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Abstract

Every newly trained surgeon performs her first unsupervised operation. How do the health 

outcomes of her patients compare with the patients of experienced surgeons? Using data from 498 

hospitals, we compare 1252 pairs comprised of a new surgeon and an experienced surgeon 

working at the same hospital. We introduce a new form of matching that matches patients of each 

new surgeon to patients of an otherwise similar experienced surgeon at the same hospital, 

perfectly balancing 176 surgical procedures and closely balancing a total of 2.9 million categories 

of patients; additionally, the individual patient pairs are as close as possible. A new goal for 

matching is introduced, called “refined covariate balance,” in which a sequence of nested, ever 

more refined, nominal covariates is balanced as closely as possible, emphasizing the first or 

coarsest covariate in that sequence. A new algorithm for matching is proposed and the main new 

results prove that the algorithm finds the closest match in terms of the total within-pair covariate 

distances among all matches that achieve refined covariate balance. Unlike previous approaches to 

forcing balance on covariates, the new algorithm creates multiple paths to a match in a network, 

where paths that introduce imbalances are penalized and hence avoided to the extent possible. The 

algorithm exploits a sparse network to quickly optimize a match that is about two orders of 

magnitude larger than is typical in statistical matching problems, thereby permitting much more 

extensive use of fine and near-fine balance constraints. The match was constructed in a few 

minutes using a network optimization algorithm implemented in R. An R package called rcbalance 

implementing the method is available from CRAN.
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1 Introduction: Matching within natural blocks

1.1 What are natural blocks?

In observational studies of treatment effects, we often wish to compare treated and control 

subjects from the same natural block. Familiar examples of natural blocks are twins, 

siblings, surgical patients in the same hospital, or students in the same school. Important 

unmeasured covariates may be more similar within a natural block than between blocks: the 

genes of siblings; the nursing staff and intensive care unit in the same hospital; the teaching 

staff and socioeconomic conditions within the same school.

There can be a tension between the desire to compare treated and control individuals within 

natural blocks and the desire to compare treated and control groups with similar distributions 

of measured covariates. In our study in §3 comparing new and experienced surgeons, there 

are 1252 natural blocks of a new and experienced surgeon performing similar types of 

surgery working in the same hospital. Additionally there are many categories of measured 

covariates, including 176 surgical procedures, ultimately nearly 2.9 million categories 

defined by measured covariates. With many categories, it is difficult if not impossible to 

find similar patients inside the same natural block.

Attempts to balance many covariates by pairing individuals who are nearly identical almost 

invariably fail because nearly identical people do not exist. This is illustrated in Zubizarreta 

et al (2011, Table 6; 2014, §2.4) where close individual pairs are not available but covariate 

balance is attainable. Matching for a scalar propensity score can balance many covariates 

such as age or gender, but this approach can perform poorly with sparse nominal covariates 

having many categories, for instance the 176 surgical procedures and their interactions with 

comorbidities. Like randomization, matching on propensity scores balances covariates 

stochastically with the aid of the law of large numbers, whereas a nominal covariate with 

many categories may have small sample sizes in most categories.

Our algorithm pairs patients within a natural block, trying to pick individual pairs that are 

close on covariates. There is a limit to what can be achieved by finding individually close 

pairs on many variables, so a separate effort is made to balance distributions of covariates 

when individuals within a pair may differ. The approach comes as close as possible to 

balance for a sequence of nested nominal variables, starting with the 176 surgical 

procedures, gradually subdividing these 176 categories to finally reach nearly 2.9 million 

categories involving comorbidities and admission source, obtaining the best possible balance 

at each successive stage of the subdivision. This new objective, “refined covariate balance,” 

is defined in §4.4, where it is proved in Theorem 6 that our new network optimization 

algorithm yields a minimum distance match subject to the constraint of refined covariate 

balance. This new approach is made practical by exploiting network sparsity.

1.2 Natural blocks and network sparsity

Optimal matching in observational studies (Rosenbaum 1989; Hansen 2007) is often 

implemented using network optimization, a collection of mathematical and computational 

techniques originally developed to solve problems in operations research; see the review of 

network optimization in § 4.3. A network is a set of nodes together with a set of directed 
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edges or ordered pairs of nodes. Think of the nodes as subjects and the edges as candidate 

pairings of two subjects. A network with N nodes might have N2 edges with loops or N (N − 

1) edges if with no loops; that is, it might have O(N2) edges as N → ∞ and in this case the 

network is said to be dense. A network is said to be sparse if the number of edges is O (N) 

rather than O (N2). Matching within natural blocks, such as within hospital-surgeon-pairs, 

drastically restricts the number of permitted pairings of patients, resulting in a sparse 

network. The time and space required for optimization is much greater in dense than in 

sparse networks (e.g., Korte and Vygen 2008, Theorem 9.17).

Typical uses of optimal matching in observational studies do not exploit sparsity, in part 

because a network defined by measured covariates without natural blocks is likely to be 

dense. A program such as Hansen’s (2007) optmatch package in R can match thousands of 

individuals at once in a dense network. In current practice, if a problem has many more than 

thousands of individuals, then it is divided into smaller problems each consisting of 

thousands of individuals by matching exactly for several important covariates. This strategy 

often works well for measured covariates. However, with natural blocks, there may be 

relatively few choices within blocks, so more of the work needs to be done through 

balancing covariate distributions. By working with a network that is naturally sparse because 

of natural blocks, we are able to match hundreds of thousands of individuals at once, thereby 

making much more effective use of balancing techniques.

1.3 Outline: an example; a new objective; a new algorithm; the benefits of sparsity

The surgical example is discussed in §3 and §5. The general problem is described informally 

in §2 and developed precisely in §4. All new results and methods are contained in §4. 

Notation is introduced in §4.1, key concepts such as refined balance are defined in §4.2, and 

existing literature on network optimization is briefly reviewed in §4.3. The matching 

network for refined balance is defined in §4.4. The main theorem in §4.5 says that a 

minimum cost flow in the network defined in §4.4 is the closest possible match that exhibits 

refined balance while respecting the natural blocks. Sparsity is discussed in §4.7. The 

discussion in §6 considers how the proposed methods might be applied in other contexts.

For discussion of matching, see Baiocchi et al. (2012), Hansen et al. (2006, 2007), Heller et 

al. (2009), Lu et al. (2011), Rosenbaum (1989, 2010), Rosenbaum and Rubin (1985), Stuart 

(2010), Yang et al. (2012), and Zubizarreta et al. (2011, 2014). For recent applications of 

optimal matching, see Silber et al. (2013) and Neuman et al. (2014).

2 Abstract problem; intuition behind its solution; other applications

2.1 The abstract problem: refined balance in a sparse match

In a sparse matching problem, each treated subject has a short list of potential controls. 

When there are natural blocks, this short list consists of controls from the same block; 

however, sparse networks arise or can be produced in other ways; see §6.2. As the sample 

size increases, the length of the list of potential controls for each given treated subject does 

not increase. As you add more and more families or schools or hospitals or zip codes to the 

study, you have more and more subjects to match, but individual families or schools or 

hospitals or zip codes do not become larger. If the number of blocks increases in constant 
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proportion to the increase in total sample size, then block effects are not consistently 

estimable without assumptions about their form (Kiefer and Wolfowitz 1956, p. 888); 

however, it is possible to match within blocks.

In addition to picking for each treated subject a control from the short list of candidates, the 

matching must balance many observed covariates. We would be satisfied if the balance on 

observed covariates after matching were similar to the balance on observed covariates in a 

completely randomized experiment, but this may not be possible in an observational study. 

Randomization also balances unmeasured covariates whereas matching for observed 

covariates cannot be expected to do this.

Because the list of candidate controls for a given treated subject is short, it is rarely possible 

to find a control on the short list who is identical to the treated subject with respect to many 

covariates. So the matching algorithm tolerates a mismatch in one pair providing it can 

counterbalance that mismatch in another pair. If it is necessary to match a treated male to a 

control female in one block, then a treated female will be matched to a control male in 

another block, so the final treated and control groups have exactly the same number of males 

and the same number of females. Exact counterbalancing is called “fine balance”; see 

Rosenbaum, Ross and Silber (2007). Fine balance means that the marginal distribution of a 

categorical covariate is exactly the same in treated and control groups, and in the surgical 

example the 176 surgical procedures are finely balanced. Counterbalancing is a familiar 

strategy in experimental design, for example in Latin square designs or crossover designs. 

Sometimes exact fine balance is not achievable: for instance, it is not possible in the surgical 

example to exactly balance all 2.9 million categories of patients. “Near fine balance” means 

that the marginal distributions of a categorical covariate in matched samples are “as close as 

possible” to fine balance given the data available; see Yang et al. (2012). In defining near 

fine balance, one may define “as close as possible” in various ways, but one natural and 

familiar measure is the total variation distance, the sum of the absolute treated-minus-control 

differences in category percents. See Arratia et al. (1990, §3) for several attractive 

equivalent definitions of the total variation distance. If the matched treated group is 51% 

male and the matched control group is 49% male, then the total variation distance in gender 

is |0.51 – 0.49|+|0.49 – 0.51| = 0.04 reflecting the 2% mismatch for males plus the 

corresponding 2% mismatch for females. One form of near fine matching minimizes the 

total variation distance in matched samples, and it achieves exact fine balance whenever this 

is achievable.

Refined balance is an extension of fine or near-fine balance. One defines a sequence of 

nested nominal variables, ν1, … , νK, so νk+1 subdivides νk. Refined balance comes as close 

as possible to fine balance for ν1, and among all matches that do that, it comes as close as 

possible to fine balance for ν2, and so on. In the surgical example, ν1 consists of the 176 

surgical procedures and these are finely balanced, ν2 interacts the 176 surgical procedures 

with two types of hospital to make 352 categories for which the minimum total variation 

distance is 0.001 or one tenth of 1%, … , and νK for K = 6 has 2.9 million categories. 

Among all matched samples that exhibit refined covariate balance, the algorithm finds 

pairings from the short lists to minimize the total covariate distance within pairs.
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2.2 Intuition behind the solution

In §4, the matching problem is represented by a network or directed graph. For each 

category of each of the nested nominal variables, νk, the network has two routes to a match. 

One route is free of charge, and a pair can take this route if it leaves this category balanced. 

The other route has a large toll or penalty, and a pair can take this route without balancing 

the category but must pay the penalty. The penalty for ν1 is much larger than for ν2, and so 

on. The objective function is the sum of all of these penalties plus the sum of the within-pair 

covariate distances. The penalization of certain paths is developed in detail in §4.4 and it 

involves a parameter ϒ. Network optimization minimizes this penalized objective function. 

If the penalties are both sufficiently large and sufficiently different for νk and νk+1, then they 

override all other considerations, producing refined balance. Among all matches that 

minimize the penalties, the optimal match minimizes the sum of the covariate distances. In 

the example, among matches that are equally good in terms of refined covariate balance, the 

algorithm tried to pair individuals with similar ages and estimated risks of death, two 

variables that were not explicitly balanced. Section 4 states the algorithm precisely and 

proves that it works.

Refined balance and sparsity are separate ideas that work well together. In a sparse network, 

it is difficult to find close individual pairs, and more of the work must be done by covariate 

balancing; hence, the attraction of refined balance for sparse problems. Conversely, 

balancing of rare categories is easier in very large problems, and computations for large 

problems require less computer time and storage if the problem is sparse; hence the 

attraction of sparsity for refined balance. Sparsity is discussed in §4.7.

3 Patient outcomes achieved by new and experienced surgeons

3.1 Background

Are the patient outcomes of newly trained surgeons comparable to the outcomes of 

experienced surgeons performing the same types of surgery at the same hospitals? If the 

typical patient of the typical new surgeon were instead treated by an experienced surgeon, 

would the patient’s outcomes be different? The data describe patients in Medicare in six 

states between 2004 and 2007 who had Medicare Part B, were not in a Medicare HMO, and 

had surgery performed at a hospital rather than on an out-patient basis at an ambulatory 

surgical center. Here, we look at 6260 patients of 1252 new surgeons and 6260 patients of 

1252 experienced surgeons at the same hospitals, 5 patients per surgeon.

Surgical skill varies from surgeon to surgeon. Are the worst surgeons also the new 

surgeons? A typical hospital might have one new surgeon and a group of experienced 

surgeons. We expect that the performance of individual new surgeons will be more variable, 

more extreme, than the average performance of a group of experienced surgeons, simply 

because averages are more stable than individuals. Surgeons specialize, focusing on 

particular types of surgery, and the 30-day mortality rate following, say, elective orthopedic 

surgery is much lower than for some types of cancer surgery. These considerations, together 

with desire for a simple, transparent study design, led us to pair each new surgeon with an 

experienced surgeon performing similar types of surgery at the same hospital.
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New surgeons gradually become experienced surgeons. As they become more experienced, 

they perform more surgery. Most of the population of patients of new surgeons are the 

patients of the most experienced of the new surgeons, but we are most interested in new 

surgeons when they are starting out, when most of their experience is from surgical training. 

For these reasons, we decided to give equal weight to each young surgeon, rather than 

weighting surgeons by the number of operations they performed. We considered only new 

and experienced surgeons who had performed at least five operations in our data. We 

sampled at random five surgical patients of each new surgeon as the treated group. For many 

newer new surgeons, five patients was a large part of the portion of the overlap of their 

surgical practice with our data. Our analysis describes the typical patient of the typical new 

surgeon, not the typical patient of new surgeons as a group, the latter being weighted 

towards the most experienced new surgeons.

3.2 Matching the patients of new and experienced surgeons within the same hospital

Surgical data are characterized by quite a bit of detail, much of it recorded in nominal 

variables. Using ICD-9 codes, we distinguish 176 surgical procedures (listed in Table 1 as 

Procedure). In addition, we distinguish among 498 hospitals, whose performance varies for 

reasons unrelated to surgical performance. Patients often have existing medical problems, 

called comorbidities, besides those treated by the current surgery, such as congestive heart 

failure (CHF) or chronic obstructive pulmonary disease (COPD), and these may increase the 

risk of death following surgery. We distinguish hospitals with many new surgeons or few 

new surgeons (Hospital Group). Patients are matched within surgeon pairs within the same 

hospital.

Table 1 lists covariates that structure the match, and additional covariates appear in Table 2. 

Table 1 includes notation that will be defined in §4. In the rows of Table 1, there are 15 

nominal covariates, making 176 × 214 or about 2.9 million categories of patients. The 

columns of Table 1 define K = 6 nominal covariates, ν1, …, ν6, where ν1 is simply the L1 = 

176 procedures, ν2 is the 176 procedures crossed with Hospital Group with L2 = 176 × 2 = 

352 categories, ν3 is the 176 procedures crossed with Hospital Group, male, ER-admission, 

and Transfer-admission with L3 = 176 × 24 = 2816 categories, …, and ν6 crosses all 15 

covariates with 176 × 214 ≐ 2.9 million categories.

Ideally, the number of patients of new surgeons in each of 2.9 million categories would 

equal the number of patients of experienced surgeons. That was not quite possible while 

always also matching patients within the 498 hospitals. Subject to that requirement of 

matching within hospitals, the match minimized imbalance in a sense to be defined in a 

moment, and minimized the sum of a covariate distance over 6260 patient pairs.

A nominal covariate with Lk levels yields an Lk × 2 contingency table with two columns for 

the patients of new and experienced surgeons. In the matched sample, each column contains 

a total of 6260 patients distributed among Lk categories or rows. How different are the 

distributions in the two columns? Write βkℓ for the difference in counts of νk in row ℓ of the 

table; then  and  is proportional to a standard measure of the 

difference between two discrete probability distributions, namely the total variation distance. 

Pimentel et al. Page 6

J Am Stat Assoc. Author manuscript; available in PMC 2016 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Now,  could be as small as 0 if the distributions were identical or as large as 2 × 

6260 = 12520 if they do not overlap. To equalize the two distributions, one would need to 

switch the categories for  controls or the percentage (100/6260) .

The lower portion of Table 1 shows the total imbalance in the six nominal covariates, ν1, 

… , ν6. For procedures, ν1, the imbalance was 0, so the distribution of the 176 procedures is 

identical in the new and experienced groups. The imbalance for ν1 is as small as possible. 

For ν2, the imbalance was 6, meaning that there was a total excess of 3 in some of the rows 

of the 2 × 352 table and a total deficit of 3 in some other rows. The imbalance for ν2 is as 

small as possible among matches that minimize the imbalance in ν1. And so on. For ν6, the 

total absolute imbalance is 1242 for 2 × 6260 = 12520 patients in 2.9 million categories, or 

about 10% of the maximum imbalance. The imbalance for ν6 is as small as possible subject 

to minimizing the imbalance in ν1, … , ν5 and matching within surgeon pairs. In addition to 

producing a small imbalance in ν1, … , ν6, the matching algorithm certifies that the 

imbalance attained is the smallest possible imbalance when matching new and experienced 

surgeon patients within the same hospital; that is, there is no point in trying to achieve a 

smaller imbalance.

The balance described in the previous paragraph is much better than randomization would 

produce. We computed the usual χ2-statistic for independence in each of the six 2×Lk 

contingency tables. We created 10,000 simulated randomized experiments by simple 

random sampling without replacement of 6260 patients from the 12520 patients, so row and 

column margins of the 2 × Lk are unchanged, and computed 10,000 independence χ2-

statistics and imbalances ; see the bottom of Table 1. For ν6 with 2.9 million 

categories, the actual matched sample had an imbalance of 1242 and χ2 of 1158.7, and that 

was much better balance than the best of 10,000 simulated randomized experiments with an 

imbalance of 3578 and χ2 of 2645.0.

Subject to the constraints of matching within hospital and minimizing imbalance 

in Table 1, the algorithm minimized the total over 6260 patient pairs of a covariate distance 

within pairs. Table 2 looks at the imbalance on the individual matching variables, including 

age and the risk score, neither of which is in Table 1.

Do new surgeons treat the easiest patients? Apparently not. In Table 2, before matching, the 

patients of new surgeons are much more likely to have entered through the emergency room, 

have higher estimated risks of death based on comorbidities, are more likely to have 

dementia, and tend to be older. These differences are largely absent after matching. New 

surgeons are treating a challenging and vulnerable group of patients. In §5, we ask: How do 

outcomes compare for new and experienced surgeons when experienced surgeons treat 

equally challenging patients?
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4 A network algorithm for large, sparse optimal matching with refined 

balance

4.1 Notation: acceptable 1-to-m match; covariate imbalance βkℓ

There are T treated subjects,  = {τ1, … , τT }, and C ≥ T potential controls,  = {κ1, … , 

κC}, with ∅ =  ∩ . In §3.2,  contains patients of new surgeons and  contains patients 

of experienced surgeons. Write | | for the number of elements in a finite set , so that T = | 

|. There were T = 6260 patients of new surgeons to be matched and C = 123846 candidate 

control patients of experienced surgeons. Treated subject τt ∈  has observed covariate xτt 

and potential control κc ∈  has covariate xκc.

There is a subset of acceptable pairings,  ⊆  × , such that (τt, κc) is an acceptable 

pairing if and only if (τt, κc) ∈ . In §3.2, we had previously paired a new and an 

experienced surgeon at the same hospital performing similar procedures, and the acceptable 

pairings  are only of patients of these paired new and experienced surgeons at the same 

hospital; that is, (τt, κc) ∈  if and only if τt is a patient of a new surgeon and κc is a patient 

of the experienced surgeon with whom this new surgeon is paired. In §3.2, | | = 819230 < 

7.75 × 108 = T × C = |  × |.

For each (τt, κc) ∈  there is a distance δtc between xτt and xκc, δtc = δ(xτt, xκc), with 0 ≤ δtc 

< ∞. We would like to pair individuals who are close on covariates. In §3.2, δtc = δ(xτt, xκc) 

was a robust, rank-based Mahalanobis distance (Rosenbaum 2010, §8) based on age, sex, 

emergency admission, transfer admission, risk score and clusters of procedures. There is 

competition for controls, so κc may be the closest control to both τt and τt′, and an optimal 

matching will minimize the total distance for matched individuals subject to various 

constraints on the balance of covariates.

There are K nested nominal variables νk (·), k = 1, …, K; that is, νk (·) is a function that 

assigns one of Lk values in  = {λk1, … , λk,Lk} to each subject in  ∪ , or νk:  ∪  → 

. In §3.2 and Table 1, there were K = 6 nominal variables. Importantly, νk+1 refines or 

subdivides νk. In other words, these K variables are nested in the sense that all individuals 

who are the same on νk+1 are the same on νk; that is, formally, if ι ∈  ∪  with νk+1(ι) = 

λk+1,ℓ and ι′ ∈  ∪  with νk+1(ι′) = λk+1,ℓ, then νk (ι) = νk (ι′). Variable ν1 (·) is the 

coarsest and most important variable and νK(·) is the finest and least important variable. 

Expressed informally, the algorithm will do everything possible to balance ν1(·) as closely 

as possible, whereas it will merely do what it can to balance νK·).

Definition 1—Acceptable 1-to-m match: An acceptable 1-to-m match is a subset  ⊆ 

such that every τt ∈  appears in exactly m pairs (τt, κc) ∈  and every κc ∈  appears in 

at most one pair (τt, κc) ∈ .

If  =  × , then an acceptable 1-to-m match exists whenever C ≥ mT. If  ⊂  × , then 

an 1-to-m acceptable match may not exist even when C ≥ mT. The algorithm finds an 

acceptable 1-to-m match if one exists; otherwise it reports that no such match exists. The 

conditions required for the existence of an acceptable match are stated in a famous theorem 
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in graph theory, Hall’s theorem; see Diestel (2010, Theorem 2.1.2, p. 38); however, the 

algorithm determines whether a match exists.

In addition to having an acceptable match with  ⊆  with a mall total distance  δtc, 

we also want to balance the K nominal variables, emphasizing νk (·) over νk+1 (·). Write dkℓ 

for the number of treated individuals τt falling in category ℓ of the kth nominal variable νk 

(·), so dkℓ = |{τt ∈ : νk (τt) = λkℓ}|. Ideally, an acceptable 1-to-m match  would have 

m×dkℓ matched controls falling in category ℓ of the kth nominal variable νk (·), so the 

distributions of νk (·) would be identical in matched treated and control groups; however, 

typically, this is not possible for larger k. That is, ideally |{(τt, κc) ∈ : νk (κc) = λkℓ}| 

would equal m × dkℓ for every k and ℓ. Because the K variables are nested, an imbalance in 

νk (·) is necessarily also an imbalance in νk+1 (·).

The imbalance βkℓ in the ℓth category of the kth nominal variable is a signed integer that is m 

times the number of treated subjects τt in  with level λkℓ of the kth nominal variable minus 

the number of controls κc in  with level λkℓ, that is,

(1)

In (1), βkℓ depends upon the match  through |{(τt, κc) ∈ : νk (κc) = λkℓ}|, but the notation 

does not indicate the dependence explicitly; that is, some matches  exhibit better covariate 

balance than do others. Here βkℓ > 0 signifies that we wanted more controls at level ℓ of 

nominal variable νk (·), and βkℓ < 0 signifies that we wanted fewer. By the definition of an 

acceptable 1-to-m match, for each k, the total of the signed imbalances is zero, 

(i.e., everyone has to go somewhere), but the total of the absolute imbalances 

measures the degree to which matched treated and control subjects have differing 

distributions of nominal variable νk (·). In fact,  is the total variation 

distance between the distribution of νk (·) in matched treated and control groups. In Table 1, 

. In some sense or other, we would like to pick an acceptable 1-to-m match 

such that each of the  is as small as possible and the within-pair distance  δtc 

is as small as possible.

The kth nested nominal variable is said to satisfy “fine balance” if βkℓ = 0 for ℓ = 1, …, Lk, so 

νk (·) has the same distribution in matched treated and control groups; see Rosenbaum, Ross 

and Silber (2007). Because the K nominal variables are nested, nominal variable νk (·) is 

finely balanced whenever νk+1 (·) is finely balanced.

The kth nested nominal variable is said to satisfy “near fine balance” if match  minimizes 

 among all acceptable 1-to-m matches; see Yang et al. (2012). Because the K 

nominal variables are nested,  for each k, as is seen in Table 1 

where .
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4.2 Two key definitions: What is an optimal refined acceptable 1-to-m match ?

Where fine and near fine balance refer to a single nominal variable, “refined balance” refers 

to a nested sequence of nominal variables, such as νk (·), k = 1, …, K, as in Table 1. Stated 

informally, each of the k levels is as balanced as possible, but level k has priority over level 

k + 1. Write  for the set of all acceptable 1-to-m matches . Each element  ∈  is one 

possible match. Each such match  ∈  has values for βkℓ in (1) and a value for the total 

distance within matched sets,  δtc. The two definitions that follow define a “best” 

choice of  ∈ .

Definition 2 Refined balance—An acceptable 1-to-m match  ∈  has refined balance 

if: (1)  is minimized among all acceptable 1-to-m matches  ∈  and (2) among 

acceptable 1-to-m matches that satisfy (1),  minimizes , …, (k)among 

acceptable 1-to-m matches that satisfy (k−1),  minimizes , …, (K) among 

acceptable 1-to-m matches that satisfy (K−1),  minimizes .

For example, in Table 1, 52 is the minimum possible value of  among all 

acceptable 1-to-1 matches with  and .

Definition 3 Optimal refined balance—An acceptable 1-to-m match  ∈  with 

refined balance is optimal if it minimizes the total distance within pairs,  δtc, among all 

acceptable 1-to-m matches  ∈  with refined balance.

The goal is to find an optimal refined acceptable 1-to-m match  if one exists and otherwise 

determine that the problem is infeasible in that no such match exists.

4.3 Review of minimum cost flow in a network

The minimum cost flow problem is a standard combinatorial optimization problem with 

origins in operations research; see Bertsekas (1991), Cook et al. (1998), and Korte and 

Vygen (2008). This problem is a special type of integer program which, unlike most integer 

programs, can be solved with a worst-case time bound that is a polynomial in the size of the 

problem; that is, large problems can be solved quickly. A standard way to “solve” a 

combinatorial optimization problem is to show that it is equivalent to an appropriate 

minimum cost flow problem and to solve this equivalent problem. (In R, a good solver for 

minimum cost flow problems can be obtained as follows. Hansen’s optmatch package calls 

Fortran code RELAXIV created by Bertsekas and Tseng (see Bertsekas 1991) which solves 

minimum cost flow problems. Loading optmatch makes RELAXIV accessible in R and 

callable by imitating Hansen’s calls with different calling parameters. Documentation and 

code for RELAXIV are on Bertsekas’ web page at MIT.)

Metaphorically, objects are supplied and demanded at locations called nodes and are shipped 

among nodes along edges connecting pairs of nodes, and the goal is to minimize the total 

shipping cost while meeting demands subject to capacity constraints. Objects cannot be cut 
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in half (e.g., TVs cannot be cut in half for shipping) so the solution must ship integer rather 

than fractional objects. Companies like FedEx solve minimum cost flow problems in a 

literal rather than metaphorical sense. Optimal matching problems are commonly 

reexpressed as minimum cost flow problems. We find an optimal refined acceptable 1-to-m 

match  by solving an equivalent minimum cost flow problem.

A network is a set of nodes, , a set of edges  consisting of ordered pairs of nodes,  ⊆ 

× , so each e ∈  is of the form e = (n, n′) where n, n′ ∈ . One draws a network with a 

point for each node n ∈  and an arrow connecting pairs of nodes for which there is an edge 

e = (n, n′) ∈ , where the tail of the arrow is at n and the point of the arrow is at n′. See 

Figure 1, where the arrowheads are omitted to limit clutter, but edges that are not horizontal 

point down and horizontal edges point from right to left. Our network is acyclic or without 

cycles, so we may speak of the early part of the network — the upper part in Figure 1 — or 

the late part of the network — the lower part in Figure 1.

Each edge e ∈  has a nonnegative, possibly infinite, integer capacity, cap (e) with 0 ≤ cap 

(e) ≤ ∞, and a nonnegative real cost, cost (e) with 0 ≤ cost (e) < ∞. That is, e can carry up 

to cap (e) units of flow and each unit costs cost (e) to transport over e. Each node n ∈  has 

a finite integer demand, demand (n) with −∞ < demand (n) < ∞. Node n absorbs demand 

(n) units of flow and passes the rest on, and demand (n) < 0 means n creates an excess of –

demand (n) units of flow (e.g., manufactures –demand (n) TVs). A feasible flow f is a 

function that assigns a nonnegative integer f (e) to each edge e = (n, n′) ∈ , such that: (i) 

the flow is within the capacity limits, 0 ≤ f (e) ≤ cap (e) for each e ∈ , and the demand at 

each node n ∈  is met,

(2)

The first sum in (2) is the total flow into n from neighboring nodes n′ with (n′, n) ∈ , while 

the second sum is the total flow out from n to neighboring nodes n″ with (n, n″) ∈ , so the 

equation (2) says that node n absorbs demand (n) units of flow. A feasible flow may or may 

not exist. The total cost of a feasible flow is  f (e) cost (e). An optimal feasible flow is 

any feasible flow that minimizes the total cost. The problem of finding a minimum cost flow 

in a network has several fast widely available solutions.

From a practical point of view, finding a minimum cost flow in a network may be regarded 

by users as a standard mathematical computation, not unlike finding the inverse of a matrix. 

The user specifies the network and is given a minimum cost flow, as the user of matrix 

inversion software specifies a matrix and is given its inverse. Not all matrices have inverses, 

and not all networks have feasible flows, and in both cases competent software announces 

that the impossible has been requested. A network is dense if O(| |) = | |2.

4.4 The network for optimal refined acceptable 1-to-m matching

The network involves a penalization parameter, ϒ > 1. Penalization will increase the cost of 

a flow when that flow is behaving in a way we wish to avoid. In §4.5, it will be shown that if 
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ϒ is large enough, then the solution to a certain minimum cost flow problem yields an 

optimal refined acceptable 1-to-m matching.

The nodes, , of the matching network contain the treated subjects  = {τ1, …, τT }, the 

potential controls,  = {κ1, …, κC}, and an additional node ω called a sink. Also the nodes 

contain all of the possible values of the K nested nominal variables,  = {λk1, …, λk,Lk}, k = 

1, …, K. Additionally, the nodes contain a primed copy of values of the nested nominal 

variables, , k = 1, …, K, and double primed copy of all of the possible 

values of the nominal variables, , k = 1, …, K. That is, the nodes are 

.

If (τt, κc) ∈  ⊆  ×  is an acceptable pairing in the sense of §4.1, then (τt, κc) is an edge 

of the network, (τt, κc) ∈  with capacity cap {(τt, κc)} = 1 and cost cost {(τt, κc)} = δtc, 

where δtc is the covariate distance between τt and κc introduced in §4.1. There is an edge 

(κc, λKℓ) ∈  connecting each potential control κc to the category λKℓ of the last, most 

refined nominal variable νK (·) that contains this control; moreover, this edge has capacity 1 

and zero cost, cap {(κc, λKℓ)} = 1 and cost {(κc, λKℓ)} = 0.

Every category kℓ of every nominal variable νk (·) appears as a small triangle in  involving 

λkℓ,  and . These triangles play an important role: each one makes an effort to reduce a 

corresponding |βkℓ| in (1), recognizing that it may not be possible to achieve |βkℓ| = 0. Every 

node λkℓ is connected to both  and , so  and , and  is 

connected to  so  for all k, ℓ; that is, λkℓ,  and  form a triangle. There 

is, therefore, a direct path from λkℓ to  and an indirect path from λkℓ to  that passes 

through . As discussed in §4.1, we would like to have m × dkℓ controls in category λkℓ as 

this would make βkℓ = 0 in (1); however, this may not be possible. The direct path 

has  and cost , so that up to m × dkℓ units 

of flow can move directly from λkℓ to  for free, without cost. The indirect path is 

penalized as we would prefer to use it as little as possible. The edge  has infinite 

capacity, , and severely penalized cost of 

. The last leg of the triangle has infinite capacity and zero cost, 

 and . Notice that the penalty for ν1 (·) is ϒK but 

this gradually declines to penalty ϒ for νK (·). Because the coarse, most important ν1 (·) is 

after the fine, less important νK (·), the penalties in triangles increase from ϒ for νK (·) to ϒK 

for ν1 (·) as we move from start to the end of the network. Informally, this says that a one-

patient imbalance in vk (·) is worse than a one-patient imbalance in vk+1 (·).
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The end  of a triangle at level k is connected to the beginning λk−1,ℓ′ of the coarser 

category k −1, ℓ′ that contains category kℓ. This edge  to a coarsened category 

has infinite capacity and zero cost,  and . 

Finally, there is an edge from  to the sink ω for each ℓ with infinite capacity and zero 

cost,  and .

For each τt ∈ , demand (τt) = −m. The sink has demand (ω) = m| |. All other nodes have 

demand (n) = 0. In words, each treated node issues m units of flow, all nodes between the 

treated nodes and the sink pass on all the flow they receive, and the sink ω collects all mT 

units of flow issued by the T treated units.

An important property of a feasible flow f in this network is that control node κc ∈  ⊂ 

may receive either zero or one unit of flow, because 0 ≤ f (κc, λKℓ) ≤ cap {(κc, λKℓ)} = 1, and 

if f (κc, λKℓ) = 1 then there is only one possible sequence of ’s along which that unit of 

flow can pass to the sink ω. For brevity, the network defined in this section will be called 

“the network ( , ),” omitting explicit reference to the capacities, costs and demands that 

are also part of its definition.

4.5 Main result: A minimum cost flow yields an optimal refined match

Lemma 4 says that the match we seek exists if and only if the minimum cost flow problem is 

feasible. Proofs are in the Appendix.

Lemma 4—There is a feasible flow f for the network ( , ) if and only if there is an 

acceptable 1-to-m match . In particular,  = {(τt, κc) ∈  : f {(τt, κc)} = 1}.

Lemma 5 relates total cost to matching quantities, namely total covariate distance within 

pairs,  δtc, and the imbalance measures βkℓ in (1).

Lemma 5—Suppose there is a feasible flow f in ( , ), let  = {(τt, κc) ∈  : f {(τt, κc)} 

= 1}, and let βkℓ be the imbalance measure (1) for this match. Then the cost of this flow 

satisfies

(3)

If f is a minimum cost feasible flow in ( , ), then (3) holds as an equality.

Theorem 6 says we may find the match in Definition 3 by solving a standard combinatorial 

optimization problem. There is a finite value (see §4.6) of the penalty ϒ such that for that 

value and for all larger values, the resulting match satisfies the constraint of refined balance 

and minimizes the total covariate distance subject to that constraint.
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Theorem 6—If there exists a feasible flow in ( , ), then for sufficiently large ϒ, a 

minimum cost flow in ( , ) yields an optimal refined acceptable 1-to-m match  given 

by  = {(τt, κc) ∈  : f {(τt, κc)} = 1}. If there exists no feasible flow in ( , ), then there 

is no optimal refined acceptable 1-to-m match.

4.6 Practical issues: deciding about ϒ and m

Theorem 6 speaks of “sufficiently large ϒ,” and in its proof ϒ is very large, specifically ϒ > 

mTK +  δtc. For stable computation, use a much smaller ϒ, perhaps ϒ =  δtc or 

smaller. Theorem 6 says that as ϒ increases, eventually the imbalances 

 are the best possible imbalances and further increases in ϒ do 

not change the imbalances, so it is reasonable to match a few times, starting with a small ϒ 

and gradually increasing it until the imbalances stop changing.

How many controls, m, should be matched to each treated unit? Match quality decreases as 

m increases, so one might match m = 1 to 1, examine the resulting average imbalances, 

, then match m = 2 to 1, and so on, stopping 

when the quality of the match is not acceptable.

4.7 Computation in sparse networks

Algorithms are standardly evaluated in terms of an upper bound on the rate of growth of the 

number of arithmetic steps required to solve them as the size of the problem increases (Cook 

et al. 1998, §1.2; Korte and Vygen 2008, §1.2). If steps =O (size3) then the number of 

arithmetic steps required to solve a problem grows by at most a constant multiple of the 

cube of the size of the problem. The point we want to make in the current section is that: (i) 

the new surgeons problem, and more generally the matching-within-natural-blocks problem, 

is sparse, with far fewer edges than typical matching problems, so (ii) vastly larger problems 

can be solved in these sparse networks than can be solved in dense networks commonly 

appearing in statistical matching problems, so (iii) we may balance covariates over an 

enormous number of natural blocks.

The network ( , ) is dense if | | = O(| |2) and sparse if | | = O(| |). Our network is 

sparse; see §4.1. One can solve the minimum cost flow problem in O(| | log [| | {| | + | 

| log (| |)}]) steps; see Korte and Vygen (2008, Theorem 9.17, p. 214). If | | = | |2, this is 

O{| |2 log (| |)}, whereas if | | = | | it is O[| | log {| |}]. In §4.4, | | > T + C = 

130106 so | |2 log (| |) is much larger than | | log (| |).

5 Do new and experienced surgeons differ?

5.1 Brief review of sensitivity analysis and attributable effects

There are I = 6260 pairs i = 1, …, I of two patients, j = 1, 2, matched for covariates, xij, one 

treated with Zij = 1, the other control with Zij = 0, so Zi1 + Zi2 = 1. Write  for the event that 

Zi1+Zi2 = 1 for each i. Subject ij would exhibit binary response rTij if treated with Zij = 1 or 

binary response rCij if control with Zij = 0, so the observed response from ij is Rij = Zij rTij+ 

(1 − Zij) rCij and the effect of the treatment on ij, namely θij = rTij − rCij, is not observed; see 
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Neyman (1923) and Rubin (1974). Write θ = (θ11, θ12, … θI2) for the 2I-dimensional 

parameter and write  = {(rTij, rCij, xij), i = 1, …, I, j = 1, 2}. In the current study, rTij = 1 if 

ij would die within 30 days of surgery performed by the young surgeon in pair i, rTij = 0 

otherwise, and rCij = 1 if ij would die within 30 days of surgery performed by the 

experienced surgeon in pair i, rCij = 0 otherwise. Then (rTij, rCij) = (1, 0) if patient ij would 

die if surgery were performed by the young surgeon in pair i but not if performed by the 

experienced surgeon in pair i. The notation refers to two specific surgeons in pair i working 

at the same hospital.

If treatments are randomly assigned, then Pr (Zij = 1 | , ) = 1/2 with independent 

assignments in distinct pairs. The sensitivity analysis for nonrandom treatment assignment 

permits measured deviations from random assignment, specifically (1 + Γ)−1 ≤ Pr (Zij = 1 | 

, ) ≤ Γ/(1 + Γ) for several Γ ≥ 1; see Rosenbaum (2002). A calculation in Rosenbaum 

and Silber (2009a) permits Γ to be interpreted in terms of an unobserved covariate 

associated with treatment and outcome. In the current paper, for a specified deviation from 

random assignment, Γ ≥ 1, the sensitivity analysis will yield an upper bound on the P-value 

testing some hypothesis about treatment effects, so that, if that upper bound is at most α, 

then a bias of size Γ is too small to lead to acceptance of the hypothesis at level α. A 

sensitivity analysis asks: How much bias from non-random treatment assignment would 

need to be present to alter the conclusions of a randomization test, that is, to accept a null 

hypothesis that the randomization test has rejected?

Fisher’s (1935) hypothesis of no treatment effect says H0 : rTij = rCij for all ij or equivalently 

H0 : θ = 0. If H0 were false, an interesting quantity is the attributable effect, 

; it is the number of additional deaths 

among patients of young surgeons (Zij = 1) that would not have occurred had the 

experienced surgeon in the pair been picked to perform the surgery. If H0 were true, then A 

= 0. If H0 were false, then A would be an integer valued random variable. Of course, A is 

unobservable because θij = rTij − rCij is never observed; however, it is possible to draw 

inferences about A; see Rosenbaum (2002). This method uses a pivotal argument such that 

the observed number of deaths among patients of new surgeons, namely Σij ZijRij, minus the 

unknown true value of A, is a random variable that satisfies the null hypothesis of no effect, 

Σij ZijRij − A = Σij Zij rCij, so that, for example, in a randomized experiment Σij Zi j rCij is a 

constant plus a binomial random variable, as in McNemar’s test. A null hypothesis about A 

is rejected if the individual null hypotheses H0 : θ = θ0 compatible with this value of A are 

all rejected. The calculation involves a binomial tail probability computed from a table of 

adjusted counts; see Rosenbaum (2002, §6 and Table 5).

5.2 Sensitivity analyses for three-sided tests

Perhaps new surgeons are less capable and cause excess surgical deaths, so that A > 0. It is 

not inconceivable that new surgeons are more capable, having been more recently trained, so 

A < 0. Recent training might be relevant to laparoscopy and related techniques, in which a 

surgeon inserts a thin robotic surgical tool containing a camera, and manipulates the tool 

remotely. So it is of interest to test no effect H0 against a two-sided alternative.
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Failure to reject H0 does not mean H0 is approximately true. Rather, we wish to be assured 

that A is tolerably close to zero. For this, some form of equivalence test is needed.

Building upon the work of Bauer and Kieser (1996), Goeman, Solari and Stijnen (2010) 

proposed a “three-sided test” for both difference and equivalence. It combines a two-sided 

test of no effect with the two-one-sided test procedure for testing inequivalence, all tests 

being done at the α-level, with no need of correction for multiple testing. Their underlying 

idea is both simple and clever. Three mutually incompatible hypotheses may be tested at 

level α without correction for multiple testing, because at most one hypothesis is true, so the 

α-risk of falsely rejecting a true null hypothesis is incurred at most once despite testing three 

null hypotheses. In brief, we may perform a two-sided test of no effect to establish both an 

effect and its direction, and perform a test of the null hypothesis of inequivalence to 

establish near equivalence, and do this without adjustment for multiple testing.

For sensitivity analyses, one attraction of the three-sided test is that we may use a standard 

method of sensitivity analysis three times, each time placing an upper bound on the relevant 

P-value in the presence of a bias in treatment assignment of at most Γ ≥ 1 for several values 

of Γ. The standard method says: if the null hypothesis is true and the bias in treatment 

assignment is at most Γ, then the chance that the upper bound on the P-value exceeds α is at 

most α. Logically, because at most one of the three null hypotheses is true, the standard 

method is either saying something trivial if all three null hypotheses are false, or it is 

referring to the one true null hypothesis despite our ignorance of the identity of that 

hypothesis. See Rosenbaum and Silber (2009b) for related discussion.

Fisher’s H0 : θ = 0 is tested against a two sided alternative. The null hypothesis of inequiva-

lence in the direction of harm done by new surgeons is defined to be θ ≥ 0 (i.e., θij ≥ 0 for all 

ij) with A ≥ ι where ι > 0 is a standard of inequivalence. The null hypothesis of 

inequivalence in the direction of benefit from new surgeons is defined to be θ = 0 with A ≤ 

−ι where again ι > 0. At most one hypothesis is true.

In the US in 2008, the annual mortality rate between age 75 and 76 was 3.95%; see Arias 

(2012, Table 2). Most people aged 75 in 2008 did not undergo surgery. A risk associated 

with surgery in Medicare is small if it is small compared with the annual risk faced by the 

Medicare population. For illustration, we consider two definitions of inequivalence, ι, 

namely a quarter and a half of the annual mortality in the population at age 75, that is ι = 62 

= 6260 × 0.039506/4 or ι = 124 = 6260 × 0.039506/2 extra deaths.

5.3 Mortality results

The overall 30-day mortality rate among the 2 × 6260 patients was 3.65%, made up of 

3.59% for 6260 patients of experienced surgeons and 3.71% for 6260 patients of new 

surgeons. So the mortality rates for new and experienced surgeons look similar. The 

randomization test based on McNemar’s test has two-sided P-value 0.7689, so the null 

hypothesis of no effect is plausible even in the absence of unmeasured biases. From §3.2, 

this comparison refers to pairs of surgeons working at the same hospital, with identical 

distributions of operative procedures, and patients with similar comorbid conditions.
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Table 4 gives the sensitivity analysis. For Γ = 1, this is a three-sided randomization test, and 

in the third column of Table 4, the hypothesis that experienced surgeons caused at least 62 

extra deaths is rejected with P-value 0.0003, while in the fourth column the hypothesis that 

new surgeons caused at least an extra 62 deaths is rejected with P-value 0.0033. Biased 

assignment of patients to new or experienced surgeons might mask a substantial difference 

in mortality, making it appear to be no difference. In the fifth and sixth columns of Table 4, 

a bias of Γ = 1.7 is too small to mask a difference of ι = 124 extra deaths in either direction. 

Using the calculation in Rosenbaum and Silber (2009a), a bias of Γ = 1.7 could be produced 

by an unobserved covariate that more than tripled the odds of treatment by a young surgeon 

and more than tripled the odds of death.

In short, in the example, there are three findings. There is no evidence that mortality rates 

for new and experienced surgeons differ. A difference of 62 extra deaths caused by either 

type of surgeon is rejected in a randomization test, but a small bias of Γ = 1.2 could mask 

this difference, making it appear to be no difference. A larger difference of 124 extra deaths 

is rejected unless the bias is larger than a moderate Γ = 1.7, that is, the bias that could result 

from failing to match for an unobserved covariate that tripled the odds of treatment by a 

young surgeon and tripled the odds of death.

6 Discussion of other applications of the methodology

6.1 Nested nominal covariates in other applications

The priorities in Table 1 were based on the judgment of the surgeon on the research team. 

Expert judgment is one good way to create and order ν1, …, vK. Are there other ways?

Important covariates predict both treatment assignment and outcomes. Covariates that 

predict treatment show up as important in propensity scores estimated from the current data 

(Rosenbaum and Rubin 1985), and covariates that predict outcomes show up as important in 

prognostic or risk scores estimated from external data (Hansen 2008). The scores suggest 

covariates deserving priority for balancing, with the distance δtc seeking close individual 

pairs on the scores. Traskin and Small (2011) approximate a propensity score using a 

regression tree, and such a tree creates a hierarchy of nominal variables to serve as ν1, …, 

vK. Alternatively, a lasso fit could prioritize the variables in either score.

A covariate that describes blocks or is constant for each block, such as hospital group in 

Table 1, has a marginal distribution that is balanced simply by matching within hospitals. 

However, including hospital group in Table 1 meant that its interactions with 14 other 

covariates were also balanced. A subgroup analysis that separately analyzed the two groups 

of pairs from the two types of hospitals would exhibit covariate balance within each 

subgroup separately, an important consideration for subgroup analyses.

6.2 Other sources of sparsity in optimal balanced matching

In the example, sparsity is created by the desire to match within natural blocks. Sparsity also 

arises in other ways. If there were one or two important continuous covariates, perhaps a 

propensity or risk score, then one might restrict the list of potential controls for a given 

treated subject to the short list comprised of the nearest c controls on those covariates. With 
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fixed c, say c = 100, a sparse network is obtained. Refined covariate balance in such a 

network would obtain pairs that are close on the key covariates while balancing many 

nominal categories. As discussed by Zubizarreta et al. (2014), a match that reduces the 

heterogeneity of matched pair differences in outcomes, perhaps by matching closely for 

predictors of those outcomes, will both increase the power of a randomization test of no 

effect and increase its insensitivity to unmeasured biases.

With many nominal covariates, one might require exact matches for the most important 

nominal covariates, merely balancing the rest; then the short list of potential controls is 

comprised of the exact matches for those most important nominal covariates. If the 

treatment is applied to everyone in a state or province, then one might wish to match treated 

subjects near the state boundary to nearby controls just across that boundary, and again this 

creates sparsity; see Keele et al. (2014) for one such study.
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Appendix: Proofs of main results

Proof of Lemma 4

Suppose there is a feasible flow f for the network ( , ) and define  = {(τt, κc) ∈  : f 

{(τt, κc)} = 1}. By the definition of  in §4.4, if (τt, κc) ∈  then (τt, κc) ∈ . There is only 

one edge exiting from control κc ∈  ⊂ , namely (κc, λKℓ) for the category Kℓ to which κc 

belongs, and because f is feasible we have 0 ≤ f (κc, λKℓ) ≤ cap {(κc, λKℓ)} = 1, so either f 

(κc, λKℓ) = 0 or f (κc, λKℓ) = 1. If f (κc, λKℓ) = 1 then κc received its one unit of flow from a 

unique treated node τt ∈  ⊂ . Moreover, because f is feasible and demand (τt) = −m, it 
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follows that m =  f (τt, κc) for each τt ∈ , so  is indeed an acceptable 1-to-m match 

such that (τt, κc) ∈  implies (τt, κc) ∈ . Conversely, suppose there is an acceptable 1-to-

m match . Then, by the definition in §4.1 of an acceptable 1-to-m match, (τt, κc) ∈ 

implies (τt, κc) ∈ . For τt ∈  and κc ∈  define f (τt, κc) = 1 if (τt, κc) ∈  and f (τt, κc) 

= 0 otherwise. By the definition of an acceptable 1-to-m match, each treated unit τt ∈ 

issues m units of flow, m =  f (τt, κc), so (2) is satisfied for n = τt. By the definition of an 

acceptable 1-to-m match, each control κc is matched to at most one treated unit τt, so 1 ≥ 

f (τt, κc) for each κc ∈ , and the zero or one unit of flow leaving κc may be passed through 

(κc, λKℓ) ∈  with its capacity of cap {(κc, λKℓ)} = 1. The indirect paths in triangles, 

 and , have infinite capacity, so all of the flow reaching λkℓ may feasibly 

be passed on to the corresponding λk−1,ℓ′ and on to the sink ω, so a feasible flow f may be 

completed by passing flow along indirect paths.

Proof of Lemma 5

Compute βkℓ in (1) for match  recalling that  for k = 1, …, K. Write 

 and  so that  and 

 or equivalently . 

The total cost of f is the sum of the costs in two disjoint subsets of edges of ( , ), namely 

 f (e) cost (e) =  f (e) cost (e) +  f (e) cost (e). The total cost of f over  ⊂ , 

namely  f {(τt, κc)} cost {(τt, κc)}, is precisely  δtc by the definition of f. The 

remaining cost of the flow f is  f (e) cost (e), and in  −  there is nonzero cost only 

from edges of the form  in the indirect paths in triangles because 

. The triangle defined by λkℓ, , and  receives |{(τt, 

κc) ∈  : νk (κc) = λkℓ}| units of flow entering λkℓ, and , so 

from (1), at least  units of flow pass through  with total 

. This yields the inequality (3). In a 

minimum cost feasible flow,  as  pointlessly increases 

the cost. This proves the case of equality in (1) for a minimum cost flow.

Proof of Theorem 6

Because the specific value of ϒ > 1 is not relevant for feasibility, the parts of the proposition 

that discuss existence merely restate Lemma 4. Fix ϒ > mTK +  δtc. With this ϒ, let f 

be a minimum cost feasible flow in ( , ), and let  = {(τt, κc) ∈  : f {(τt, κc)} = 1} be 

the corresponding acceptable 1-to-m match. Let βkℓ be the imbalances (1) for the match . 

The triangle defined by λkℓ, , and  receives |{(τt, κc) ∈  : νk (κc) = λkℓ}| units of flow 

entering λkℓ, and so from the proof of Lemma 5, 

with a cost of .
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The cost of f is  by Lemma 5. Because the total 

flow is only mT, for each k we have . Because  ⊂ , we have 

 δtc ≤  δtc. We now use these to bound the total cost of f strictly before all of the 

triangles defined by λkℓ, , and , that is,

(4)

(5)

where (4) uses the two upper bounds, the first inequality in (5) simply uses ϒK−k ≥ 1, and 

the second inequality in (5) uses ϒ > mTK +  δtc. The cost of each single unit of flow 

passing through any edge  is ϒK−k+1, and from (5) it exceeds the total cost of 

everything before  in ( , ). Using (4)–(5) with k = 1 shows that it is not possible 

to further reduce , because if any feasible flow f′ had a lower value of 

then f′ would have a lower total cost than f, and this is not possible because f is a minimum 

cost flow. Similarly, it is not possible to further reduce  for the 

same reason: even a 1 unit reduction in any of these quantities would reduce the cost by at 

least ϒK−k+1, and this is greater than the total cost of all flow routing decisions made before 

the λkℓ ∈ , so this would (impossibly) reduce the cost of a minimum cost flow. In short, 

the match  from a feasible minimum cost flow f exhibits refined balance in the sense of 

Definition 2. A match achieving refined balance in Definition 2 must, by virtue of this 

definition, have achieved the smallest possible value of , and in 

particular  has done this; moreover,  has minimized 

, so it has minimized  δtc among all 1-to-

m acceptable matches with refined balance.
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Figure 1. 
A small network for refined covariate balance with treated subject τ1, …, τ7, potential 

controls κ1, …, κ11, two balance layers λ1ℓ and λ2ℓ, and the sink ω.

Pimentel et al. Page 22

J Am Stat Assoc. Author manuscript; available in PMC 2016 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pimentel et al. Page 23

T
ab

le
 1

T
he

 K
 =

 6
 n

om
in

al
 v

ar
ia

bl
es

 ν
k 

th
at

 w
er

e 
ba

la
nc

ed
 a

s 
cl

os
el

y 
as

 p
os

si
bl

e 
by

 th
e 

m
at

ch
in

g 
al

go
ri

th
m

, w
he

re
 ν

1 
co

ns
is

ts
 o

f 
L

1 
=

 1
76

 s
ur

gi
ca

l p
ro

ce
du

re
s,

 

an
d 

ν 6
 is

 th
e 

in
te

ra
ct

io
n 

of
 1

76
 s

ur
gi

ca
l p

ro
ce

du
re

s 
w

ith
 1

4 
bi

na
ry

 c
ov

ar
ia

te
s,

 m
ak

in
g 

L
6 

=
 1

76
 ×

 2
11

 c
at

eg
or

ie
s,

 o
r 

ab
ou

t 2
.9

 m
ill

io
n 

ca
te

go
ri

es
. A

n 
×

 

in
di

ca
te

s 
th

at
 th

e 
ro

w
 v

ar
ia

bl
e 

co
nt

ri
bu

te
s 

to
 n

om
in

al
 v

ar
ia

bl
e 

ν k
. T

he
 a

lg
or

ith
m

 m
in

im
iz

ed
 th

e 
to

ta
l i

m
ba

la
nc

e 
 f

or
 ν

k′
 a

m
on

g 
al

l m
at

ch
es

 th
at

 

m
in

im
iz

ed
 

 f
or

 ν
k 

fo
r 

k 
<

 k
′. 

T
he

 b
al

an
ce

 o
bt

ai
ne

d 
by

 m
at

ch
in

g 
is

 m
uc

h 
be

tte
r 

th
an

 th
e 

be
st

 b
al

an
ce

 o
bt

ai
ne

d 
in

 1
0,

00
0 

si
m

ul
at

ed
 r

an
do

m
iz

ed
 

ex
pe

ri
m

en
ts

 w
ith

 th
e 

sa
m

e 
m

ar
gi

na
l t

ot
al

s.

C
ov

ar
ia

te
L

ev
el

s

N
es

te
d 

no
m

in
al

 c
ov

ar
ia

te
, ν

k
k 

= 
1,

 …
, 6

1
2

3
4

5
6

Pr
oc

ed
ur

e
17

6
×

×
×

×
×

×

H
os

pi
ta

l G
ro

up
2

×
×

×
×

×

M
al

e
2

×
×

×
×

E
R

-a
dm

it
2

×
×

×
×

T
ra

ns
fe

r
2

×
×

×
×

Pa
ra

pl
eg

ia
2

×
×

×

St
ro

ke
2

×
×

×

PP
F

2
×

×
×

C
C

2
×

×

C
H

F
2

×
×

D
em

en
tia

2
×

×

R
en

al
2

×
×

L
iv

er
2

×

Pa
st

 A
2

×

Pa
st

 M
I

2
×

# 
C

at
eg

or
ie

s 
L

k
17

6 
=

 1
76

17
6 

×
 2

 =
 3

52
17

6 
×

 2
4  

=
 2

, 8
16

17
6 

×
 2

7 =
 2

2,
 5

28
17

6 
×

 2
11

=
 3

60
, 4

48
17

6 
×

 2
14

 =
2,

 8
83

, 5
84

Im
ba

la
nc

e 

0
12

52
17

6
66

4
12

42

%
 o

f 
m

ax
im

um
0.

0%
0.

1%
0.

4%
1.

4%
5.

3%
9.

9%

In
de

pe
nd

en
ce

 χ
2

0.
0

4.
9

43
.3

14
2.

3
58

8.
9

11
58

.7

J Am Stat Assoc. Author manuscript; available in PMC 2016 April 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pimentel et al. Page 24

C
ov

ar
ia

te
L

ev
el

s

N
es

te
d 

no
m

in
al

 c
ov

ar
ia

te
, ν

k
k 

= 
1,

 …
, 6

1
2

3
4

5
6

B
al

an
ce

 in
 1

0,
00

0 
si

m
ul

at
ed

 r
an

do
m

iz
ed

 e
xp

er
im

en
ts

 w
ith

 th
e 

sa
m

e 
m

ar
gi

ns

Si
m

ul
at

ed
 χ

2  
st

at
is

tic
s 

fo
r 

in
de

pe
nd

en
ce

M
ea

n 
χ2

17
4.

9
30

2.
9

76
7.

5
10

62
.0

19
46

.0
28

14
.0

M
in

im
um

 χ
2

11
7.

0
22

6.
5

64
5.

7
93

3.
6

17
77

.0
26

45
.0

Si
m

ul
at

ed
 T

ot
al

 I
m

ba
la

nc
e 

M
ea

n 

76
8

10
51

17
49

20
86

30
10

38
12

M
in

im
um

 

54
0

81
4

15
00

18
26

27
52

35
78

J Am Stat Assoc. Author manuscript; available in PMC 2016 April 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pimentel et al. Page 25

T
ab

le
 2

C
ov

ar
ia

te
 im

ba
la

nc
e 

be
fo

re
 a

nd
 a

ft
er

 m
at

ch
in

g.
 T

he
 ta

bl
e 

co
m

pa
re

s 
ne

w
 s

ur
ge

on
s 

to
 e

xp
er

ie
nc

ed
 s

ur
ge

on
s,

 b
ef

or
e 

an
d 

af
te

r 
m

at
ch

in
g,

 in
 te

rm
 o

f 

co
va

ri
at

e 
m

ea
ns

, s
ta

nd
ar

di
ze

d 
di

ff
er

en
ce

s 
in

 m
ea

ns
 a

s 
a 

fr
ac

tio
n 

of
 th

e 
st

an
da

rd
 d

ev
ia

tio
n 

be
fo

re
 m

at
ch

in
g,

 a
nd

 tw
o-

sa
m

pl
e 

P
-v

al
ue

s.
 N

ew
 =

 n
ew

 

su
rg

eo
n,

 E
x-

B
 =

 e
xp

er
ie

nc
ed

 s
ur

ge
on

, b
ef

or
e 

m
at

ch
in

g,
 E

x-
A

 =
 e

xp
er

ie
nc

ed
 s

ur
ge

on
, a

ft
er

 m
at

ch
in

g.
 S

ta
nd

ar
di

ze
d 

di
ff

er
en

ce
s 

ab
ov

e 
1/

10
th

 o
f 

a 
st

an
da

rd
 

de
vi

at
io

n 
ar

e 
in

 b
ol

d.

C
ov

ar
ia

te
 M

ea
n

St
an

da
rd

iz
ed

 D
if

fe
re

nc
e

2-
sa

m
pl

e 
P

-v
al

ue

C
ov

ar
ia

te
N

ew
E

x-
B

E
x-

A
B

ef
or

e
A

ft
er

B
ef

or
e

A
ft

er

Sa
m

pl
e 

si
ze

6,
26

0
12

3,
84

6
6,

26
0

A
ge

77
.8

83
76

.9
92

77
.9

26
0.

11
6

−
0.

00
5

0.
00

0
0.

61
7

M
al

e
0.

34
5

0.
35

8
0.

34
6

−
0.

02
7

−
0.

00
3

0.
03

8
0.

88
0

E
R

-a
dm

it
0.

53
8

0.
32

3
0.

53
7

0.
44

4
0.

00
3

0.
00

0
0.

88
6

T
ra

ns
fe

r
0.

00
8

0.
00

8
0.

00
7

0.
00

0
0.

01
3

1.
00

0
0.

53
2

R
is

k
0.

04
2

0.
03

0
0.

04
0

0.
21

4
0.

03
1

0.
00

0
0.

23
7

C
H

F
0.

14
9

0.
12

3
0.

14
3

0.
07

6
0.

01
9

0.
00

0
0.

31
1

L
iv

er
0.

04
3

0.
03

6
0.

03
8

0.
03

5
0.

02
6

0.
00

5
0.

16
1

C
an

ce
r

0.
16

4
0.

17
5

0.
16

4
−

0.
02

9
0.

00
1

0.
03

0
0.

98
1

Pa
st

 A
0.

17
0

0.
17

1
0.

16
1

−
0.

00
2

0.
02

4
0.

88
0

0.
17

8

D
ia

be
te

s
0.

18
9

0.
19

7
0.

19
9

−
0.

01
9

−
0.

02
4

0.
14

5
0.

19
8

R
en

al
0.

06
9

0.
05

8
0.

06
4

0.
04

6
0.

02
0

0.
00

0
0.

28
2

C
O

PD
0.

16
7

0.
14

7
0.

16
0

0.
05

5
0.

01
9

0.
00

0
0.

29
8

C
C

0.
02

8
0.

02
8

0.
02

2
−

0.
00

6
0.

03
1

0.
69

1
0.

07
5

D
em

en
tia

0.
10

1
0.

06
5

0.
09

3
0.

13
1

0.
03

2
0.

00
0

0.
10

3

Pa
ra

pl
eg

ia
0.

01
9

0.
01

1
0.

01
5

0.
06

3
0.

03
1

0.
00

0
0.

11
4

Pa
st

 M
I

0.
05

8
0.

05
4

0.
05

1
0.

01
5

0.
03

1
0.

26
5

0.
08

3

PP
F

0.
02

3
0.

02
0

0.
02

1
0.

02
3

0.
01

5
0.

06
9

0.
42

9

St
ro

ke
0.

06
8

0.
05

8
0.

06
3

0.
04

1
0.

01
9

0.
00

1
0.

31
2

J Am Stat Assoc. Author manuscript; available in PMC 2016 April 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pimentel et al. Page 26

Table 3

Mortality in 6260 pairs of matched pairs of patients, one treated by a new surgeon, the other by an exerienced 

surgeon. The table counts pairs, not patients.

Experienced Surgeon

New Surgeon

Total PercentDead Alive

Dead 20 205 225 3.59%

Alive 212 5823 6035 96.41%

Total 232 6028 6260

Percent 3.70% 96.30% 100.00%
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