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Adaptive quantum computation 
in changing environments using 
projective simulation
M. Tiersch1,2, E. J. Ganahl1 & H. J. Briegel1,2

Quantum information processing devices need to be robust and stable against external noise and 
internal imperfections to ensure correct operation. In a setting of measurement-based quantum 
computation, we explore how an intelligent agent endowed with a projective simulator can act 
as controller to adapt measurement directions to an external stray field of unknown magnitude 
in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and 
explore composition strategies in the projective simulator to improve the agent’s performance. We 
demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for 
Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for 
quantum information tasks.

When building devices for quantum information processing one has to take changing environment con-
ditions and device imperfections into account. It is therefore necessary to include adaptive mechanisms 
that characterize and calibrate the device from within. Furthermore, it is desirable for these devices to 
obtain a certain degree of autonomy in maintaining their functional state despite detrimental environ-
ment influences, in particular, when they are assembled to a larger quantum information processing 
infrastructure. In the attempt to miniaturize current implementations of quantum devices, we will reach 
the point where these devices will be of microscopic scale and require short reaction times. For such 
microscopic systems we can no longer assume that their internal controllers are full-fledged universal 
computers that can carry out arbitrary programs. Instead, controllers will be small physical systems that 
are specialized for their respective purpose with a program that emerges from the controller’s analog 
dynamics.

In this paper we explore the applicability of a controller in form of an intelligent learning agent that 
has access to a projective simulator1–4. Within this agent framework, the aim is to demonstrate adaptive 
calibration and compensation strategies against stray external fields when carrying out quantum infor-
mation tasks. The agent shall thereby implement a simple form of adaptive error avoidance and implicit 
parameter estimation.

Algorithms from machine learning have been used to find strategies for parameter estimation, and 
optimal strategies for parameter estimation are known for specific cases, see e.g.5–10. Here, however, we 
focus on strategies that arise naturally from the adaptive dynamics of the underlying physical system, for 
which we choose a projective simulator. The projective simulator is a platform that has been proposed 
as a physical model for reinforcement learning11,12, and it effectively reproduces input—output—reward 
correlations from an internal adaptive stochastic process. With the restriction to this particular system, 
one cannot hope for the best possible strategy to emerge while keeping the rules governing the dynam-
ics reasonably simple and computational overhead low. Both requirements are necessary to allow for 
an actual physical realization. As an additional feature, the projective simulator offers a natural route 
to quantization1 and thereby a way to intelligent agents that benefit from internal quantum dynamics, 
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as demonstrated in the reflective quantum projective simulator13,14. Agent quantization is not explored 
further in the present work as we focus on the application of a classical agent to quantum information 
processing first. For recent comprehensive reviews in the domain of quantum physics and artificial intel-
ligence or machine learning see Ref. 15,16.

As illustration of our method of adaptive quantum information processing we study Grover’s quan-
tum search algorithm17,18 in the paradigm of measurement-based quantum computation. Grover’s algo-
rithm provides a fast way to find a marked item in an unsorted database with N elements. In particular, 
it provides a quadratic speed-up with O N( ) database look-ups over a search by means of a classical 
computer with O(N) look-ups. First proof-of-principle implementations of Grover’s algorithm with 
nuclear magnetic resonance techniques19,20 and entangled photons21 employed the circuit model of quan-
tum computation, where individual unitary quantum logic gates are applied to a register of qubits to 
process information.

Measurement-based quantum computation (MBQC)22,23 is a different paradigm of quantum compu-
tation, where the computation is carried out by measuring single qubits of an initially highly entangled 
resource state24. The first experimental demonstration of MBQC in a system of entangled photons25,26 
(and with trapped ions27) also demonstrated the Grover algorithm in its smallest realization with a data-
base of 4 entries (2-qubits) by using a 4-qubit cluster state as computation resource.

As preparation for the full measurement-based algorithm we first study a basic setting. We situate a 
quantum system, a single qubit, in an unknown external magnetic field. An artificial agent, the control-
ler, is endowed with a projective simulator and the ability to measure the quantum system and thereby 
prepare quantum states. We hardwire the learning process, i.e., the update rule in the reinforcement 
learning process of the projective simulator, such that the agent effectively carries out the following tasks: 
(i) Adapt measurement directions to changes of the external magnetic field, and dynamically improve 
the sensing resolution. (ii) Learn to adapt simultaneously for multiple measurement directions needed 
for general MBQC-algorithms in a feedback scheme. (iii) Carry out a quantum information task, the 
Grover algorithm17,18 in the setting of measurement-based quantum computation, with unknown stray 
magnetic fields. This provides a completely worked-out example, starting from the physical system that 
generates the actions of an adaptive “intelligent” agent, here a projective simulator, to a controller tailored 
to a specific quantum information task, e.g. measurement-based Grover’s search algorithm.

Results
First, we describe an approach that allows the projective simulator to effectively obtain a notion of the 
strength of an external magnetic field and hence carry out a primitive form of parameter estimation. 
However, there is a conceptual difference between our approach and parameter estimation. After the 
agent has learned, the information on the strength of the magnetic field will not be available as a num-
ber that the agent gives as an output. Instead, this information is only indirectly incorporated into the 
dynamics and decision patterns of the agent, and it can be exploited to do certain things that are adapted 
to the external field. Therefore, we will analyze the learning process of the agent from two different per-
spectives: From an operational perspective we characterize how well the agent adapts its actions to the 
external field, and from an informational perspective we quantify how much of the information about the 
external field is really contained in the parameters that define the dynamics of the agent.

We start with a detailed description of the setting, that is, of the agent and its interaction with the 
measurement apparatus, the dynamics of the projective simulator, and an analysis of the learning process.

Agent and Projective Simulator Dynamics.  In the present setting the magnetic field direction is 
promised to be fixed along the z-axis, and the agent needs to estimate its strength B. The following steps 
are visualized in Fig. 1. The agent starts by preparing a single qubit in the state + = ( + )/0 1 2 , 

Figure 1.  Setup of the agent that is endowed with a projective simulator and operates a measurement 
apparatus to estimate the state of a single qubit. 
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which in the presence of the field evolves according to the Hamiltonian H =  ℏωσz/2, where the frequency 
ω is proportional to the magnetic field strength B. After some fixed time interval Δ t, the initial state has 
evolved into

ϕ| 〉 =
+

,
( )

ϕ0 e 1
2 1

i

up to a global phase, with ϕ =  ωΔ t. Estimating the field strength B amounts to estimating |ϕ〉  and 
obtaining information about the angle ϕ between this state and the initial state in the equatorial plane 
of the Bloch sphere. In a linear optics setup28, the unknown angle ϕ would correspond to an unknown 
phase shifter in the beam line.

The agent measures the qubit in the unknown state |ϕ〉  in various directions and incorporates the 
measurement outcomes to change its choice of measurement directions. The measurements applied by 
the agent are in general described by POVMs29. For simplicity, we will restrict our analysis to projective 
measurements. We shall comment on the general case at the end of the paper.

The challenge is to effectively realize a probability distribution for the unknown angle ϕ without 
explicitly performing computations and analyzing the measurement data. Rather it should emerge 
dynamically as the result of a feedback loop by reinforcing certain actions on the quantum system. 
Therefore, we choose an approach where the internals of the agent are wired such that it tries to optimize 
the direction of a measurement. In the optimal case |ϕ〉  is the + 1 eigenstate of this measurement. Qubit 
observables whose eigenstates with eigenvalues ± 1 lie in the equator of the Bloch sphere are given by

O 2α α α π α π= − + + , ( )α
ˆ

where |α〉  is of the form (1) with angle α. Both eigenstates lie on opposite sides of the equator. The 
probability to obtain the measurement outcome ± 1 is

p 1
1 cos

2 3ϕ α
ϕ α

(± , ) =
± ( − )

, ( )

that is, the closer the angles α and ϕ the higher is the probability to obtain the + 1 measurement out-
come. To simplify notation we often consider the projector onto the + 1 eigenstate

P 4α α= ( )α
ˆ

instead of the observable Ôα, and measurements of the projector with outcomes 1 and 0. For qubits, 
measuring Pαˆ  gives the same statistics of measurement outcomes and resulting states as measuring the 
observable Ôα because there is a unique state orthogonal to |α〉 .

The projective simulator inside the agent employs an adaptive stochastic process that is modeled by a 
random walk of an excitation in a network of so-called “clips”1. For now the clip network takes the form 
of a directed weighted graph depicted in Fig. 2. The random walk starts at the only “percept clip”, which 
is excited by an internal trigger of the agent with a time interval Δ t after the qubit has been prepared (cf. 
Fig. 1). The excitation propagates in the network according to the weights of the links that connect the 
percept clip to the action clips. Once the excitation reaches an action clip, the corresponding action is 
performed and the process inside the projective simulator is finished. A single action is a measurement 
of a certain Pαˆ  at the qubit. If the measurement outcome is + 1 it is fed back as reward to the agent to 
re-enforce and strengthen the link between the percept clip and the last action clip. The process is repeated 
for the next measurement. The probabilities to select certain measurements, however, change as a result 
of previous measurement outcomes. This makes measurements with angles α closer to ϕ more likely. 
These probabilities in effect represent a coarse-grained, discrete probability distribution over angles ϕ.

Figure 2.  Clip network of the projective simulator. The stochastic process is initialized by an excitation at 
the *-clip, which then undergoes random walk dynamics according to the weights of the links. The action 
clip where the excitation arrives determines the measurement direction.
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In detail, each link in the clip network carries a weight hα. The probability to jump from the percept 
clip “*” to the action clip corresponding to Pαˆ  is given by the normalized weight of all edges from the 
percept clip, that is,

p
h

h 5
=
∑

.
( )α

α

α α′ ′

At the beginning of the learning process all weights are initialized with hα(0) =  1. After the measurement 
of Pαˆ  in the n-th round, the measurement outcome (0 or 1) is rescaled by a factor λ and fed back into 
the projective simulator as a reward λn to the transition with weight hα. Regardless of whether or not a 
transition has been taken, all weights are damped by a small amount with rate γ. After the n-th round, 
in which α was the measurement angle, all weights are changed according to the following update rule:

γ δ λ( + ) = ( ) − ( ) − + . ( )α α α αα′ ′ ′ ′[ ]h n h n h n1 1 6n

As a result, the projective simulator converges to a state (set of h-values) that increases the chances of 
obtaining + 1 measurement outcomes and thereby increases the probability to measure in directions 
close to ϕ. From the perspective of the projective simulator only an outcome + 1 denotes success because 
the action that led to this outcome will be reinforced. This “subjective” success probability is

∑ϕ ϕ α≡ (+ ) = (+ , ) .
( )α

αp p p p1 1
7s

An action that leads to a reward (measurement result + 1) is also the correct action from an operational 
point of view. The transition probabilities pα provide an internal representation of a discretized probabil-
ity distribution for the angle ϕ. The change of ps as a function of the number of rounds (measurements on 
the quibt) is depicted in Fig. 3 for several examples of ϕ. The results in Fig. 3 show that the agents learns 
to obtain rewards more often and thus obtains information about the state |ϕ〉  and thereby about B.

Learning Curve Analysis.  In our example we start with 4 projectors at angles every π/2, which cor-
responds to the projectors onto the eigenstates of the observables that are given by the Pauli matrices xσ̂  

Figure 3.  Learning curves. Left: The success probability ps as a function of number of measurement rounds 
on the qubit in state |ϕ 〉  is shown for four angles as averaged over an ensemble of N =  1000 agents running 
in parallel (λ =  1, γ =  1/100). The time scale of learning can be rescaled by increasing both λ and γ. Dashed 
lines give analytical approximations of the asymptotic values (see text). The insets show the transition 
probabilities of the average agent after 1000 learning steps, /∑α α α′ ′h h , where hα is the ensemble average of 
the weight hα, together with the minimal and maximal probabilities obtained in the ensemble (as error bars), 
and the analytical curve of p(+ 1|ϕ, α). From the transition/measurement probabilities of a single agent j we 
infer30,31 its mean angle parg ej

iα = ∑α α
α. The ‘‘vector sum’’ of the mean angles of the N  individual agents 

is the complex number = ∑ /α Nr ej
i j , which determines the ensemble average of the mean angle rargα =  

and its circular standard deviation αΔ = (− ) /r2 ln 1 2. Bottom middle: A higher reward scaling λ and 
lower damping rate γ give a faster initial learning and a higher asymptote, with a slower final convergence 
for the latter. Curves show the differences of all ps with the reference case λ =  1, γ =  1/100. Top right: 
Asymptotic success probability ps

∞ (analytical approximation) as a function of ϕ for 4 projectors. The curve 
is π/2-periodic. Bottom right: Learning time τ90 for the ensemble of agents to reach 90% of ps

∞. Data is the 
average of the learning times of 1000 agents.
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and yσ̂ . If ϕ =  0, measurements of P0
ˆ  will always give outcome + 1 and hence be rewarded. The two 

adjacent projectors at α =  π/2 and 3π/2 are rewarded in half of the measurements, and measurements in 
the direction α =  π are never rewarded. In this situation the projective simulator builds a strong link to 
P0
ˆ , somewhat less strong links to P 2π/

ˆ  and P3 2π/
ˆ  and leaves the link for Pπˆ  at its initial value. The 

coarse-grained discrete probability distribution for ϕ is consequently peaked at ϕ =  0 and—within sta-
tistical fluctuations—symmetric around this direction (Fig. 3 top left inset). If ϕ is between two of the 
projectors, say ϕ ≈  π/4, measurements of P0

ˆ  and P 2π/
ˆ  will only be rewarded with only 85% probability, 

and measurements of the opposite projectors with 15% probability. The distribution of measurement 
probabilities will also be symmetric around the direction π/4 but less pronounced as shown by a broader 
distribution in Fig. 3 (bottom left inset). A broad distribution for measuring in the direction α results in 
a lower success probability for angles that have a large distance to all projectors, e.g., α =  π/4.

At this point a smaller damping rate γ and a larger multiplier of the rewards λ both lead to a larger 
value of rewarded transitions in the steady-state and hence to a larger success probability and a proba-
bility distribution that is more peaked. At the same time increasing both λ and γ speeds-up the learning 
process leading to learning curves with a steeper initial rise. Note, however, that extremal cases with too 
large rewards or too weak damping favor situations in which the agent prefers actions that just by luck 
led to a reward in the past although they are not highly rewarded on average. Un-learning such an initial 
“misunderstanding” and building a probability distribution that reflects the actual probabilities of being 
rewarded may take a long time. This aspect leads to larger fluctuations in the success probability of an 
ensemble of agents and a slower final convergence.

Asymptotic Success Probability.  For the asymptotes of the success probability we can find a first-order 
approximation by assuming a steady state of the transition probabilities pα

∞ and the respective h-values. 
The resulting steady-state success probability is ϕ α= ∑ (+ , )α α

∞ ∞p p p1s . When coarse-graining over 
many measurements the time average of the reward for each action is given by p p1λ ϕ α(+ , ) α

∞, and the 
steady-state probability to measure in direction α is p h h= /∑α α α α

∞ ∞
′ ′
∞. With these assumptions the 

update rule (6) turns into a set of coupled equations for the steady-state values hα
∞,

∑ λ
γ
ϕ α( − ) = 〉|

( )α
α
α α

∞

′
′
∞ ∞h h h1

8
2

in which the loss terms given by the damping γ and the gain terms given by the time-averaged reward 
are in equilibrium. This set of nonlinear equations can be solved numerically and yields a very good 
approximation for the ensemble average as seen in Fig. 3. The asymptotic value obtained in this approx-
imation only depends on the ratio λ/γ.

Time Average vs. Ensemble Average.  The fluctuations of the probabilities to choose certain actions (see 
insets in Fig. 3) show that even after 1000 iterations of the update rule (6) not all agents have converged 
to a single state (Fig. 4). Many steady states occur if there is a whole manifold that is rewarded equally, 
that is, when two or more actions have the same expected reward. For example, for ϕ =  π/4 both actions 
P0
ˆ  and P 2π/

ˆ  have equal chances of being rewarded and thus the there is no preference of either action as 
long as one of them is carried out. Actions that have the same expected reward span a subspace for which 
the sum of the probabilities for doing these actions is approximately constant in the steady state, however, 
their relative ratio is not. The states of the whole ensemble of agents fills this degenerate subspace of 
action probabilities. The ensemble average yields an approximation of ϕ.

Although the ensemble has learned, i.e., the success probability has converged, the dynamics of each 
individual is not necessarily converged to a single state where it remains. In the course of time the state 
of a single agent explores the whole degenerate reward manifold while keeping the success probability 
constant as we numerically illustrate in Fig. 5. We find that the time average of a single agent for long 
times equals the ensemble average because the state of the single agent assumes all the different steady 
states that an ensemble produced after short time as in Fig. 4. Hence, to obtain an ensemble average a 
snapshot after a relatively short time is sufficient. However, if there is a degenerate space in the reward 
scheme, the state of a single agent at a fixed time gives only an imprecise estimate of ϕ, and even its time 
average does when considered only for a short time. A larger damping parameter γ and higher rewards 
λ facilitate a faster exploration of the degenerate reward manifold and thus provide a better time average 
for a single agent for shorter times. For ϕ =  π/4 in Fig. 5(right), the agent selects either α =  0 or π/2 for 
an extended time and then suddenly switches between these equally rewarded choices. This jumping 
behavior occurs for large reward and damping, whereas for smaller values (left) also equal probabilities 
occur for longer durations.

Comparison to State Tomography and Bayesian Analysis.  The way that the agent uses the 
rewards to change its actions to do measurements more often along angles that are close to ϕ, is a way 
of representing information about ϕ. We regard this probability distribution of actions along the discrete 
set of angles as a probability distribution of ϕ30,31, and compare it to standard computational analysis 



www.nature.com/scientificreports/

6Scientific Reports | 5:12874 | DOI: 10.1038/srep12874

procedures employed in state and parameter estimation. By its actions and the returned rewards the 
agent effectively samples the reward distribution p(+ 1|ϕ, α). The same data, namely the measurement 
direction and outcome, however, can also be used in a Bayesian update rule to explicitly build a prob-
ability distribution p(ϕ), or the data can be used to reconstruct the state |ϕ〉  via state tomography. We 
compare the angular distribution of actions that the agent maintains to the angular distribution that a 
Bayesian update would produce, and also to a simple state tomography by estimating expectation values 
from the same measurement data.

A simple form of state tomography can be done by calculating the expectation values xσ̂  and σ〈 〉ˆ y  
from the measurement results of the four projective measurements. Together with the initial assumption 

0zσ =ˆ , these expectation values give an approximation of the state’s Bloch vector. Our four measure-
ment directions α =  0, π/2, π, 3π/2 give the same measurements as the Pauli matrices with expectation 
values

σ σ≡ = − , ≡ = − , ( )π π π/ /ˆ ˆ ˆ ˆ ˆ ˆO O O O 9x y0 2 3 2

where expectation values of the observables can be related to those of the projectors by

O P2 1 10= − . ( )α α
ˆ ˆ

For a total of M M= ∑α α measurements, of which Mα are done in direction α, with individual meas-
urement outcomes rα,m =  ± 1 for observable Ôα, the expectation values can be approximated with the 
mean

σ〈 〉 ≈
∑ − ∑

+
,

( )
π

π

= , = ,
π

ˆ
r r
M M 11x

m
M

m m
M

m1 0 1

0

0

σ〈 〉 ≈
∑ − ∑

+
.

( )

π π

π π

= / , = / ,

/ /

π π/ /

ˆ
r r

M M 12
y

m
M

m m
M

m1 2 1 3 2

2 3 2

2 3 2

The resulting Bloch vector with coordinates ( )σ σ〈 〉, 〈 〉,ˆ ˆ 0x y  provides an angle with the x-axis and thereby 
an estimate of ϕ.

In a Bayesian analysis, we update an initially flat prior distribution p(ϕ) =  1/(2π) with the informa-
tion obtained from each measurement. After each measurement, the distribution is updated with result 
rm∈ {− 1,+ 1} for measurement in direction αm, e.g., for the first update

p r
p r p

p r 131
1

1
ϕ

ϕ ϕ
( ) =

( ) ( )

( )
,

( )

Figure 4.  States of each agent in an ensemble of 1000 agents with four available measurement directions 
after 1000 measurements for ϕ = 0, π/8, π/4, π/2: States are summarized as the position of the resulting 
vectors = ∑α α

αpr ej
i  for each agent j in the complex plane (equatorial plane). The degeneracy with 

respect to the expected reward for ϕ =  π/4 provides a manifold of equally successful states, which is 
populated by the ensemble. Blue dot on the unit circle gives the angle of the ensemble average, the black dot 
is the angle ϕ.
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where we include the knowledge of quantum mechanics and the statistics of measurement outcomes 
for the underlying system with p(r1|ϕ) given by (3). After M measurements the resulting probability 
distribution is

p r r r1
[1 cos ] 14M

m

M

m m1
1 ∏ϕ ϕ α( , …, ) = + ( − ) ,

( )=

with normalization . For an efficient update and a compact representation of the conditioned proba-
bility distribution we expand it in a Fourier series, which has at most M higher harmonics, and construct 
an recursive update rule for the expansion coefficients following the approach in Ref. 8 for parameter 
estimation with a single fixed observable but variable time delays. For our choice of measurement direc-
tions, with α being a multiple of π/2, the Fourier expansion generally contains sin and cos terms. The 
recursive update rules for the expansion coefficients are given in the Methods section.

To compare the estimates of ϕ by these three approaches, we fix the angle ϕ, and let 10 agents with 
a projective simulator do 1500 measurements each and according to the dynamics arising from using 
the projective simulator. After these 1500 measurement each agent has built a probability distribution of 
actions pα, we take the mean of each distribution as the estimate of ϕ. Fig. 6 shows these estimates as 
the blue data points. Because the probability distributions for ϕ that we obtain from the pα have support 
only on 4 angles, which are uniformly and discretely spaced on the circle, each distribution has a large 
variance. We average the distributions of all 10 agents and give the mean and circular standard deviation 
of the resulting distribution as the blue error bar in Fig. 6 for comparison. Clearly, when ϕ is close to one 
of the possible choices of α, the projective simulator captures ϕ accurately, but for values of ϕ =  π/8 or 
π/4 the estimates are biased towards one of the α as in Fig. 4. For ϕ =  π/4 the angular means are widely 
spread, and their distribution has a large variance, which is reminiscent of the distributions given in the 
insets in Fig. 3 and the distribution of means of a large ensemble in Fig. 4.

The estimates for ϕ obtained from the expectation values of the Pauli matrices, i.e., the simple state 
tomography, are calculated from the same measurement record for each agent and are given by the 
orange data points in Fig. 6. For the Bayesian update scheme, we construct the conditional probability 
distributions for ϕ, again from the same measurement record that the projective simulator generated. All 
of the resulting distributions assume an approximate Gaussian shape with a narrow peak (σ ≈  π/100). 
The means are given as red data points in Fig. 6. Both approaches can estimate ϕ correctly within the 
error bars. Surprisingly, for ϕ along one of the α, the estimates from the expectation values spread more 
than in the other two approaches. The reason is that in these cases the projective simulator samples most 
of measurements along a single direction and only few for the other observable, which causes a rather 
large uncertainty in one of the coordinates.

Although state tomography and Bayesian estimation perform generally equally good or better than 
the projective simulator, the big conceptual difference between these approaches is that very little knowl-
edge of quantum physics and measurement statistics is build into the projective simulator. The projective 
simulator does not assume that the rewards originate from measurement probabilities of a quantum state 
and, therefore, it is “model free”. The update rule causes a learning dynamics that drive the agent to meas-
ure more often into directions that give a + 1 measurement outcome and thereby implicitly align meas-
urement directions with ϕ. Even when no optimal measurement direction is available the agent learns 
how to deal with a system such that reward is most likely to occur. In principle, it could even adapt to 
artificial situations, where measurements along the x-axis always give a + 1 outcome and measurements 
along y always give the outcome − 1, something which cannot be explained by measuring a qubit in a 

Figure 5.  Long-term evolution of the state of a single agent in terms of success probability and the 
individual probabilities to do one of the four actions. For ϕ =  π/4 (left) the action pair P0

ˆ  and P 2π/
ˆ  is 

degenerate with respect to the expected reward. For ϕ =  π/8 (middle), i.e., not exactly between two 
projectors, the agent measures more often into the direction α =  0. Fluctuations in the measurement 
probabilities do not necessarily show in the success probability. For comparison, the ensemble averages of 
1000 agents after 1000 measurements are given as dashed lines. Larger rewards λ and damping γ (both 
rescaled by a factor 10) decrease the timescale of the fluctuations while maintaining approximately the same 
time average (right). The agent jumps between different preferred action and stays for extended times.
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defined fixed state. Therefore, it is not surprising that methods that make use of additional information, 
namely measurement probabilities predicted by quantum physics, can extract more information about 
ϕ from the measurement results. Given that an agent with a projective simulator lacks this additional 
information it does comparably well, and, conceivably, it can be improved by changing the update rule 
to incorporate more knowledge about the underlying quantum physics. For example, a positive meas-
urement result and reward in one direction can be combined with a negative reward into the opposite 
direction, or, for each measurement result the reward is distributed according to how close all potential 
actions are to the rewarded one.

Adapting to Changing Fields and Improving Resolution.  An important feature of the projective 
simulator is its ability to forget and thus to adapt to a changed situation. This ability distinguishes the 
present setting from schemes of parameter estimation, where the unknown parameter is assumed to be 
constant. For example, for a changing parameter standard Bayesian updating cannot be applied because 
past information needs to be disregarded and only recent information should be considered for estimat-
ing the current parameter. The projective simulator, in contrast, keeps track of an integrated average of 
past rewards for each action and is endowed with an element, the damping quantified by γ, to forget 
these rewards. The agent has the ability to completely change its behavior regardless of what has been 
rewarded earlier and irrespective of its earlier state. We shall consider two of such relearning scenarios in 
the following. We analyze the relearning by means of two quantities, the asymptotic success probability 
and the learning time it takes the agent to adapt.

Relearning After a Switched Field.  Changes of B result in a different ϕ and require the agent to adapt 
and relearn. For a single sudden change in B the angle ϕ changes only once at a certain time to a new 
angle ϕ′ . Depending on the values of ϕ and ϕ′  the agents shows a rich landscape of relearning patterns 
as illustrated in Fig. 7.

Figure 6.  Comparison of angular probability distributions obtained from the projective simulator (blue, 
top), state tomography by estimation of expectation values (orange, middle), and Bayesian updating 
(red, bottom) for various ϕ. The data points represent the measurement data of 10 agents from 1500 
measurements each, and they give an estimate of the angle ϕ as the mean of the 10 distributions. The 10 
data points are supplemented by a black error bar, which indicates their circular mean and circular standard 
deviation. For the projective simulator, the blue error bar indicates the circular mean and circular standard 
deviation of the discrete probability distribution over the 4 actions, after averaging over all 10 agents. For 
most examples of ϕ the projective simulators generate a distribution of the mean angles that coincide with  
ϕ except for ϕ =  π/8, where similar as in Fig. 4 a bias towards the nearest available projector (α =  0) occurs.
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After the switch the asymptotic success probability is always that of the new ϕ′  and may lie above or 
below the success probability of the old ϕ (Fig. 7 left). The change in Ps

∞ is illustrated in Fig. 7 (right 
top). The sudden drop or increase in success right after the change of the angle and the time to reach a 
success probability depends strongly on the relation of the two angles and how much of the internal state 
(h-values) needs to be changed to reach the new state. These effects in the relearning time appear in 
addition to the known effects of changing the reward scaling λ and damping rate γ.1,2 A summary of the 
relearning times and change in asymptotic efficiencies is given in Fig. 7 (right).

Time-dependent Fields.  An important feature for applications is the agent’s ability to adapt its actions 
to slowly changing external fields. An agent’s state is the result of a dynamical equilibrium between 
rewarded actions in the past and forgetting this information on a time scale given by γ. Therefore, the 
speed at which an agent can adapt is limited by the speed with which it can modify its internal state. The 
agent can adapt to a change in the reward landscape caused by a changing field as long as it has enough 
time to sample the modified reward landscape and modify its internal state accordingly, which depends 
on λ and the timescale given by γ.

Figure 8 shows two examples. The first example (left) is a setting with a fast oscillating field, i.e., one 
with ϕ(n) ~ cos(ωn) as a function of the measurement round n, where only the time average is learned 
because the agent effectively takes samples from the entire reward landscape. The state vector converges 
to angle ϕ =  0 and reaches almost unit length. The second example (right) shows a setting with a linearly 
increasing magnetic field, giving rise to ϕ(n) ~ n. As ϕ moves anticlockwise on the unit circle as a func-
tion of the measurement round, the agent can keep up as quantified by r with a state trajectory that also 
moves counterclockwise albeit with a slight delay and the length of the state vector is longer, i.e., the field 
is learned better, for a slower rate of change.

Initial Choice of Measurement Directions and Composition.  The choice of projectors that the 
agent can measure affects the agent’s success in two ways: On one hand it fixes the available angles and 
thereby ability to measure the correct angle. A finer grained sample of measurement angles is beneficial 
because it will contain an angle that is closer to the actual angle and allow for almost perfect measure-
ments. It also avoids efficiency minima due to the coarse-graining as they appear in Fig. 3 (top, right). 
A finer resolution of measurement angles, however, will introduce many angles that are almost equally 
successful and are hard to distinguish by their average reward. On the other hand, the choice of meas-
urement angles fixes the discrete support on which the probability distribution for ϕ can be built, which 
contains the information on the angle ϕ. A drawback of a coarse-grained support is the arising large 
variance in the distribution. A fine-grained support, however, needs lots of sampling to evaluate each 
individual point in the distribution.

Figure 7.  Relearning after a sudden change of B leading to a shift from ϕ to ϕ′. An ensemble of 1000 
agents first learns with ϕ for M/2 measurements, after which the angle changes to ϕ′  for another M/2 
measurements, λ =  1, γ =  1/100. Left: Examples of learning curves for 4 different switches. ϕ and ϕ′  are 
given in the same color as the corresponding learning curve (M =  10000 for blue and M =  3000 for the other 
examples). Right top: The asymptotic success probability (analytically obtained) shifts due to the change in 
angles. Right bottom: The relearning time τ90 to reach 90% of the asymptotic success probability after the 
field has changed also gives rise to a periodically repeating pattern and shows a structure commensurate 
with the choice of projectors in intervals of π/2.
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As there are advantages and disadvantages to the number of measurement directions, we ask if there is 
an optimal number of fixed projectors. In order to distinguish directions on a circle, at least three direc-
tions are needed. (For just two directions that are equally successful, it is not possible to decide which 
of the two angles between those two directions is the correct one.) We have calculated the asymptotic 
success probability for an agent that has access to 2Nα measurement angles that are equidistantly spaced 
on the unit circle, i.e., it can measure Nα observables of the form (2) with two eigenstates each that are 
opposite on the equator of the Bloch sphere. The angular dependence of the success probability in Fig. 9 
(inset) shows maxima at angles that are measurement directions and minima between two neighboring 
angles. As more observables are added, the worst cases in between two neighboring projectors improve, 
but at the same time also the optimal cases decrease because the optimal angle is not chosen as frequently 
due to slightly better neighboring angles that are also rewarded more often. The success probability aver-
aged over all angles first increases and then decreases as summarized in Fig. 9. In the limit of large Nα 
the success probability converges to 50% because of the constant damping γ. In the example case with 
λ =  1 and γ =  1/100 we can give these recommendations: For optimizing the best case, the number of 2 
projectors is optimal, for the best worst case success probability, 8 projectors are best, and for the best 
average success probability 6 projectors are the best initial choice.

A strategy to mitigate the decrease in overall efficiency for a more refined angular resolution is com-
position, which is one of the original features of projective simulation1,2. With composition the projective 
simulator is endowed with the ability to generate new clips based on the composition of already existing 
ones. For parameter estimation the projective simulator can insert new clips with new measurement 
directions only where additional resolution is needed.

The composition mechanism is an additional dynamical element in the projective simulator. Based on 
the state of the projective simulator it is triggered and inserts a new clip based on existing ones. These 
new elements, i.e., the trigger mechanism, constructing the new clip, and how the new clip is inserted 
into the network must be specified and leave room for arbitrarily complicated rules. We will restrict to the 
simplest mechanisms, which will also draw some intuition from actual conceivable physical dynamics.

Bisecting Composition.  The first composition mechanism simply operates by bisection and refining the 
resolution in the relevant regions. After the agent has learned with its initial set of projectors, the two 
actions clips with the largest h-values are selected and used to compose a new clip between the two. In 
situations with angles ϕ =  π/4 or π/8 the action clips with α =  0 and π/2 will have the largest h-values 
and give rise to the creation of a new clip with α =  π/4, which improves the resolution of the discretiza-
tion in the first quadrant. The success probability before and after one such composition is depicted in 
the inset in Fig. 9 as light blue and red curve, respectively. For the angle ϕ =  π/4 the success probability 
is increased from a minimum of 83.4% to a maximum with 96.2% without adding unnecessary projectors 
in the remaining quadrants, which would lower Ps

∞ to 93.2% of the curve with 8 projectors. When always 

Figure 8.  Adaptation to time-dependent magnetic fields: Trajectories of the state vector = ∑α α
αpr ei  as 

averaged over an ensemble of 1000 agents. The state vector of the ensemble starts in the origin. Left: For 
fast oscillating fields n ncos

4
ϕ ω( ) = − ( )π  with ω =  10 (red) and ω =  1/10 (blue) the agents adapt to the 

average angle ϕ =  0 over 5000 measurements. Data points are explicitly indicated for the first 20 
measurements and joined by a line. Right: Linearly drifting fields ϕ(n) =  ωn can be learned by the agent the 
better the slower they change on the timescale of the learning time: ω =  π/5000 (blue) shown for 10000 
measurements, and ω =  π/500 (red), ω =  π/10 (orange) shown for 4000 measurements each. The ensemble 
follows the field and the state trajectory converges to a limiting cycle.
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adding a single additional angle in the middle of the quadrant in which ϕ lies, worst case scenarios for 
Ps
∞ appear only for angles like π/8 and 3π/8 with 93.32%, which still is a slight improvement over the 

coarse graining with only 4 projectors (93.26%). For ϕ =  π/8 the composition at α =  π/4 is helpful but 
suboptimal. For angles at the projectors, e.g. ϕ =  0, an additional composition is harmful and decreases 
Ps
∞ from 97.1% to 96.1%. A single composition that doubles the angular resolution in one quadrant is 

qualitatively similar to 8 initial measurement angles, but with a higher success probability. A second 
composition step that adds another projector with an angle of odd multiples of π/8, effectively repro-
duces the resolution of 16 initial angles but only in one octant of the unit circle. It improves the worst 
cases at the cost of a slightly reduced overall success probability. Even more bisections will further 
increase the angular resolution but reduce the overall success to the point that they are counterproduc-
tive. Although a bisecting composition is very simple approach, it provides the advantage of a larger 
number in initial projectors while avoiding a large penalty in overall efficiency due to a large action space 
with the same parameters.

Composition with the Glow Mechanism.  The second mechanism departs from the strict bisection strat-
egy of the first mechanism. The agent reaches an optimal success probability if it can measure along the 
direction α =  ϕ. The bisection strategy only approximates ϕ and sometimes introduces unnecessarily 
many angles, e.g., for ϕ =  π/8 the additional angle α =  π/4 has to be built first. We overcome this disad-
vantage by a better use of the information provided by the measurement results to estimate which new 
projector angle should be inserted as addition action. We employ a variant of the “edge glow mecha-
nism”2 to compose a single new action clip in the following way. We assign a second degree of freedom to 
each edge called “glow” and denote it by gα. Instead of updating the h-values with the reward according 
to (6), we first accumulate rewards in the gα according to the following update rule:

h n h n1 15( + ) = ( ), ( )α α′ ′

δ λ( + ) = ( ) + , ( )α α αα′ ′ ′g n g n1 16n

with initial values gα(0) =  0. The change in the update rule for h effectively amounts to setting λ =  0 and 
γ =  1. The behavior of the agent remains unchanged as the h-values remain at their initial values hα(0) =  1, 
i.e., the agent measures equally often in all available directions. However, since there is no bias in the 
frequency of available measurement direction, the accumulated rewards in the respective gα provide a 
measure of the average reward for each direction. Once the agent sampled enough measurement results, 
e.g., when the first gα surpasses the threshold gthresh =  500, a new action clip is composed and inserted 

Figure 9.  Success probability for 2Nα measurement directions initially available to an agent (blue), 
uniformly spaced on the circle, and with additional bisection compositions (red). Data points are angular 
averages, and the vertical region denotes the maximum and minimum of the success probability. These data 
summarize the angular dependence of ps

∞ as depicted for several examples in the inset. The reason for a 
decrease of ps

∞ with an increase in measurement directions is due to damping.
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into the projective simulator. The new measurement direction α is composed from all α and weighted 
by the gα:

∑α = ,
( )α

α
αgarg e

17
i

and we set the new h g= ∑α α α
.

In order to prevent that a direction is inserted that is already present, the agent first checks that α is 
sufficiently different from all already existing α, e.g., by inserting α only if it differs from α by more than 
1/10 circular standard deviations of the circular distribution given by the gα. If α is too close to one α, 
the hα of this α is instead strengthened and set equal to the sum of all gα, and no new clip is inserted. 
After the composition, we continue with the usual update rule for the h-values.

The learning curves for the this form of glow composition are shown in Fig. 10. Starting with 4 angles 
and a gthresh =  500, at least 2000 measurements have to be done on average before the first composition 
can occur. This threshold can be decreased, leading to a faster composition, albeit at worse statistics, 
which result in inaccuracies of the composed angles. Inaccurate compositions, however, impact the suc-
cess probability only to a small extent because it decreases with the cosine of the angular difference 
between ϕ  and the composed angle.

In the direction of an existing angle, e.g., ϕ =  0 or π/2, the first amplifications of the respective α 
occurs starting with 2000 measurements. For the direction ϕ =  π/4, more measurement need to be done 
on average to reach g0 or gπ/2 =  500 because these direction are not rewarded with certainty, and compo-
sition occurs on average later, with ϕ =  π/4 being one of the four latest instances. After the composition 
the success probability jumps from 50% to about 99%. Since the newly set h-value for the best measure-
ment direction is larger than the steady-state value for our choice of λ =  1 and γ =  1/100, the success 
probability decreases slightly to approach ps

∞ from above.
In an ensemble of 1000 agents only 4 compose an angle when ϕ =  0 or π/2, whereas all do a compo-

sition for ϕ =  π/8 or π/4. In our numerical experiment, the distribution of composed angles α is sharply 
peaked around ϕ with a σ  ≈  π/100.

By using the glow mechanism to obtain an effective average reward for each measurement direction, 
and then composing a mean angle from the reward distribution, the agent effectively creates a weighted 
sum of directions. It thereby embodies a method similar to the estimation of expectation values done 
in state tomography.

Adapting multiple measurement directions.  So far we have demonstrated how an agent equipped 
with a suitable projective simulator can align a single measurement direction, e.g., xσ̂  for the state |+ 〉 , 
with an initially unknown state |ϕ〉 , which emerged from |+ 〉  due to a magnetic field. Since one of the 
aims is to employ the agent as a means to carry out measurement-based quantum computation (MBQC)22 
in an unknown external field, all measurement directions that are required to run a specific algorithm 
in MBQC need to be adapted to this unknown stray field. We therefore need to extend the projective 
simulator to learn several measurement directions, which shall be given as the respective input. Ultimately, 
the agent would translate the measurement directions necessary for the algorithm to the reference frame 
that rotates due to the magnetic field.

We modify the inital agent setup depicted in Fig.  1 in the following way. The step that prepares 
the defined initial state |+ 〉  is removed and the qubit is simply left in the state that is prepared by the 

Figure 10.  Learning curves for glow composition averaged over an ensemble of 1000 agents for various ϕ. 
The h-values are only updated with λ and γ after the composition. For ϕ coinciding with an existing α only 
4 agents compose a new angle α, which is more than σ/10 away from an existing α, whereas all agents 
compose angles for the other examples of ϕ. The position of the step depends on the choice of the threshold 
for composition, here gthresh =  500, which is chosen for large statistics but can be decreased without much 
penalty in the asymptotic efficiency albeit at the cost of slightly less accurate composed angles.



www.nature.com/scientificreports/

13Scientific Reports | 5:12874 | DOI: 10.1038/srep12874

previous measurement. The projective simulator now receives as an input not just a trigger event, which 
activated the *-clip, but now it receives the previous measurement direction and the obtained measure-
ment result as a percept. The initial state and percept can be chosen arbitrarily, e.g., at random, as they 
do not matter in the subsequent feedback loop.

For the new scheme, we also extend the clip network of the projective simulator to 8 percept clips, 
which represent all combinations of previous measurement direction and obtained reward, as depicted 
in Fig. 11. Effectively, the extended clip network consists of 8 copies of the previous simple clip network, 
which are activated according to the actions and results of the previous time step. The agent enters a feed-
back cycle, where measured directions and outcomes are fed back to the agent. The information about 
which state preparation method was used is available to the agent as percept, and thereby it indirectly 
receives a hint about which state has been prepared. Given each prepared state, which then evolves to 
acquire an additional shift in the angle by ϕ, the agent learns which measurement direction most likely 
matches this rotated initial state. To give an example, consider the test qubit in the initial state |+ 〉 
≡|α= 0〉 , which evolves into |ϕ〉 . The agent measures this state, say along α =  π/2, and obtains result 1. 
It thereby prepares the test qubit in state |π/2〉 , which again evolves for time Δ t into |π/2+ ϕ〉  for the 
next measurement. This next measurement is chosen according to the h-values of edges originating from 
the percept clip “π/2, 1” to each of the four actions.

The clip network is now much larger than before and the agent needs more measurements to update 
all the connections until the h-values converge into those of the steady state. Naively, we can expect an 
8-fold increase, however, since the agent converges to a state in which measurements that give outcomes 
l are preferred, learning the right measurements for a outcome-0 preparation is delayed. This learning 
behavior is shown in Fig. 12, where outcome-l preparations converge early and outcome-0 preparations 
later, which in turn also delays the overall convergence. Naturally, the training of the whole network is 
faster in situations where the 0 outcomes occur more often, e.g., for ϕ =  π/4, or in situations that lead to 
different measurement directions, e.g., ϕ =  π/2.

As the agent encounters situations with different percepts, the number of time steps in between two 
successive activations of the same percept is now increased on average. This leads to a qualitative and 
quantitative change in the learning curves as compared to the previous simple agent with only one 
percept. The number of times that the damping reduces the h-value of each edge would increase and 
lead to a reduced efficiency, because the agent forgets too quickly in between rewards. To maintain high 
h-values for rewarded transitions we could adjust γ to a lower value, but we choose to simply restrict the 
application of the update rule, and the application of the damping in particular, to a subgraph of the clip 
network, namely, only those edges that are connected to the activated percept clip. Thereby we maintain 
the quantitative behavior of the simple clip network used in the previous sections.

Percepts give the preparation procedure of the test qubit and thereby effectively encode information 
about which state has been prepared. A closer inspection reveals that each state is represented twice 
because is can be prepared in two ways, e.g., |+ 〉  can be prepared by a measurement of P0

ˆ  with outcome 
1 or by Pπˆ  with outcome 0. Preparation procedures that result in the same prepared states are highlighted 
with the same color of the percept clip in Figs. 11 and 12. This redundancy increases the learning times 
because the same behavior has to be learned twice. The clip network could be optimized with an addi-
tional intermediate layer that first maps preparation methods to states, which may be learned first with-
out a stray field, and then the prepared states to best measurement directions in a stray field.

Once the agent has adapted its measurement directions to the unknown external field with a test 
qubit, it can be used as a translator between intended measurement directions and their corresponding 
directions in the rotated reference frame. This application of a trained agent works as follows. After a 
training period, we fix all the h-values. Instead on the test qubit, the agent now acts on the qubit that 
needs to be measured along a certain direction according to a MBQC scheme, for example. We then 

Figure 11.  Clip network of the extended projective simulator. Percepts are all possible combinations of the 
previous measurement direction α and obtainable measurement outcome (0 or 1). Percepts that correspond 
to the same state prepared by the previous measurement are colored equally.
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excite a percept of the agent that corresponds to the direction of the intended measurement direction 
in zero field. The agent then chooses most likely the measurement direction that corresponds to this 
measurement in the rotated frame, i.e., the measurement that takes the field into account.

Measurement-based Grover Algorithm.  We first briefly repeat the MBQC variant of the Grover 
search algorithm for a database with 4 elements25 and adapt it to our notation and use of projective 
measurements Pαˆ . The initial resource state is a cluster state of 4 qubits in ring form, i.e., starting from 
the state |+ 〉 ⊗4 we apply a controlled phase gate between the qubit pairs 1-2, 2-3, 3-4, 4-1, and obtain

( )Ψ = + + + − − + − − + + + . ( )
1
2

0 0 0 1 1 0 1 1 180

A database with 4 entries (i.e., with elements 00, 01, 10, and 11) only requires a single Grover step to 
find the marked element. The algorithm starts by doing this one necessary query to the database and 
thereby marks the database entry that is to be found. A measurement of the projectors P0

ˆ  or Pπˆ  on qubits 
1 and 4 realizes the specific database, where each pair of measurement directions 00, 0π, π0, and ππ 
corresponds to marking the database element 00, 01, 10, and 11, respectively. For each of the two meas-
urements of P0

ˆ  or Pπˆ  both measurement results r1,4 =  0 or 1 appear with probability 1/2. Therefore, the 
results alone do not allow us to infer the measurement directions and thereby the marked element. In 
the problem setting of the algorithm the choice of measurement directions is hidden. Only from the 
measurement results of qubits 1 and 4, and from the measurements done on the remaining two qubits, 
we should infer the marked element. On the remaining qubits we therefore measure the observable P0

ˆ , 
whose measurement outcome depends on the measurement directions on qubits 1 and 4, and is corre-
lated to the previous two outcomes. Finally, the calculation of (r1r3, r2r4), i.e., addition of the meas-
urement outcomes modulo 2, reveals the two bits of the marked element with certainty. Although, at the 
present point the MBQC version of Grover’s algorithm appears to merely uncover (anti-)correlations 

Figure 12.  Learning curves of a projective simulator with 8 percepts (state preparation procedures) and 
4 actions (measurement directions) for various ϕ. Plotted are conditioned success probability, i.e., given a 
percept, what is the probability of obtaining a + 1 measurement outcome, where each curve corresponds to 
one percept, solid lines represent outcome-1 preparation methods, dashed lines those for outcome 0. Color 
codings are the same as for the clip network. Curves are averages over 100 agents, with λ =  1 and γ =  1/100. 
For the last time step the clip network with h-values encoded in the thickness of the edges are given in the 
inset. Colors and clips match those of Fig. 11.
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between measurement directions, there is an explicit mapping between the quantum circuit of Gover’s 
algorithm on one hand, and the circuit for creating and measuring the cluster state on the other25.

If the initial state is placed in an unknown external field pointing along the z-direction, the state |Ψ 0〉  
is transformed into U⊗ U⊗ U⊗ U|Ψ 0〉  with the local unitary rotations U iexp 2zϕσ= (− / )ˆ . If we recall 
that U|+ 〉  =  |ϕ〉  it is straightforward to see that the measurement protocol of the Grover algorithm will 
no longer give the correct marked element because the external field effectively shifts the measurement 
directions by the angle − ϕ with respect to the original measurement directions. As a result the proba-
bility to identify the correct marked element, i.e., the success probability of the algorithm, is periodically 
modulated by ϕ and a straightforward calculation gives

ϕ ϕ( ) = ( + ) . ( )p 1
16

3 cos 2 19s
2

For ϕ being a multiple of π the algorithm works perfectly because the local rotations align the qubits’ 
reference frames again with the x-axis. The Grover algorithm is invariant under the inversion of all 
measurement directions (i.e., changing all directions 0 to π and vice versa). In the worst case, for ϕ being 
an odd multiple of π/2, the chance of identifying the right element is 1/4, as the measurements of the 
intended Grover search actually reveal no useful information because they are unbiased with respect to 
the required measurement direction. In Fig.  13, the analytic results for identifying the correct marked 
element 00 in the rotated state match the trials with 1000 agents that simply measure all 4 qubits the 
direction α =  0 and then try to identify the marked element from the obtained measurement results.

For testing the agent with a projective simulator we restrict to a realization with a single marked 
element, namely 00, which can be implemented with measurements along the x-axis, all in the direc-
tion α =  0. The agent first learns with a test qubit exposed to the external field and adapts to the field 
strength. We then fix these obtained h-values and use the agent without update rule to carry out the four 
measurements on the cluster state, one after the other, according to its available measurement directions 
and internal probabilities.

The first example is an agent that has only 4 fixed measurement directions available (α being a mul-
tiple of π/2), which we first train to achieve optimal success probability with the test qubit. The optimal 
performance is reached in the limit γ→ 0, which amounts to pα =  1 for the single α that is closest to ϕ 
and all others zero. The light blue curve in Fig. 13 shows the fraction of the agent ensemble that identifies 
the marked element with this projective simulator correctly. The Grover search is recovered perfectly 
for fields with ϕ being a multiple of π/2, which can be matched exactly by the available measurement 
directions.

The second example is an agent that first learns with a test qubit in the external field with composition 
according to the glow mechanism. That is, after 2000 measurements on average, the agent composes a 
new measurement direction or strengthens an existing one that matches ϕ. The h-values after the com-
position remain fixed and the agent measures the cluster state according to the available measurement 
directions and probabilities. The dark blue curve in Fig. 13 illustrates that an ensemble of this kind of 
agent is highly successful in doing the Grover search for all angles ϕ. The shortfall from a perfect per-
formance (the average success probability is 99.0% with a standard deviation of 0.3%) originates in the 
slight deviations of the composed angle from ϕ and the non-zero probability to chose the remaining 
non-optimal measurement directions.

Discussion
We presented an autonomous adaptive system that is able to perform quantum information processing 
in changing environments. The controller is a learning agent endowed with a projective simulator that 
adapts measurement directions in a setup of measurement-based quantum computation by reinforce-
ment learning. Our approach thus combines elements from embodied artificial intelligence with the 
purpose of carrying out robust quantum information processing.

In an exemplary setup of adapting measurement directions to an unknown stray magnetic field in a 
fixed direction, we have characterized the learning process of the projective simulator and its adaption to 
time-varying fields using numerical studies. We found that an agent using projective simulation is able to 
adapt to such unknown stray fields. We provide analytical estimates of its success probability in limiting 
cases of the non-linear learning process. In our scenario the agent may adapt the measurement direction 
by drawing from a initially provided set of fixed measurement directions. We have characterized the per-
formance of the agent for different sets of available measurement directions and we explored composition 
mechanisms to create new and better measurement directions on the fly, together with the corresponding 
internal structure in the projective simulator. Strategies with composed measurement directions surpass 
strategies with fixed sets of directions in both learning speed and resulting efficiency. As a demonstration 
of adaptive quantum information processing, the agent successfully carries out a measurement-based 
version of Grover’s search algorithm in the presence of a detrimental unknown external magnetic field.

The present approach can be readily extended and improved in several directions as indicated in the 
respective sections in the paper. First and foremost, the agent effectively develops and embodies rules to 
cope and operate with quantum mechanical systems, which are seeded by the specific form the update 
rule together with the reward scheme, and the composition mechanisms. Both of these elements start 



www.nature.com/scientificreports/

1 6Scientific Reports | 5:12874 | DOI: 10.1038/srep12874

from simple primitives, e.g. “prefer a specific measurement if it more likely results in a + 1 measurement 
outcome” for the update rule, and give rise to a sensible and sufficient behavior in our problem setting. 
Both can be improved by effectively incorporating more information about the quantum mechanical 
nature of the underlying problem domain, however, at the expense of more complicated update and com-
position rules. Errors or imperfect measurements can be straightforwardly incorporated into the present 
scheme by using POVMs instead of projective measurement, or by adding a classical noise, e.g. bit flips, 
to the measurement outcomes. Such errors lead to a diluted information about which measurement 
directions are correct and give + 1 measurement outcomes. In the presence of errors, spurious rewards 
appear for wrong measurement directions and the average reward for correct measurement directions is 
reduced. Both effectively diminish the contrast in the reward landscape, which is equivalent to a lower 
reward scaling factor λ. We expect that the agent will still be able to learn in such situations, but it will 
take longer to do so and reach a lower asymptotic success probability. The latter can partly be recovered 
by adjusting λ and γ, however, an increase of the learning time over a noiseless scenario will remain.

The long-term goal of this investigation is to develop integrated and autonomous schemes for 
measurement-based quantum information processing that can adapt to changing environments. In our 
scheme, learning is not realized by feedback from some external macroscopic sensor, e.g. a magnetome-
ter, but it uses only information drawn from measurements on qubits, which are also the operations that 
drive the processing of the quantum information. In this sense our approach is related to recent work 
on intelligent quantum error correction32.

The approach that we have presented in the present paper can be generalized and integrated into a 
scheme of universal measurement-based quantum computation, where measurements of stabilizer oper-
ators of a cluster state are used both for the correction of errors on the resource state and, at the same 
time, for the adaption of measurement directions that drive the quantum computation. This will be 
reported elsewhere.

We note that the projective simulator does not assume that rewards originate from measurement 
probabilities of a quantum state and, therefore, it is “model free”. This also opens the path to study foun-
dational questions such as, to what extent can a machine effectively learn the rules of quantum mechanics 
through simple reinforcement processes.

Methods
Recursion Relations for Bayesian Updating.  The angular probability distribution for ϕ given the 
M measurement outcomes rm =  ± 1 in directions αm, which are multiples of π /2, is given by

Figure 13.  Fidelity of the Grover search algorithm in the presence of an unknown static magnetic 
field that rotates every qubit by angle ϕ along the equator of the Bloch sphere. Data is obtained in 
independent runs with marked element 00 for all fields giving rise to angles ϕ between 0 and 2π in steps 
of π/500. Noisy data is the fraction of an ensemble of agents that identifies the marked element correctly 
when performing all four measurements in Grover’s algorithm. Red (analytical) and orange (numerical, 3000 
agents) curves give the success of the Grover search (all four measurements) without taking into account the 
field in the measurement direction. The light blue curve gives the success for an ensemble of 1000 agents 
that each have a perfectly trained projective simulator with 4 measurement directions, which has learned the 
external magnetic field before doing the measurements for the Grover search algorithm. The dark blue curve 
is an ensemble of 1000 agents that employs the glow mechanism to build a measurement direction that is 
adapted to the external magnetic field before using it to perform the Grover search.
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where the normalization is solely contained in the coefficient cM(0). Updating this probability distribution 
with the next measurement result rM+1 amounts to multiplication with the factor [1+ rM1cos(ϕ− αM+1)]/2, 
which we again expand into a Fourier sum. Comparing the coefficients we obtain the following recursion 
relations for the cM+1(q) and sM+1(q):
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where for q >  M we set cM(q) =  sM(q) =  0. The starting distribution is the flat prior p(ϕ) =  1/(2π) with 
c0(0) =  1/π.

The advantage of the Fourier representation is that circular moments of the probability distribution 
can be straightforwardly calculated:

∫ ϕ ϕ π( , …, ) = ( ), ( )
π

p r r cNormalization: d 0 25M M
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2

1
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The first circular moment R gives rise to the mean angle Rargϕ =  and the circular standard deviation 
R2 lnσ = − 30,31.
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