stress disorder (PTSD). It is unclear whether these epigenetic differences 

preexist, or arise following, trauma and PTSD onset.

METHODS—In pre- and post-trauma samples from a subset of Detroit Neighborhood Health 

Study participants, DNA methylation (DNAm) was measured at DNMT1, DNMT3A, DNMT3B, 

and DNMT3L. Pre-trauma DNAm differences and changes in DNAm from pre- to post-trauma 

were assessed between and within PTSD cases (n=30) and age-, gender-, and trauma exposure-

matched controls (n=30). Pre-trauma DNAm was tested for association with post-trauma symptom 

severity (PTSS) change. Potential functional consequences of DNAm differences were explored 

via bioinformatic search for putative transcription factor binding sites (TFBS).

RESULTS—DNMT1 DNAm increased following trauma in PTSD cases (p=0.001), but not 

controls (p=0.067). DNMT3A and DNMT3B DNAm increased following trauma in both cases 

(DNMT3A: p=0.009; DNMT3B: p<0.001) and controls (DNMT3A: p=0.002; DNMT3B: 
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p<0.001). In cases only, pre-trauma DNAm was lower at a DNMT3B CpG site that overlaps with a 

TFBS involved in epigenetic regulation (p=0.001); lower pre-trauma DNMT3B DNAm at this site 

was predictive of worsening of PTSS post-trauma (p=0.034). Some effects were attenuated 

following correction for multiple hypothesis testing.

CONCLUSIONS—DNAm among trauma-exposed individuals shows both longitudinal changes 

and preexisting epigenetic states that differentiate individuals who are resilient vs. susceptible to 

PTSD. These distinctive DNAm differences within DNMT loci may contribute to genome-wide 

epigenetic profiles of PTSD.
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Introduction

PTSD is a prevalent and debilitating mental health disorder that may arise following 

exposure to a potentially traumatic event (Association, 2013). While the lifetime prevalence 

of traumatic exposure is 50–90%(Kessler et al., 1995), PTSD in the general U.S. population 

is estimated to be only 6.8%(Kessler and Wang, 2008). Although the majority of persons 

exposed to trauma display resiliency (Kessler et al., 1995; Breslau et al., 1998; Acierno et 

al., 2007; Kessler and Wang, 2008), the molecular underpinnings of risk remain poorly 

characterized. The identification of risk markers, and particularly biomarkers, that 

distinguish between persons at high and low risk of developing PTSD following trauma 

exposure has been identified as a priority research goal by the Institute of Medicine 

(Medicine, 2012), Department of Defense(Congressionally Directed Medical Research 

Programs, 2011), and the National Institute of Mental Health (NIMH, 2008). Ideally, the 

ability to identify persons at high risk of developing PTSD would enable providers to target 

evidence-based interventions to high-risk groups(Andrews and Neises, 2012). The 

identification of robust predictive biomarkers may also improve our understanding of the 

pathophysiology of PTSD and lead to more effective pharmacological interventions.

Although much work has been done to identify social and environmental factors that 

contribute to PTSD risk [e.g. (Kulka et al., 1990; Breslau et al., 1991; Brewin et al., 2000; 

Koenen et al., 2003; Breslau et al., 2004; DiGrande et al., 2008; Galea et al., 2008; Kun et 

al., 2009)], the biological undergirding of differential PTSD risk and resiliency remains to 

be more fully elucidated. Twin studies have demonstrated heritability and genetic 

contribution to PTSD risk(True et al., 1993; Koenen et al., 2002; Stein et al., 2002) and 

targeted gene and GWAS approaches have identified both genetic risk loci(Lu et al., 2008; 

Ressler et al., 2011; Chang et al., 2012; Logue et al., 2013) and important gene-by-

environment interactions (Binder et al., 2008; Xie et al., 2010; Uddin et al., 2013) that 

contribute to risk for the disorder; nevertheless, a substantial proportion of biologically 

mediated variance in PTSD risk has yet to be explained.

Epigenetic variability is considered a plausible and increasingly empirically supported 

contributor to the etiology of phenotypes with marked genetic and environmental 
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influences(Meaney, 2010), including certain psychopathologies(Toyokawa et al., 2012). 

Indeed, recent advances have revealed that PTSD risk and resiliency is associated with 

differential epigenetic variation(El-Sayed et al., 2012). Epigenetic mechanisms – including 

histone modifications, non-protein coding RNAs, and, most notably, DNA methylation 

(DNAm) – affect gene expression and cellular phenotype without altering the underlying 

DNA sequence(Feinberg, 2008; Meaney, 2010). DNAm is stably heritable across mitotic 

replications, but is modifiable throughout the life course in response to lived experiences 

and environmental exposures(Bird, 2002). In primordial mammalian germ cells, global 

DNAm is removed (with the exception of imprinted loci)(Reik et al., 2001), with new 

patterns established by de novo methyltransferases DNMT3A, DNMT3B, and DNMT3L 

following fertilization(Bourc’his et al., 2001; Bourc’his and Bestor, 2004; Kaneda et al., 

2004; Kato et al., 2007; Ooi et al., 2007). These reprogrammed DNAm patterns are largely 

maintained throughout mitotic DNA replication by the action of the maintenance 

methyltransferase, DNMT1(Li et al., 1992; Seisenberger et al., 2013).

Although influenced by other variables, global DNAm patterns are largely established and 

maintained by the activity of the DNA methyltransferases, DNMT1, DNMT3A, DNMT3B, 

and DNMT3L(Feng and Fan, 2009). Gene expression evidence suggests that these DNMTs 

may be active throughout the life course(Robertson et al., 1999; Feng et al., 2005; Siegmund 

et al., 2007), including in brain tissue(Goto et al., 1994; Veldic et al., 2004; Feng et al., 

2005) and in association with mental disorders(Veldic et al., 2004; Veldic et al., 2005). In 

addition, protein-level expression of DNMT1(Inano et al., 2000; Veldic et al., 2005) and 

DNMT3A(Feng et al., 2005) has been demonstrated in the mouse and human brain. With 

respect to PTSD, recent work confirms that DNMT activity plays a role in mediating risk for 

PTSD-related phenotypes, including fear conditioning and memory consolidation (Miller 

and Sweatt, 2007; Feng et al., 2010). Together, these findings suggest that DNAm and DNA 

methyltransferases represent promising targets for the identification of epigenetic 

underpinnings of differential PTSD risk and resiliency.

Studies of epigenetic variation have provided important insights into PTSD risk, but have 

been largely limited by cross-sectional analyses of post-trauma samples. Most notably, 

epidemiological cohorts from Detroit(Uddin et al., 2010) and Atlanta(Smith et al., 2011) 

have been the basis of research that has demonstrated cross-sectional differential DNAm 

that distinguishes between trauma-exposed individuals with vs. without PTSD. DNMT3B 

and DNMT3L were among the differentially methylated loci identified in the Detroit 

study(Uddin et al., 2010). More recently, longitudinal DNAm data among PTSD cases and 

controls have been reported, including studies using samples from a cohort of U.S. military 

personnel deployed to Iraq and Afghanistan(Rusiecki et al., 2012; Rusiecki et al., 2013). To 

further elucidate whether differential DNAm between trauma exposed controls and PTSD 

cases represent pre-existing susceptibility/resiliency factors or downstream biomarkers of 

PTSD, additional longitudinal analyses are required. Finally, while the identification of 

epigenetic variation associated with mental health outcomes is important, work must begin 

to test the putative functionality of mental health-associated differential DNAm. For 

example, the identification of transcription factor binding sites (TFBS) that overlap with 
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differentially methylated CpG sites and to which transcription factor binding may be 

disrupted offer one possibility of supporting DNAm functionality(Weaver et al., 2004).

Here, we analyze DNAm from individuals pre- and post-trauma to identify differences that 

characterize individuals who are susceptible vs. resilient to PTSD following trauma. To 

assess potential functional consequences of examined DNAm differences, we then perform a 

bioinformatic search for the presence of putative transcription factor binding sites(Weaver et 

al., 2004). Results from this work suggest that PTSD-relevant DNAm differences in DNMT 

loci may exist both prior to and following trauma, with implications for future targeted 

interventions.

Methods and Materials

Subjects

Samples are from a subset of participants from the Detroit Neighborhood Health Study 

(DNHS), a longitudinal, community-representative cohort of adult residents in Detroit, MI. 

The current study draws on peripheral blood samples and survey data obtained at two time 

points were from 60 DNHS participants. Forty-six were female and fourteen male; forty-six 

were African-American and 12 were Caucasian, and 2 were Hispanic. The average age was 

55.1 years. PTSD diagnosis was assessed via structured interview administered via 

telephone(Breslau et al., 1998). PTSD symptoms were assessed in reference to both the 

traumatic event the participant regarded as their worst and one randomly selected traumatic 

event from the remaining traumas the participant experienced. Lifetime PTSD cases met all 

six DSM-IV criteria in reference to either the worst or random traumatic event. The 

diagnostic interview showed good validity against the Clinician Administered PTSD Scale 

(Blake et al., 1995) as described elsewhere(Uddin et al., 2010). The Institutional Review 

Board of the University of Michigan reviewed and approved the study protocol. Incident 

cases (n=30) of PTSD were identified in either waves 2, 3, or 4 of DNHS data collection 

among individuals for whom blood samples were available at both the wave of first PTSD 

diagnosis and the immediately previous, pre-incident trauma wave. Non-PTSD controls 

(n=30) were matched to cases on the basis of age, sex, and number of traumatic event types. 

DNA samples were isolated from both pre- and post-trauma time points for both cases and 

controls. The time between pre- and post-trauma time points was approximately 1 year. 

Cases and controls had no history of PTSD prior to the post-trauma wave.

Methylation quantification by targeted bisulfite pyrosequencing

DNA Isolation—DNA was isolated from whole blood acquired via venipuncture when 

available from DNHS participants selected for inclusion in this study. Blood spots were used 

as an alternate source of whole blood-derived DNA when venipuncture samples were 

unavailable. The exact tissue type was shared between matched case-control pairs in all 

instances. Venipuncture- and bloodspot-derived whole blood represent the same tissue and 

therefore should not differ with respect to DNAm, as confirmed by numerous studies to date 

(Wong et al., 2008; Aberg et al., 2013; Hollegaard et al., 2013).
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Whole blood: DNA was isolated from whole blood using the QIAamp DNA Blood Mini 

Kit (Qiagen, Valencia, CA) and the QuickGene DNA Whole blood Kit S (Lifesciences, 

FujiFilm, Tokyo, Japan) using manufacturers’ recommended protocols.

Blood spots: DNA was isolated using the QIAamp DNA Micro Kit (Qiagen) using the 

manufacturer’s recommended protocol. For each sample, one 6mm punch was taken from 

dried blood spots using a disposable, sterile biopsy punch (Miltex, York, PA) within a sterile 

field and placed immediately into a sterile 1.7ml microcentrifuge tube. New gloves, biopsy 

punches, and sterile fields were utilized for each sample. Negative controls in the form of 

blank extractions were included with all DNA isolations.

Bisulfite conversion—For each sample, ~750ng of DNA was bisulfite converted using 

the EpiTect Bisulfite Kit (Qiagen) using the manufacturer’s recommended protocol. 

Negative controls in the form of bisulfite conversion of water were included with each 

bisulfite conversion.

Pyrosequencing—Assays to assess the methylation levels of CpG sites found in the 

DNMT1, DNMT3A, and DNMT3L and DNMT3B (see below for assay-specific details) were 

custom designed using the Pyromark Q24 Assay Design Software 2.0 (Qiagen). Targeted 

CpG sites were selected based on prior evidence(Uddin et al., 2010) of involvement in 

epigenetic regulation of PTSD risk (DNMT3B, DNMT3L) and to investigate whether 

longitudinal, PTSD-associated DNAm differences exist across DNA methyltransferase 

genes more broadly (DNMT1, DNMT3A, DNMT3B, and DNMT3L). Because the DNMT3B 

target CpG is located in a CpG island, our designed assay captures DNAm at 12 CpG sites 

in an approximately 70 base pair region of exon 1 (see DNMT3B assay section below for 

details). Single CpG sites were assessed at DNMT1, DNMT3A, and DNMT3L loci (see 

individual assay section below for details); these CpG sites did not fall into CpG islands. 

DNMT1, DNMT3A, and DNMT3L CpG sites and 2 DNMT3B CpG sites assessed are also 

found on the HM27 and HM450K methylation bead chips from Illumina (see below for 

actual HG19 nucleotide location). The capacity for each assay to capture DNAm levels 

ranging from 0–100% was validated using commercially available demethylated and highly 

methylated DNA at dilutions of 1:0 (unmethylated), 3:1, 1:1, 1:3, and 0:1 (highly 

methylated). PCR amplification of target sequences was performed on 20ng of bisulfite-

converted DNA samples using the PyroMark PCR kit (Qiagen). Bisulfite-converted, PCR-

amplified DNA was pyrosequenced on the Pyromark Q24 Pyrosequencer (Qiagen) using the 

manufacturer’s recommended protocol and default settings. All methylation analyses were 

conducted in triplicate with appropriate negative controls included at each of the following 

steps: DNA isolation, bisulfite conversion, PCR amplification, and pyrosequencing reaction.

Details of each custom assay are listed below.

DNMT1: PCR forward primer: TTTTTTTAGGTGTGATGGGGATAAAG

PCR reverse primer (biotinylated): CAAAAACTCTCACAAACCCTTAAA

PCR program (50 cycles):
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Initial 15 minutes at 95°C

Denaturation 30 seconds at 94°C

Annealing 30 seconds at 58°C

Extension 30 seconds at 72°C

Final 10 minutes at 72°C

Hold 4°C

Sequencing primer: GTGATGGGGATAAAGT

Target sequence: AGCGAGAAGCCCCCAAGGGTTTGTGAGA (CpG target in bold; 

hg19: chr19:10,305,909–10,305,936)

DNMT3A: PCR forward primer: GGTGGGAGGTTGAATGAAATGA

PCR reverse primer (biotinylated): AATACCCAACCCCAAATCCTAC

PCR program (50 cycles):

Initial 15 minutes at 95°C

Denaturation 30 seconds at 94°C

Annealing 30 seconds at 58°C

Extension 30 seconds at 72°C

Final 10 minutes at 72°C

Hold 4°C

Sequencing primer: AGTTGGAAGATTTTGTG

Target sequence:

TGTGCCTACACACCGCCCTCACCCCTTCACYGTGGGGGCTGTTCTCCTTCCCCAT

GGAGYGCTCAGGGCTCTAGGTTCCTGACTTGGGGCACCTCTGTCTAATTCCACC

AGCACAGCCACTCACTATGTGCTCATCTCACTCCTCCAGCAGCYGCTGTAGGAC

TTG GGGCTGGGCACC (CpG target in bold; hg19: chr2:25,565,782–25,565,959)

DNMT3B: PCR forward primer: GGGGTTAAGTGGTTTAAGTAAAT

PCR reverse primer (biotinylated): CCTCCAAAAATCCCTAAAAAAAATCTCTCC

PCR program (45 cycles):

Initial 15 minutes at 95°C

Denaturation 30 seconds at 94°C

Annealing 30 seconds at 52°C

Extension 30 seconds at 72°C

Final 10 minutes at 72°C

Hold 4°C

Sequencing primer: GTTAAGTGGTTTAAGTAAATTTAG

Target sequence:
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CTCGGCGATCGGCGCCGGAGATTCGCGAGCCCAGCGCCCTGCACGGCCGCCA

GCCGGCCTCCCGCCAGCCAGCCCCGACCCGCGGCTCCGCCGCCCAGCCGCGCCC

CAGCCAGCCCTGCGGCAGGTGAGCGCCCCGGGGCCC (CpG targets in bold; hg19: 

chr20:31,350,382–31,350,523)

DNMT3L: PCR forward primer: AGTTTTTTTTATTGGGGTAGTTAGG

PCR reverse primer (biotinylated): CTTAAAACCAAAAAACCACATTTTATTCA

PCR program (45 cycles):

Initial 15 minutes at 95°C

Denaturation 30 seconds at 94°C

Annealing 30 seconds at 50°C

Extension 30 seconds at 72°C

Final 10 minutes at 72°C

Hold 4°C

Sequencing primer: GATTTAGGGATAGAGAGGG

Target sequence: GCGGTAGGGAGTGGGAAATCTGAATAA (CpG target in bold; 

hg19: chr21:45,683,527–45,683,553)

To demonstrate the ability of our assays to resolve DNAm differences as small as reported, 

we computed intraclass correlation coefficients (ICC) between triplicate replicates for each 

assay. Average within-sample coefficient of variation was computed using a two-way mixed 

model, using an absolute agreement definition (Shrout and Fleiss, 1979), as implemented in 

SPSS. ICCs for the 15 total CpG sites assayed ranged from 0.703 to 0.937, with a mean ICC 

of 0.855 (standard deviation: 0.066). This strongly supports the conclusion that these assays 

are capable of consistently resolving small DNAm differences.

Transcription factor binding site prediction

Putative TFBS were identified that overlap target CpG sites using the 

MatInspector(Cartharius et al., 2005) tool from Genomatix, with default parameters. Input 

sequence included 200bp up and downstream of the CpG site. Only putative TFBS that 

directly overlapped CpG sites of interest were retained.

Statistical analyses

Statistical testing was performed using IBM SPSS Statistics for Windows, Version 21.0 

(IBM Corp., Armonk, NY). DNAm at DNMT3B CpG sites was treated on a regional and an 

individual CpG site basis, similar to previous work (Rusiecki et al., 2013). Regional values 

were calculated as the mean of 12 CpG sites. Paired-sample t-tests were used to test for 

differences in pre-trauma DNAm between cases and controls and to test for differences 

between pre- and post-trauma time points within cases and controls. Linear regression was 

used to test whether pre-trauma DNAm levels are predictive of post-trauma symptom 

severity (PTSS) changes. PTSS change was calculated as the difference between post-

trauma PTSS and pre-trauma PTSS. Analyses included severity scores of individual 
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symptom criteria (hyperarousal, avoidance, or intrusion symptoms) as well as a total 

severity score that is inclusive of each symptom subdomain. Regression models were 

adjusted for age, gender, and pre-trauma symptom severity. The contribution of pre-trauma 

DNAm to post-trauma PTSS change was tested via the change in R square values comparing 

full to reduced models. We present primary results uncorrected for multiple testing as is 

consistent with the current state of the science of DNAm variation in association with 

psychiatric endpoints(Perroud et al., 2011; Unternaehrer et al., 2012; Perroud et al., 2013; 

Rusiecki et al., 2013). In addition, to assess the extent to which our results may be 

attenuated by multiple hypothesis testing correction, we calculated stringent Bonferroni-

corrected significance values(Dunn, 1961) as well as false discovery rate (FDR) Q 

values(Benjamini, 1995). FDR has recently been utilized to correct multiple hypothesis 

testing in studies utilizing DNAm data, with user-defined Q-values ranging from 0.05 to 

0.2(Provencal et al., 2013; Zhao et al., 2013).

Results

PTSD cases and controls do not differ in age, gender, ethnicity, or pre-trauma symptom 

severity, including individual symptoms of intrusion, avoidance, and hyperarousal (Table 1).

Pre-trauma DNAm variation is associated with PTSD

PTSD-associated DNAm variation may both pre-exist trauma and be associated with post-

trauma PTSD outcome. To test for pre-existing protective/risk factors, pre-trauma DNAm at 

DNMT1, DNMT3A, DNMT3B, and DNMT3L loci was compared between trauma exposed 

individuals with vs. without PTSD. Pre-trauma DNAm was higher in cases compared with 

controls at a single DNMT3B CpG site (CpG 9) (Figure 1; t=2.250, 29 df, p=0.032); no 

difference in pre-trauma DNMT3B regional DNAm mean was observed (t=1.538, 29 df, 

p=0.135). We observed no pre-trauma differences between cases and controls at DNMT1 

(t=0.582, 29 df, p=0.565), DNMT3A (t=0.579, 29 df, p=0.567), and DNMT3L (t=1.386, 

29df, p=0.176) loci.

Pre-trauma DNAm variation predicts post-trauma changes in trauma symptom severity

To explore whether this PTSD-associated pre-trauma DNAm is predictive of trauma 

response, we performed linear regression analyses with pre-trauma DNAm of DNMT3B at 

CpG 9 and PTSS change as predictor and outcome variables, respectively. Controlling for 

age, gender, and pre-trauma symptom severity, pre-trauma DNAm of CpG 9 (Figure 2; 

unstandardized B=−2.318, SE=1.25 p=0.034) predicted post-trauma symptom severity 

change. In this model, only pre-trauma symptom severity and pre- trauma DNAm were 

significant predictor variables. DNMT3B CpG 9 DNAm explained approximately 6.8% of 

the variance in PTS severity change, as revealed by a comparison of the full and reduced 

models. The full model that included DNMT3B CpG 9 DNAm, age, gender, and pre-trauma 

symptom severity explained approximately 24% of the variance in post-trauma PTSS 

change (Adjusted R Square=0.242, p=0.005).

Because the relationship between pre-trauma DNAm and post-trauma changes in PTS 

symptom severity may be driven by distinct symptom subdomains (hyperarousal, avoidance, 
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and intrusion), we regressed separately each subdomain symptom severity change onto pre-

trauma DNAm, controlling for age, gender, and pre-trauma symptom severity of the relevant 

subdomain. Pre-trauma DNAm of DNMT3B CpG 9 (hyperarousal: p=0.249; avoidance: 

p=0.137; intrusion: p=0.071) did not predict change in subdomain symptom severity.

Trauma induces PTSD-associated DNAm modifications

DNAm differences may arise following trauma and be associated with PTSD development. 

To test this, we compared pre-trauma DNAm with post-trauma DNAm within PTSD cases 

and within trauma-exposed, healthy controls. Both PTSD-associated and PTSD-independent 

changes in DNAm following trauma were observed at DNMT loci (Figure 3). DNMT1 

DNAm increased (Figure 3A; t=3.887, 29 df, p=0.001) following trauma in the PTSD group, 

but not the control group (t=1.903, 29 df, p=0.067). At DNMT3A (Figure 3B) and DNMT3B 

(Figure 3C) loci, DNAm increased following trauma in both PTSD case (DNMT3A: t=2.806, 

29 df, p=0.009; DNMT3B: t=4.286, 29 df, p<0.001) and control (DNMT3A: t=3.421, 29 df, 

p=0.002; DNMT3B: t=3.938, 29 df, p<0.001) groups. No change was observed in DNMT3L 

(Figure 3D) DNAm in either cases (t=1.551, 29 df, p=0.132) or controls (t=1.146, 29 df, 

p=0.261). Table 3 presents a summary including uncorrected p values, Bonferroni-corrected 

p values, and FDR values, as well as accompanying effect sizes, of our results described 

above.

Transcription factor binding site prediction

DNAm is associated with gene expression. One mechanism by which increased DNAm can 

lead to decreased gene expression is by affecting the binding of trans-activating factors to 

cis-regulatory elements. To contextualize our DNAm findings, we used bioinformatic 

methods to identify putative TFBS that overlap CpG sites showing PTSD-associated DNAm 

differences. In total, we identified 24 putative TFBS, including 2, 3, 14, and 5 that overlap 

DNMT1, DNMT3A, DNMT3B, and DNMT3L CpG target sites, respectively (Table 2). 

Notable among these 24 TFBS are those that overlap with CpG sites at which we identified 

PTSD-associated differential methylation (2 overlap the DNMT1 CpG; 3 overlap DNMT3B 

CpG 9). Binding sites for heat shock factor 1 and E2F-4/DP-2 heterodimeric complex were 

identified to overlap with the DNMT1 CpG site at which an increase in DNAm was observed 

in PTSD cases, but not controls. Overlapping with DNMT3B CpG site 9, at which increased 

pre-trauma DNAm was associated with PTSD development and predictive of worsening of 

PTSS, we identified binding sites for Human motif ten element, ZF5 POZ domain zinc 

finger, and the insulator protein CTCF.

Discussion

Our data represent preliminary findings suggesting that pre-trauma DNAm states and post-

trauma DNAm modifications differ between those who develop PTSD following trauma and 

those who display resiliency. While baseline PTS symptoms did not differ between cases 

and controls, baseline DNAm at a DNMT3B CpG site was higher in resilient individuals 

compared to those who eventually developed PTSD. Additionally, longitudinal change in 

DNAm at a DNMT1 CpG site was associated with PTSD, with an increase in DNAm being 

observed in those with PTSD but not controls. Finally, increases in DNAm were observed 
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following trauma at DNMT3A and DNMT3B loci that were independent of PTSD outcome, 

being observed in both PTSD cases and trauma-exposed controls. Although some of these 

results were attenuated following correction for multiple hypothesis testing, our findings 

suggest that epigenetic variation plays a complex regulatory role in PTSD risk and etiology.

One way in which DNAm may regulate gene transcription is by altering the strength and 

occupancy of transcription factor binding (Weaver et al., 2004). To provide insight into 

potential functional consequences of the observed PTSD-associated differences, we 

conducted a secondary analysis of TFBS overlapping the distinguishing CpG sites. Among 

the sites identified was a binding site for CTCF, a transcription factor known to be involved 

in chromatin remodeling(Barkess and West, 2012). We identified this binding site 

overlapping with DNMT3B CpG site 9, at which higher DNAm was identified as a 

protective/risk factor for PTSD and symptom severity change following trauma exposure. 

Differential methylation at this site is particularly compelling as a determinant of PTSD risk, 

given that DNAm at CTCF binding sites has been shown to significantly affect CTCF 

occupancy(Wang et al., 2012) and downstream levels of gene transcription(Renaud et al., 

2007). Due to the nature of our samples, we are unable to test directly whether DNAm at 

these identified TFBS influences gene expression. Where available, we have utilized 

ENCODE data(Consortium, 2011) to provide evidence for or against transcription factor 

binding at the PTSD-associated sites in blood-derived cell types. Among the TFBS 

identified that overlap PTSD-associated CpG sites (DNMT1 and DNMT3B CpG 9), 

ENCODE data includes binding of CTCF and E2F4. ENCODE data supports the binding of 

CTCF to DNMT3B in blood tissue (specifically b-lymphocyte cell lines: GM12864 and 

GM12874), but does not support the binding of E2F4 to DNMT1. This supports the potential 

functionality of observed DNAm differences at DNMT3B CpG 9 in pre-trauma samples in 

cases vs. controls.

DNMTs have been previously implicated in PTSD, anxiety, and fear conditioning. In suicide 

completers relative to controls, DNMT3B was upregulated in the frontopolar cortex, 

hypothalamus, and dorsal vagal complex and down regulated, along with DNMT1, in the 

hippocampus(Poulter et al., 2008). Additionally, de novo methyltransferases have been 

shown to be upregulated during contextual fear conditioning, also in the hippocampus 

(Miller and Sweatt, 2007); DNMTs are required for fear conditioning and memory 

consolidation as demonstrated, respectively, by administration of DNMT inhibitors (Miller 

and Sweatt, 2007) and the creation of mice with the combined knockout of DNMT1 and 

DNMT3A(Feng et al., 2010). Our results thus add to the growing evidence implicating 

DNMTs in phenotypes of relevance to PTSD, and of psychiatric phenotypes more broadly.

The expression of DNMTs at the mRNA(Goto et al., 1994; Veldic et al., 2004; Kang et al., 

2011; Sterner et al., 2012) and protein(Inano et al., 2000; Feng et al., 2005; Veldic et al., 

2005) levels in post-mitotic neurons of the central nervous system suggests that they are 

involved in methyltransferase activity that persists into adulthood and that is unrelated to 

DNA replication(Goto et al., 1994). Indeed, previous work has identified DNMT1 protein 

expression in multiple brain regions in rodents (e.g. cortex, cerebellum(Inano et al., 2000)), 

as well as in specific cortical regions in adult humans (e.g. Broadmann’s Area 9(Veldic et 

al., 2005)). Furthermore, recent work suggests that our epigenetic findings in peripheral 
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blood may be relevant to brain tissue: environmental exposures such as trauma have been 

shown to induce parallel epigenetic modifications in peripheral blood and brain (McGowan 

et al., 2011; Klengel et al., 2013). Although the current study, based on living participants 

drawn from a population-based cohort, precludes such work, future research is needed to 

address whether the epigenetic determinants of risk observed here in peripheral blood-

derived DNA is also found in brain-derived DNA.

Importantly, this study adds to emerging work utilizing a longitudinal study design capable 

of measuring biological markers prior to disease onset as well as change between pre-

disease and post-disease time points(Nieratschker et al., 2012; Rusiecki et al., 2012; Perroud 

et al., 2013; Rusiecki et al., 2013). Existing longitudinal studies have documented the 

importance of DNAm to mental health disorder risk, including differential change in DNAm 

of BDNF among individuals with vs. without borderline personality disorder(Perroud et al., 

2013), increased DAT (SLC6A3) DNAm with age that may be driven by alcohol 

dependence(Nieratschker et al., 2012), and increasing SERT DNAm associated with 

bullying(Ouellet-Morin et al., 2013). Most relevant to the present study is work by Rusiecki 

et al.(Rusiecki et al., 2012) which provides evidence for increased global DNAm in controls, 

but not cases following trauma exposure, suggesting that resiliency is associated with 

increased global DNAm, potentially mediated by increased activity and expression of 

DNMTs. Indeed, our data presented here is consistent with this scenario, as DNAm of 

DNMT1 was observed to increase following trauma in cases, but not controls. In contrast, 

however, we observed an increase in DNMT3B DNAm following trauma in both cases and 

controls, and a pre-trauma association between higher DNAm pre-trauma and resiliency 

post-trauma. The presence of a CTCF binding site opens the possibility that increased 

DNAm at this locus is associated with increased gene expression because CTCF can act as 

either a transcriptional activator or repressor(Phillips and Corces, 2009), with strength of 

DNA binding inversely correlated with local DNAm(Barkess and West, 2012). If binding of 

CTCF to the DNMT3B locus results in transcriptional repression, then increased DNAm, and 

concurrent decreased CTCF binding, would be associated with increased, not decreased, 

gene expression. If true, this would put these findings in line with the previously published, 

longitudinal, trauma-associated epigenetic data: decreased DNAm in pre-trauma PTSD 

cases would result in tighter CTCF binding and reduced DNMT3B transcription and lower 

global DNAm levels, as reported by Ruisecki and colleagues(Rusiecki et al., 2012). 

Although DNMT1 is typically thought to maintain DNAm in adult tissues, evidence 

suggests that DNMT1 and DNMT3B cooperatively maintain DNAm, with one or the other, 

but not both, required for global DNAm(Rhee et al., 2002). More broadly, our data adds to 

the emerging evidence that longitudinal DNAm changes may contribute to the etiology of 

mental illness and can be taken as a proof of principle that locus-specific epigenetic 

variability both pre-exist and arise following disease-onset in biologically meaningful ways.

While our study is one of the first of its kind to compare pre- and post-trauma DNAm levels 

with regard to the development of PTSD, there is a minimum of four study limitations that 

should be kept in mind when interpreting our results. First, it is important to recognize that 

the epidemiological nature of our cohort precludes sample collection with a well-controlled 

experimental time course; times between pre-trauma data collection, trauma exposure, and 
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post-trauma data collection differed between each test subject. As such, we are unable to 

resolve whether observed PTSD-associated post-trauma DNAm changes precede PTSD-

development (i.e. occurred within the first four weeks following trauma). As DNMTs are 

involved in the global regulation of DNAm, it is tempting to conclude from our data that 

observed changes in DNMT DNAm are an upstream process of PTSD development, thereby 

having the potential to help explain differences in DNAm epigenome-wide reported 

elsewhere(Uddin et al., 2010; Smith et al., 2011; Rusiecki et al., 2012). However, it is also 

possible that the observed PTSD-associated DNAm changes are downstream effects of 

PTSD development, with no or little involvement in epigenetic modifications across the 

epigenome. Second, the nature of the epidemiological samples collected precluded the 

assessment of pre- and post-trauma gene expression differences and changes, as well as any 

analysis of blood cell composition. Third, the DNAm differences and effect sizes reported 

here are small; however, they are consistent with published work showing functional effects 

of DNAm variation(Tyrka et al., 2012). High intraclass correlation coefficients between 

experimental replicates for each of our assays increases confidence of the validity of 

observed DNAm differences. Indeed, our sample size and observed effect sizes are 

consistent with published work in the field(Perroud et al., 2011; Byrne et al., 2013). Fourth, 

our results across the multiple CpG sites within DNMT3B are not corrected for multiple 

testing. Although this is consistent with the current state of the science of DNAm variation 

in association with psychiatric endpoints(Perroud et al., 2011; Unternaehrer et al., 2012; 

Perroud et al., 2013; Rusiecki et al., 2013), we do report corrected results (Table 3) to assess 

the degree to which our findings might be attenuated by multiple hypothesis test correction. 

Accepting a stringent FDR of 0.05 requires that we reject several findings reported as 

significant in our study, notably pre-trauma DNAm differences between cases and controls 

at DNMT3B CpG 9. However, it also means that a significant association between DNAm 

and PTSD emerges as a result of correction, as a significant change in DNAm at DNMT3A 

following trauma is only seen in controls at this stringent FDR cutoff and would therefore be 

suggestive of a resiliency-associated change in DNAm (Table 3). While we have chosen to 

utilize a stringent FDR cut-off of 0.05, other DNAm analyses have accepted a cut-off as 

high as 0.20(Provencal et al., 2013). Overall, we stress the preliminary nature of these 

findings—both uncorrected and corrected for multiple hypothesis testing—and the 

importance of replication in an independent cohort.

Individuals exposed to trauma differ in their risk for subsequent PTSD. Our data suggest that 

variation in pre-trauma DNAm and post-trauma DNAm change may be part of the molecular 

underpinnings of PTSD risk and resiliency. Future research is needed to determine if the 

DNAm variation observed here is associated with functional changes that affect the long-

term biology of individuals exposed to trauma. The identification of risk markers, including 

epigenetic markers, is an important step to understanding the biological underpinnings of 

PTSD risk and may lead to the development of tools to identify those individuals most at 

risk of developing PTSD as well as to develop evidence-based interventions.
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Figure 1. 
Pre-trauma “DNA methyltransferase 3B” (DNMT3B) DNA methylation (DNAm) is 

significantly higher in trauma-exposed controls compared to posttraumatic stress disorder 

(PTSD) cases at CpG 9. Pre-trauma DNAm did not differ between cases and controls at the 

other 11 DNMT3B CpG sites assessed. Light gray bars indicate mean DNAm of controls. 

Dark gray bars indicate mean DNAm of PTSD cases. Error bars represent standard error of 

the mean. Difference between controls and cases was tested by paired-sample t-tests (N = 

60; 30 cases and 30 matched controls). *: p<0.05.
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Figure 2. 
Linear regression model of symptom severity (PTSS) change post-trauma and pre-trauma 

“DNA methyltransferase 3B” (DNMT3B) CpG 9 DNA methylation (DNAm), adjusting for 

age, gender, and pre-trauma symptom severity (N=60). Only pre-trauma PTSS and DNAm 

were significant variables in this model. Error bar plots represent the mean plus/minus the 

95% confidence intervals. Differences between posttraumatic stress disorder cases and 

trauma-exposed controls were tested by paired-sample t-tests (N = 60; 30 PTSD cases and 

30 matched controls). *: p<0.05.
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Figure 3. 
Longitudinal DNA methylation (DNAm) modifications of DNA methyltransferase (DNMT) 

loci in response to trauma in posttraumatic stress disorder (PTSD) cases and trauma-exposed 

controls. DNMT3B (region) represents the mean of 12 CpG sites. Differences between 

PTSD cases and trauma-exposed controls were tested by paired-sample t-tests (N = 60; 30 

PTSD cases and 30 matched controls). Error bars represent standard error of the mean. *: 

p<0.05; **:p<0.01; ***:p<0.001.
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Table 2

Putative transcription factor binding sites overlap DNA methyltransferase (DNMT) CpG sites of interest. V$ 

matrix families indicate Genomatix-annotated transcription factor binding site matrix families. DNMT3B CpG 

sites are described in the Methods.

Gene Matrix Family Matrix Information Core similarity DNMT3B CpG overlap

DNMT1 V$HEAT Heat shock factor 1 1.000 -

V$E2FF E2F-4/DP-2 heterodimeric complex 0.847 -

DNMT3A V$SP1F TGFbeta-inducible early gene (TIEG)/Early growth response 
gene alpha (EGRalpha)

0.750 -

V$SP1F Stimulating protein 1, ubiquitous zinc finger transcription factor 1.000 -

V$EGRF EGR1, early growth response 1 0.802 -

V$GCMF Glial cells missing homolog 1, chorion-specific transcription 
factor GCMa

1.000 -

V$KLFS Kidney-enriched kruppel-like factor, KLF15 1.000 -

DNMT3B O$MTEN Human motif ten element 0.839 1, 2, 3, 4, 5

V$PAX5 PAX5 paired domain protein 0.789 1, 2, 3, 4, 5, 6, 7

V$E2FF E2F transcription factor 3 (secondary DNA binding preference) 1.000 2, 3, 4, 5

V$E2FF E2F transcription factor 3 (secondary DNA binding preference) 1.000 2, 3, 4, 5, 6, 7

V$ETSF Ets variant 4 1.000 3, 4, 5, 6, 7

O$MTEN Human motif ten element 0.961 7, 8, 9

V$ZF5F ZF5 POZ domain zinc finger, zinc finger protein 161 (secondary 
DNA binding preference)

0.775 8, 9, 10

V$CTCF Insulator protein CTCF (CCCTC-binding factor) 0.818 9, 10, 11, 12

V$HDBP Huntington’s disease gene regulatory region-binding protein 1 
and 2 (SLC2A4 regulator and papillomavirus binding factor)

1.000 10, 11, 12

V$EGRF Collagen krox protein (zinc finger protein 67-zfp67) 1.000 11, 12

V$PLAG Pleomorphic adenoma gene (PLAG) 1, a developmentally 
regulated C2H2 zinc finger protein

0.958 12

V$ZF02 Transcriptional repressor, binds to elements found 
predominantly in genes that participate in lipid metabolism

0.776 12

DNMT3L V$KLFS Basic transcription element (BTE) binding protein, BTEB3, 
FKLF-2

1.000 -

V$SP1F Stimulating protein 1, ubiquitous zinc finger transcription factor 1.000 -

V$MYBL C-Myb, important in hematopoesis, cellular equivalent to avian 
myoblastosis virus oncogene v-myb

0.797 -

V$GLIF Zinc finger transcription factor, Zic family member 2 (odd-
paired homolog, Drosophila)

1.000 -

V$CP2F LBP-1c (leader-binding protein-1c), LSF (late SV40 factor, 
CP2, SEF (SAA3 enhancer factor)

0.875 -
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