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Abstract

Mammals are co-infected by multiple pathogens that interact through unknown mechanisms. We 

found that helminth infection, characterized by the induction of the cytokine interleukin-4 (IL-4) 

and the activation of the transcription factor Stat6, reactivated murine gammaherpesvirus infection 

in vivo. IL-4 promoted viral replication and blocked the antiviral effects of interferon-γ (IFNγ) by 

inducing Stat6 binding to the promoter for an important viral transcriptional transactivator. IL-4 

also reactivated human Kaposi's sarcoma associated herpesvirus from latency in cultured cells. 

Exogenous IL-4 plus blockade of IFNγ reactivated latent murine gammaherpesvirus infection in 

vivo, suggesting a ‘two-signal’ model for viral reactivation. Thus chronic herpesvirus infection, a 
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component of the mammalian virome, is regulated by the counterpoised actions of multiple 

cytokines on viral promoters that have evolved to sense host immune status.

Mammals are populated by many chronic viruses, termed the virome, which can regulate 

host physiology and disease susceptibility(1). For example, more than 90% of humans are 

latently infected with herpesviruses that, after clearance of acute infection, produce little 

infectious virus and often cause no overt disease. Like human gammaherpesviruses Epstein 

Barr Virus (EBV) and Kaposi’s sarcoma associated herpesvirus (KSHV), murine 

gammaherpesvirus-68 (MHV68) establishes lifelong latency. Studies in this model system 

showed that the cytokine IFNγ nhibits MHV68 replication and reactivation from 

macrophages, a major cellular site for latency(2–5), controls persistent replication in vivo(6), 

and is present at low amounts during latency(7).

Many people around the world are co-infected with herpesviruses and intestinal helminths. 

While herpesviruses can modulate immunity to harm or benefit the host(7–11), the effects of 

helminth co-infection on chronic herpesvirus infection are unexplored. Intestinal helminths 

generate strong T helper 2 (Th2)-driven cytokine responses, which counter the biological 

effects of IFNγ, and drive the activation of macrophages with an M2 (immunoregulatory) 

rather than an M1 (pro-inflammatory) phenotype(12). Parasitic worms may influence control 

of pathogens, including Mycobacterium tuberculosis, HIV, and Plasmodium species in 

humans, but there are few studies elucidating the mechanisms behind this 

immunomodulation(13). Thus, we considered the hypothesis that parasite infection would 

induce MHV68 reactivation in vivo.

We examined the effects of acute infection with Heligmosomoides polygyrus or 

Schistosomiasis mansoni (Sm) egg administration on MHV68 reactivation from latency 

using a MHV68 virus expressing luciferase under the control of a lytic viral promoter upon 

reactivation from latency in vivo (MHV68-M3-FL)(14). Both acute H. polygyrus infection 

and Sm egg challenge reactivated MHV68 infection (Fig. 1A–D). Mice latently infected for 

over 100 days also showed increased luciferase expression following Sm egg challenge (fig. 

S1). By contrast, infection with the systemic bacteria, Listeria monocytogenes, did not 

stimulate viral reactivation (fig. S2). Thus, responses to either a nematode parasite or 

trematode eggs induced herpesvirus reactivation, suggesting a role for Th2 cytokines in viral 

reactivation.

To determine whether Th2 cytokines affect latently infected macrophages we compared host 

gene expression patterns in virally infected and uninfected macrophages during chronic 

infection. We engineered MHV68 to express cre-recombinase (MHV68-cre) from a locus 

permitting heterologous gene expression without altering viral replication or reactivation(15) 

(fig. S3). Reporter mice in which fluorescent protein expression is induced by cre 

recombination (Rosa26-floxed stop-eYFP or tandem dimer (td)RFP(16)) were infected with 

MHV68-cre. Virus-positive and virus-negative cells sorted from latently infected mice (fig. 

S3G) were subjected to RNAseq analysis. Transcription in these cells was compared to that 

in bone marrow-derived macrophages (BMDMs) stimulated with IL-4 (M2) or IFNγ plus 

lipopolysaccharide (LPS) (M1). compared to untreated BMDMs (M0). Gene set enrichment 

analysis (GSEA) revealed that genes upregulated in M1 BMDMs were enriched in virus-
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positive macrophages whereas genes upregulated in M2 BMDMs were enriched in virus-

negative cells (Fig. 2A, and table S1). This was consistent with the role of IFNγ, which 

drives M1 macrophage polarization, in inhibiting MHV68 replication and reactivation(3, 4). 

We therefore tested whether latent MHV68 infection was restricted to M1-type macrophages 

by infecting tandem dimer (td)RFP mice carrying the Arginase-1 (Arg1)-YFP reporter 

(YARG, a marker for macrophages stimulated with Th2 cytokines)(17) with MHV68-cre. 

Surprisingly, virus-positive macrophages were either Arg1-negative or Arg1-positive (Fig. 

2B, C), suggesting that, despite the role for IFNγ in controlling chronic MHV68 infection, at 

least some virus-infected cells were exposed to cytokines that drive Arg-1 expression in 

vivo.

The presence of an IL-4 signature in some virus-infected macrophages along with the 

observation that Th2 cytokine-inducing parasites promoted reactivation from latency, 

suggested a role for IL-4 in viral infection. We tested this by determining the effect of IL-4 

on MHV68 replication in BMDMs. Treatment with IL-4 increased Arg1 expression (fig. 

S4A) consistent with M2 polarization(18). As expected, few infected BMDMs expressed 

lytic viral antigens upon MHV68 infection(19). However, IL-4 pretreatment increased the 

number of BMDMs expressing viral proteins and enhanced viral replication (Fig. 3A, fig. 

S4B–D), and increased infection of transformed RAW264.7 macrophages (fig. S4E). 

Treatment with IL-4 after MHV68 infection increased viral replication (fig. S4F), indicating 

that IL-4 acts on replication rather than by increasing the number of infected cells. 

Enhancement of replication was dependent on the Th2-associated transcription factor Stat6 

(Fig. 3A), and occurred with IL-13 stimulation, another Th2-associated cytokine that utilizes 

the IL-4 receptor α chain and signals via Stat6 (Fig. 3B, fig. S4D, G). The Th2 cytokine 

IL-5, which does not signal through Stat6, did not promote MHV68 replication (Fig. 3B).

After treatment with IL-4, the majority of infected cells did not express the M2 markers 

CD206 or Arg1 (Fig. 3A, and fig. S4A), suggesting that not all IL-4-induced changes in 

macrophage differentiation are required for enhanced MHV68 replication(20). Etomoxir 

blocks IL-4-induced changes in fatty–acid oxidation(21) and upregulation of CD206 (fig. 

S5A) but did not block enhancement of MHV68 replication by IL-4 (fig. S5B). Moreover, 

IL-4 enhanced replication in the absence of PPARγ or ARG1, key proteins involved in M2 

macrophage function, or iNOS, an essential protein in M1 macrophage function (fig. S5C–

G)(20). Importantly, IL-4 antagonized IFNγ-mediated suppression of viral replication (Fig. 

3C)(3). Because Stat6 antagonizes Stat1(22), we tested whether IL-4 promoted virus 

replication in the absence of Stat1. IL-4 increased virus replication in Stat1-deficient 

BMDMs (fig. S6).

Previously, we found that IFNγ-mediated suppression of viral replication was associated 

with inhibition of promoters driving expression of the essential viral latent-to-lytic switch 

gene (gene 50) (3, 23). Importantly, IL-4 antagonizes IFNγ-mediated suppression of gene 50 

transcription (Fig. 3D). This effect was specific to the viral promoter because IL-4 did not 

block IFNγ-mediated induction of Nos2, and IFNγ did not inhibit IL-4-mediated induction 

of Arg1 and Relmα/Fizz1 (fig S7). Furthermore, IL-4 and IL-13 transactivated the gene 50 

N4/N5 promoter (Fig. 3E)(24), and IL-4 antagonized IFNγ-mediated suppression of N4/N5 

promoter (Fig. 3F). The effect of IL-4 on the N4/N5 promoter was diminished by mutation 
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of two of four putative Stat-binding sites in the promoter (Fig. 3G, fig. S8). Further, 

chromatin immunoprecipitation experiments revealed that Stat6 bound to the N4/N5 

promoter after IL-4 treatment of MHV68-infected cells (Fig. 3H). Taken together, these data 

suggest that activated Stat6 induced by IL-4/IL-13 promotes viral replication by binding to 

and acting on a viral promoter to induce expression of gene 50.

These counterbalancing effects of IFNγ and IL-4 on virus replication and viral promoter 

activity suggested a potential mechanism by which IL-4-inducing pathogens such as 

helminths promote reactivation. We therefore treated mice infected with MHV68-M3-FL 

virus with a blocking antibody to IFNγ (clone H22)(25), an isotype control antibody (clone 

PIP), long-lasting IL-4 complexes (IL4c)(26), or a combination of anti IFNγ and IL4c. No 

reactivation was observed after treatment with anti-IFNγ, IL4c, or PIP alone, indicating that 

a single signal was insufficient to reactivate virus in vivo. However, robust reactivation was 

observed in mice that received a combination of IL-4c and anti-IFNγ (Fig. 4A, B, fig. S9A). 

We next assayed reactivation using an independent assay(27, 28). Little or no preformed 

virus was detectable in tissues after treatment with PIP, IL4c, or anti-IFNγ alone(27), while 

treatment with IL-4c plus anti-IFNγ increased infectious virus (fig. S9B, C). Together these 

data supports a 'two-signal' mechanism by which co-infections could induce reactivation via 

induction of IL-4 and inhibition of Th1 responses(12).

Increased reactivation after treatment with both IL4c/anti-IFNγ required Stat6 (Fig. 4C). We 

did not test the role of Stat1 or the IFNγ receptor because both are required to establish 

latency(6). To assess whether the effects of helminth infection on MHV68 reactivation also 

required Stat6, we challenged MHV68-infected Stat6KO mice with H. polygyrus. We found 

that helminth infection did not reactivate MHV68 from latency in Stat6KO mice, further 

supporting a two-signal model for control of gammaherpesvirus reactivation in vivo (Fig.

4D).

Our results suggested a possible role for IL-4 in human gammaherpesvirus reactivation. We 

therefore tested whether IL-4 could reactivate the human gammaherpesvirus, KSHV in the 

BCBL-1 human B cell lymphoma cell line. We found that treatment with IL-4 increased 

immediate early (RTA, ORF45, and ORF57) and late viral transcripts (ORF19) (29)(Fig. 

4E). RTA is the homolog in KSHV of MHV68 gene50, and ORF 45 and ORF57 are both 

transactivators, indicating a common role of IL-4 in regulating important viral 

transcriptional transactivators. Furthermore, IL-4 treatment of cells increased virus 

production (Fig. 4F), indicating that IL-4 is capable of inducing reactivation of KSHV.

A remarkable aspect of herpesvirus infection is its permanence despite ongoing immunity 

combined with the capacity to reactivate and spread to new hosts. This work illuminates one 

potential mechanism by which a gammaherpesvirus exhibits these two apparently disparate 

functions. Our data suggest that the virus evolved cytokine-responsive promoters to remain 

latent under some conditions (IFNγ-dominant) while reactivating under other conditions 

(IL-4-dominant). In this setting, co-infection may govern the outcome of reactivation by 

changing the balance in IL-4 and IFNγ, thus raising a potential issue with herpesvirus 

reactivation and proposed live helminth therapies(12). Additionally, our data illustrate one 

potential mechanism by which helminths and other Type 2 immune response-inducing 
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parasites influence host control of another pathogen through M2 macrophage 

polarization(13). The fact that viral promoters for an essential gene are responsive to host 

cytokines implies that the viral genome evolved to sense the infection status of the host. We 

speculate that a similar mechanism for IL-4-induced reactivation of KSHV could also be 

true. Although not extensively studied, seroprevalence to KSHV is associated with 

hookworm and other parasitic infections in Uganda(30). Intriguingly, certain Burkitt’s 

lymphoma cell lines are reported to express EBV transcripts in response to IL-4(31).

Although mouse studies are done in specific pathogen-free animals, our data suggest that 

there is added complexity when multiple pathogens infect the same host, particularly in 

situations where one pathogen has the capacity to respond to specific immune signals 

generated to another pathogen to regulate chronic infection. Previously we showed that 

herpesvirus infection, a component of the mammalian virome(1) enhances resistance to 

some pathogens(7). Here we demonstrate the opposite effect, that co-infection regulates 

herpesvirus reactivation. These studies emphasize that immunity to chronic infection is a 

dynamic equilibrium regulated by co-infections, in part through highly evolved pathogen 

genomes with the capacity to sense host cytokines.
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Fig. 1. Challenge with H. polygyrus and S. mansoni eggs reactivates MHV68
(A) C57BL6/J mice were infected intraperitoneally (i.p.) with MHV68-M3-FL and 

challenged with H. polygyrus 42 days later. Mice were imaged prior to H. polygyrus 

infection (day 0) and 5, 7 and 9 days after. Three representative mice imaged on days 0 and 

7 are shown. (B) Total flux (photons/second) was quantitated for mice in 2 independent 

experiments for the timecourse after infection with H. polygyrus. Data from 4 independent 

experiments at day 7 post H. polygyrus is also shown. (C) C57BL/6J mice were infected 

intranasally (i.n.) with MHV68-M3-FL. Diagram indicates timecourse of experiment and 

challenge with Sm eggs or PBS as a control. Mice were injected with D-Luciferin and 

imaged prior to intravenous (i.v.) challenge with Sm eggs (day 0). They were subsequently 

imaged 5, 8 and 11 days after challenge with Sm eggs. Three representative mice imaged on 

days 0 and 8 are shown. (D) Total flux (photons/second) was quantitated from mice in two 

independent experiments after Sm egg challenge. Symbols represent individual mice, and the 

mean and standard error are indicated * p<0.05, ** p<0.01, *** p<0.001 by 2-way repeated 

measures ANOVA with Tukey’s and Bonferroni’s post-test.
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Fig. 2. IL-4 and IFNγ signatures identified in different macrophage populations during MHV68 
infection
(A) GSEA analysis of virus-positive and virus-negative cells sorted from the peritoneum of 

MHV68-infected mice compared to BMDMs stimulated with IL-4 or IFNγ/LPS. (B) 
C57BL/6J mice or YARG/R26-stop-RFP mice were either mock infected or infected with 

MHV68-cre. CD11b+F4/80+ cells were gated and examined for RFP and YFP expression. 

Representative plots from two independent experiments, with three to five mice per 

experiment. (C) Quantitation of FACS analysis in (B) with each symbol representing a 

single mouse.
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Fig. 3. IL-4 promotes viral replication and antagonizes IFNγ suppression of viral replication 
through direct binding to a viral promoter
(A) BMDMs were untreated or treated with the indicated doses of IL-4 and infected with 

MHV68. 24 hours post infection cells were analyzed for expression of MHV68 lytic viral 

proteins and CD206 expression. Represents three independent experiments. (B) Pretreatment 

of BMDMs with IL-4, IL-13, or IL-5 prior to infection with MHV68 and FACS analysis. 

(C) BMDMs were pretreated with varying doses of IFNγ ± 10 ng/ml of IL-4. 24 hours post 

infection cells were analyzed for expression of lytic viral proteins. Represents three 

independent experiments. (D) Gene 50 expression was analyzed by RT-PCR in BMDMs 

pretreated with IL-4 and/or IFNγ. Expression was normalized to Gapdh. Represents four 

independent experiments. (E) RAW264.7 cells were transfected with vectors expressing 

luciferase under control of four different gene 50 promoters ((23, 24). Cells were then 

treated ± IL-4 or IL-13 for 24 hours, lysed and assayed for luciferase activity. (F) Cells were 

transfected with the N4/N5 promoter luciferase construct and treated with IL-4, IFNγ, or 

both. (G) N4/N5 luciferase mutants were transfected into RAW264.7 cells and assayed for 

sensitivity to IL-4. (H) RAW264.7 cells were infected with MHV68 at MOI=5 and treated 
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with IL-4 for 8 hours. After chromatin immunoprecipitation with Stat6 antibody, 

quantitative PCR was performed for the N4/N5 promoter region or VEGF. Percent of input 

after normalizing to IgG control was calculated for both N4/N5 and VEGF. 1 experiment 

representative of 4 independent experiments is shown. (I) Schematic of N4/N5 luciferase 

construct with potential Stat-binding mutants. n.d. not detected. n.s. not significant. * 

p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 by T test or 1-way ANOVA with Sidak’s 

multiple comparisons test.
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Fig. 4. MHV68 and KSHV reactivation from latency is regulated by IL-4
(A) C57BL6/J mice were infected with MHV68-M3-FL i.p. 42 days later mice were imaged 

for luciferase expression (d0) and then received isotype control (PIP), anti-IFNγ (H22), 

IL4c, or both anti-IFNγ and IL-4c. On day 44 mice received a second dose of IL4c or PBS. 

Mice were imaged five days after the first treatment and total flux from the abdominal 

region was quantitated. Four representative mice are shown. (B) Quantitation of total flux 

from three individual experiments described in (A) are shown. Each symbol represents an 

individual mouse. Bars are means, and error bars are standard errors. (C) WT or Stat6KO 
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mice were treated as in (A) with anti-IFNγ/IL4c and imaged 5 days later. Bars are the means 

of individual mice (symbols), and error bars are standard error. (D) Experimental set-up was 

the same as Fig. 1A. Latently infected WT and Stat6KO mice infected with MHV68-M3-FL 

were infected with H. polygyrus or treated with PBS on day 42 and reactivation was 

quantitated by luciferase induction 7 days later. (E) BCBL-1 cells were treated with IL-4 for 

3 or 5 days or TPA for 48 hours and viral gene expression was analyzed. Shown is the fold 

increase in gene expression over mock after normalization of GAPDH. Data from 3 

independent experiments. (F) Supernatants from cells treated in (E) were collected and virus 

was isolated by centrifugation. Viral genome copy number was assayed by qPCR using 

serial diluted LANA expression plasmid as a standard curve. 1 experiment representative of 

2 independent experiments is shown. For luciferase experiments: * p<0.05, ** p<0.01, n.s. 

not significant by 2-way repeated measures ANOVA with Tukey’s and Bonferroni’s post-

test.
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