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INTRODUCTION
Childhood Obstructive Sleep Apnea Syndrome (OSAS) 

affects 1% to 6% of young children, and is associated with 
a wide range of adverse health outcomes, including behavior 
problems and impaired growth.1 In adult OSAS, cardiometa-
bolic disorders, including hypertension, diabetes, coronary 
heart disease, heart failure, stroke, and atrial fibrillation, are 
widely recognized comorbidities and targets for intervention, 
with evidence that positive airway pressure (PAP) therapy may 
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improve insulin resistance and blood pressure control and re-
duce cardiovascular events.2–7 In children, few studies have ad-
dressed the association between cardiometabolic dysfunction 
and OSAS8–25 or the effect of OSAS treatment on outcomes 
such as blood pressure, lipids, and glucose metabolism. Some 
studies have demonstrated improvements in lipid profiles, liver 
function tests, C-reactive protein (CRP), apolipoprotein B, and 
blood pressure control after adenotonsillectomy (AT),26–30 
whereas other studies failed to show an effect of treatment.31,32 
These reports have been limited by nonrandomized and un-
controlled designs, and by relatively small sample sizes, long 
re-study intervals, and study of heterogeneous populations and 
wide age ranges.

We analyzed data from the Childhood Adenotonsillectomy 
Trial (CHAT), a randomized controlled multicenter study 
of health and behavioral outcomes in children with OSAS, 
randomized to early AT (eAT) or to Watchful Waiting with 
Supportive Care (WWSC). The primary results of the trial’s 
neurocognitive outcomes were previously reported.33 In this 
article, we report on the trial’s secondary outcomes that ad-
dressed cardiometabolic health. We hypothesized that treatment 
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of OSAS in children by eAT would reduce systolic, diastolic, 
and mean resting blood pressure and heart rate during sleep 
and wakefulness; improve lipid profiles and glucose homeo-
stasis; and lower levels of inflammatory markers. Secondarily, 
we hypothesized that these parameters at baseline, as well as 
changes at follow-up, would correlate with indices of sleep dis-
ordered breathing (SDB) and sleep quality. Given the potential 
for subgroup differences in response to treatment, we also ex-
plored differences in groups stratified by race, OSAS severity, 
and body mass index (BMI).

METHODS

Study Sample
The design of the CHAT study has been previously described 

and the primary outcomes have been published.33–35 In brief, 
children ages 5.0–9.9 y with polysomnography (PSG) con-
firmed OSAS (obstructive apnea-hypopnea index [AHI] ≥ 2 
events/h or an obstructive apnea index [OAI] ≥ 1 event/h), a 
history of snoring, and considered to be surgical candidates for 

adenotonsillectomy by an otolaryngologist were recruited from 
pediatric sleep centers/sleep laboratories, otolaryngology clinics, 
general pediatric clinics, and the general community from six 
clinical centers. Exclusion criteria included comorbidities, med-
ications for psychiatric or behavioral disorders (including atten-
tion deficit hyperactivity disorder), recurrent tonsillitis, extreme 
obesity (defined by a body mass index > 2.99 for age group and 
sex, z-score) and severe OSAS (AHI ≥ 30, OAI ≥ 20 or oxyhe-
moglobin saturation of < 90% for > 2% of total sleep time). The 
study was approved by the Institutional Review Board of each 
institution. Informed consent was obtained from caregivers, and 
assent from children age 7 y or older. The study was registered 
at Clinicaltrials.gov (#NCT00560859). Figure 1 summarizes the 
flow of participants through the study.

Interventions
Children were randomly assigned to eAT (surgery within 4 

w after randomization) or a strategy of WWSC with reassess-
ment for the need for surgery at 7 mo. All children/caregivers 
received information on sleep hygiene using standardized edu-
cational materials, were provided with saline nasal spray to 
be used as needed, and were evaluated and referred for treat-
ment of comorbid conditions (e.g., asthma). Complete bilateral 
tonsillectomy and removal of obstructing adenoid tissue was 
performed by standard surgical techniques including cold dis-
section, monopolar electrocautery, coblation or microdebrider, 
with variation according to surgeon preference and not by pa-
tient characteristics. To ensure surgical uniformity across par-
ticipating sites, intraoperative photographs were obtained on 
every 10th subject at each site, and were reviewed for adequacy 
of lymphoid tissue removal by the surgical quality control 
committee chair.

Protocol
Each child underwent in-laboratory baseline and follow-up 

PSG by study-certified technicians, using similar sensors, and 
following American Academy of Sleep Medicine (AASM) pe-
diatric guidelines for both acquisition and for scoring.36 The 
PSGs were scored by registered sleep technicians who were 
specifically certified for this study after undergoing study-
specific training and certification. Each PSG record was ed-
ited manually for muscle, movement, and electrical artifacts. 
A research clinic visit was scheduled soon after the baseline 
PSG, at which time certified research technicians and research 
nurses performed anthropometry, measured blood pressure, 
and obtained a fasting venous sample. Site investigators per-
formed a physical examination. The investigators as well as 
CHAT study personnel involved with primary data collection 
were blinded to all study results. Only the study coordinator 
and the ear, nose, and throat surgeons were unblinded to the 
treatment group. Resting blood pressure was measured in 
triplicate after a 10-min rest period while sitting using a cali-
brated sphygomanometer with a cuff size chosen based on the 
child’s arm circumference. Resting heart rate was obtained 
during the physical examination. Height was measured with a 
calibrated wall-mounted stadiometer while the child was in his/
her stocking feet; weight was measured with research quality, 
calibrated digital scales. All of these measurements were taken 
by CHAT certified site personnel in a standardized manner 

Figure 1—Consort diagram indicating flow of participants. eAT, early 
adenotonsillectomy; HDL, high-density lipoprotein; hs-CRP, high-sen-
sitivity C-reactive protein; LDL, low-density lipoprotein; PSG, polyso-
monography; SpO2, saturation of peripheral oxygen; TST, total sleep 
time; WWSC, Watchful Waiting with Supportive Care.
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according to written guidelines. Caregivers were asked to com-
plete questionnaires addressing the child’s medical, social, and 
family histories. Sleep duration was obtained from a parent-
completed 7-day sleep diary. Fasting morning blood samples 
were drawn by venipuncture, processed and stored frozen until 
assayed in batch in a centralized laboratory (Laboratory for 
Clinical Biochemistry, University of Vermont, Burlington, VT). 
The median timing between baseline PSG and research clinic 
visit was 28 days. Time delays largely related to scheduling 
requirements (family, child, and staff availability.) Measure-
ments were repeated approximately 7 mo after randomization 
following a protocol similar to that of the baseline examination.

Measurements
The PSG measures for this analysis consisted of AHI, expressed 

as the sum of all obstructive apneas plus hypopneas associated 
with > 3% desaturation or arousal per hour of sleep; oxygen de-
saturation index (ODI), defined as the number of oxyhemoglobin 
desaturations > 3% per sleep hour; peak end-tidal carbon dioxide 
(EtCO2); % total sleep time (TST) with EtCO2 > 50 mmHg; ox-
ygen saturation ≤ 92% of the TST, computed as the percentage of 
sleep time with oxygen saturation ≤ 92%; and proportion of sleep 
time in stages N2, N3, and rapid eye movement (REM). The av-
erage values of triplicate determinations for systolic and diastolic 
blood pressure were calculated and expressed as sex-, age-, and 
height-specific blood pressure percentiles.37 BMI was calculated 
and converted to an age- and sex-adjusted BMI z-score based on 
the Centers for Disease Control and Prevention (CDC) growth 
charts (http://www.cdc.gov/growthcharts/). Weight was catego-
rized based on percentiles for age and sex as follows: failure to 
thrive, < 5th percentile; normal, ≥ 5th and < 85th; overweight, ≥ 85th 
and < 95th; and obese, ≥ 95th.38 Mean values for heart rate were ob-
tained from PSG software (electrocardiogram or pulse oximeter) 
by averaging across the sleep period. Resting heart rate during 
wakefulness was determined by measurement of the radial pulse 
during a 1-min recording made during the morning research ex-
amination. Blood was assayed for glucose and lipids (cholesterol, 
low-density lipoprotein [LDL] cholesterol, high-density lipopro-
tein [HDL] cholesterol, and triglycerides; Ortho Vitros Clinical 
Chemistry System 950/IRC instrument, Raritan, NJ), high sensi-
tivity CRP [hs-CRP] (Siemens BNII analyzer, Deerfield, IL), and 
fasting insulin (Roche Elecsys 210 analyzer, Indianapolis, IN) 
levels. The interassay coefficients of variation were: glucose and 
lipids, < 2%; insulin, < 5%; high-sensitivity C-reactive protein 
(hs-CRP): 2.1–5.7%. Hs-CRP levels that were initially undetect-
able were repeated using a solid phase-based multiplex platform 
from Meso Scale Discovery (Gaithersburg, MD) (n = 156). Hs-
CRP values exceeding 10 μg/mL, which likely indicate infection 
or acute illness, were excluded from analysis. Biochemical data 
were missing for approximately 20% of subjects due to specimen 
collection issues (child refusal, nonfasting state, inadequate 
blood draw). A comparison of these children to the remaining 
children with respect to age, sex, AHI value, and BMI-z-score 
indicated no differences according to missing data status.

Statistical Analysis
Demographic, anthropometric, and cardiometabolic char-

acteristics were summarized and compared between the 
groups utilizing analysis of variance (ANOVA) or chi-square 

and Fisher exact tests. Cardiometabolic characteristics were 
also compared with published normative data in pediatric 
populations.39–41 Unadjusted associations were assessed using 
Spearman correlation coefficients. Outcome measurements 
were hs-CRP, LDL cholesterol, HDL cholesterol, triglycer-
ides, fasting blood glucose, fasting insulin, average heart rate 
during total sleep, REM sleep and non-REM sleep and during 
wake, and systolic and diastolic blood pressure percentile. In-
dependent variables were treatment assignment (eAT, WWSC), 
AHI, ODI, peak EtCO2, EtCO2 > 50 mmHg, oxygen satura-
tion ≤ 92%, stage N1, N2, N3, and REM sleep. To address 
each of the study hypotheses, we conducted three series of 
analyses: The initial analysis assessed the association between 
sleep variables and cardiometabolic variables at baseline using 
multiple linear regression analysis. To evaluate the effect of 
intervention on cardiometabolic outcomes, we conducted an 
analysis of covariance (ANCOVA) for change in outcomes by 
treatment group. Finally, we used linear regression analysis to 
model the associations between changes in cardiometabolic 
outcomes in relationship to changes in indices of OSAS and 
sleep quality. Stratified analyses further explored groups de-
fined by race, median baseline AHI, and median BMI z-score 
change. Analyses did not include total cholesterol or glucose 
homeostasis model assessment, because of their strong cor-
relation with LDL cholesterol and insulin, respectively. All 
statistical models were adjusted for the trial’s stratification 
variables: age (5 to 7 y of age vs. 8 to 9 y of age), race (African 
American vs. other), overweight/obesity status, and study site. 
Average heart rate during REM and non-REM sleep was only 
reported if results differed from average heart rate during total 
sleep. The primary analysis was an intention-to-treat analysis. 
Per-protocol analyses (i.e., excluding the 22 children who did 
not receive the assigned therapy) were performed, but not pre-
sented as they showed findings similar to the primary analysis. 
No corrections were made for multiple comparisons. Results 
are presented as mean ± standard deviation. All analyses were 
performed using SAS 9.3 (SAS Institute, Inc., Cary, NC).

RESULTS
Characteristics for the analytic sample at baseline and by 

intervention group are shown in Table 1. Approximately half 
of the subjects were male and half were overweight or obese. 
Baseline anthropometric, sleep, and cardiometabolic charac-
teristics were comparable across intervention groups. On av-
erage, compared with published normative data in pediatric 
populations, 7% of overall lipid levels, 8% of markers of gly-
cemic control, and 3% of blood pressure values exceeded the 
normal range for age and sex.39–41 Thus, although there was 
a high proportion of overweight or obese participants, rela-
tively few participants had indices of cardiometabolic health 
that exceeded normative values. As reported before, over the 
intervention period, key measures of OSAS improved more 
while BMI z-score increased more in the eAT compared to the 
WWSC group.33,35 (Table S1, supplemental material)

Associations between Baseline PSG Indices and Study 
Outcomes

Adjusted linear regression analysis of the baseline data with 
cardiac parameters as the outcomes showed that AHI, ODI, 
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EtCO2 > 50 mmHg, and stage N1 sleep were positively associ-
ated with average heart rate during total sleep, REM sleep, and 
non-REM sleep, but not with wake heart rate (Table 2). Specifi-
cally, an AHI of 2 versus 10 was associated with an average 
sleep heart rate increase of 3 bpm (standard error [SE] = 0.60). 
Further adjustment for percentage of REM sleep had no effect 
on these associations (data not shown). Lower proportions of 
time in stages N2 and REM sleep and higher proportions of N1 
and N3 were associated with higher average heart rate during 
sleep. There were no significant associations between sleep 
indices (stage N1, stage N2, stage N3, REM sleep, AHI, ODI, 
EtCO2 > 50 mmHg, and oxygen saturation ≤ 92%) and systolic 
and diastolic blood pressure percentile.

Regarding metabolic outcomes, no associations were ob-
served between various baseline sleep measures with LDL 
cholesterol, HDL cholesterol, hs-CRP, and fasting blood glu-
cose other than for triglyceride level. Triglycerides level was 
positively associated with stage N3 (β = 0.735, SE = 0.23, 
P = 0.002,) and negatively with stage N2 sleep (β = −0.618, 
SE = 0.23, P = 0.009).

Treatment Effect on Study Outcomes
Fasting LDL cholesterol, blood glucose, and insulin tended 

to increase during the study interval in both eAT and WWSC 
groups, whereas heart rate during sleep and systolic blood 
pressure percentile decreased. After adjusting for the trial’s 
stratification factors, no significant intervention effect was ob-
served for these cardiometabolic measures (Table 3). Additional 

exploratory analyses were conducted to assess if there was sub-
group differences in treatment response by race (black vs. other), 
baseline median AHI (4.7) and median BMI z-score change. 
These results also showed no treatment effect on cardiometa-
bolic outcomes in any of these subgroups (data not shown).

Follow-up Analysis of Associations between Change in 
Polysomnographic Indices and Change in Study Outcomes

Comparable associations between change in sleep measures 
and change in cardiac measures were observed in analysis of each 
intervention group separately. We found no interaction between 
treatment and any of the predictors (data not shown). Therefore, 
data from both groups were combined in subsequent multiple re-
gression analysis modeling with the change in cardiac measures 
as the outcome, adjusting for age, race, baseline overweight/
obesity status, sex, and study site. Positive associations between 
change in AHI, peak EtCO2 and EtCO2 > 50 mmHg with change 
in average heart rate were observed (Table 4). Similar findings 
were observed for ODI and oxygen saturation ≤ 92%. Specifi-
cally, each 5-unit improvement in AHI and 5 mmHg improve-
ment in peak EtCO2 were estimated to reduce heart rate during 
sleep by 1 and 1.5 bpm, respectively. We also observed similar 
associations for resting heart rate during wakefulness with 
AHI and ODI but not with peak EtCO2 and EtCO2 > 50 mmHg 
(β = 0.317, SE = 0.08, P = < 0.001 and β = 0.287, SE = 0.08, 
P = < 0.001, for AHI and ODI, respectively).

An increased proportion of time in stage 3 sleep from base-
line to follow-up was associated with reduction in systolic 

Table 1—Baseline characteristics of subjects.

eAT (n = 202) WWSC (n = 209) P
Characteristic

Age, y 7.0 ± 1.4 7.0 ± 1.4 0.65
Male sex, n (%) 91 (45.0) 110 (52.6) 0.12
Race, African-American, n (%)a 108 (53.5) 110 (52.6) 0.87
Use of medication for asthma, n (%) 53 (26.2) 50 (23.9) 0.59

Anthropometric Measures
BMI z-score 0.9 ± 1.4 0.8 ± 1.3 0.83
Overweight or obese (BMI ≥ 85th percentile), n (%)b 97 (48.0) 97 (46.4) 0.74
Obese (BMI ≥ 95th percentile), n (%)b 69 (34.2) 69 (33.0) 0.81
Failure to thrive (weight < 5th percentile), n (%)b 8 (4.0) 7 (3.3) 0.74

Cardiometabolic Measuresc

hs-CRP, μg/ml (range) 1.42 ± 1.93 (0.01–8.83) 1.14 ± 1.75 (0.01–9.02) 0.18
LDL cholesterol, mg/dl (range) 94.0 ± 23.1 (45.0–175.0) 92.9 ± 22.9 (29.0–155.0) 0.68
HDL cholesterol, mg/dl (range) 50.6 ± 12.4 (26.0–93.0) 50.3 ± 11.4 (26.0–87.0) 0.82
Triglycerides, mg/dl (range) 74.6 ± 31.7 (34.0–232.0) 75.6 ± 34.9 (31.0–240.0) 0.77
Fasting blood glucose, mg/dl (range) 81.7 ± 6.8 (61.0–117.0) 82.2 ± 7.7 (59.0–132.0) 0.56
Fasting insulin, μlU/mL (range) 8.73 ± 8.93 (0.53–57.98) 9.27 ± 10.24 (0.61–68.51) 0.61
Systolic blood pressure percentile 43.5 ± 24.5 47.1 ± 23.6 0.13
Diastolic blood pressure percentile 61.4 ± 21.6 62.2 ± 20.1 0.71
Average heart rate during sleep, bpm (range) 84.2 ± 9.3 (63.0–110) 83.5 ± 8.9 (63.0–105.0) 0.42

Descriptive statistics were presented as means ± standard deviation (SDS). P values were based on t-test for continuous variables or chi-square test for 
categorical variables. aRace reported by caregivers. bOverweight or obese was defined as a BMI in the 85th percentile or higher, obese as a BMI in the 
95th percentile or higher, and failure to thrive as a BMI in less than the 5th percentile. cNumber of subjects for cardiometabolic measures varied from 157 to 
209 per group. BMI, body mass index; eAT, early Adenotonsillectomy; HDL, high-density lipoprotein; hs-CRP, high-sensitivity C-reactive protein; LDL, low-
density lipoprotein; WWSC, Watchful Waiting with Supportive Care.
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Table 2—Associations of baseline cardiac parameters with sleep measures.

Outcome

Explanatory Variable

AHI Stage N1 Stage N2 Stage N3
REM
Sleep

EtCO2 > 50 
mmHg ODI 3

Oxygen 
Sat ≤ 92%

Sleep Duration
by Diary Report

Resting heart rate during wakefulness
Βeta
SE
P value

0.16
0.10
0.12

0.23
0.14
0.10

−0.001
0.08
0.99

0.04
0.08
0.64

−0.32
0.14
0.02

0.06
0.04
0.11

−0.10
0.09
0.28

−0.18
0.22
0.42

0.28
0.48
0.56

Average heart rate asleep
Βeta
SE
P value

0.37
0.08

< 0.001

0.26
0.10
0.01

−0.15
0.06
0.01

0.14
0.06
0.02

−0.22
0.10
0.03

0.06
0.03
0.02

0.41
0.06

< 0.001

0.26
0.16
0.10

−0.37
0.35
0.29

Heart rate NREM sleep
Βeta
SE
P value

0.38
0.08

< 0.001

0.33
0.11
0.003

−0.17
0.06
0.01

0.12
0.06
0.06

−0.19
0.11
0.08

0.06
0.03
0.04

0.42
0.07

< 0.001

0.18
0.17
0.31

−0.41
0.37
0.27

Heart rate REM sleep
Βeta
SE
P value

0.37
0.07

< 0.001

0.20
0.1
0.04

−0.13
0.06
0.03

0.14
0.06
0.02

0.22
0.1
0.02

0.07
0.03
0.005

0.40
0.06

< 0.001

0.38
0.16
0.02

−0.30
0.34
0.37

Systolic blood pressure percentile
Βeta
SE
P value

−0.02
0.21
0.92

0.17
0.28
0.54

0.02
0.17
0.91

0.07
0.17
0.68

−0.41
0.28
0.14

−0.12
0.07
0.10

−0.23
0.18
0.20

−0.48
0.45
0.28

−1.48
0.97
0.13

Diastolic blood pressure percentile
Βeta
SE
P value

−0.21
0.18
0.24

0.05
0.24
0.82

−0.12
0.141
0.41

0.18
0.14
0.21

−0.22
0.23
0.34

−0.03
0.06
0.60

−0.20
0.15
0.18

0.03
0.38
0.94

−1.64
0.82
0.05

Linear regression was used to assess the association of baseline cardiac measures outcomes and baseline sleep measures, adjusting for age, race (black 
vs. other), weight status (overweight or obese vs. nonoverweight), sex, and study site. AHI, apnea-hypopnea index; ETCO2, peak end-tidal carbon dioxide; 
NREM, nonrapid eye movement; ODI, oxygen desaturation index; REM, rapid eye movement; SE, standard error. 

Table 3—Change of cardiometabolic measures from baseline to follow-up in the early Adenotonsillectomy compared to the Watchful Waiting with 
Supportive Care group.

Outcome
eAT WWSC Effect

size P Baseline Follow-up Change* Baseline Follow-up Change*
hs-CRP, μg/mLa 1.5 ± 2.0 1.4 ± 2.0 −0.1 ± 2.2 1.1 ± 1.6 1.4 ± 2.0 0.3 ± 2.0 −0.18 0.16
LDL, mg/dLb 93.3 ± 21.6 93.6 ± 22.8 0.3 ± 16.0 92.9 ± 22.0 93.7 ± 22.9 0.8 ± 17.4 −0.03 0.87
HDL, mg/dLc 50.7 ± 12.9 50.6 ± 14.1 −0.2 ± 9.6 51.4 ± 11.8 51.8 ± 12.3 0.4 ± 8.3 −0.06 0.64
Triglycerides, mg/dLd 70.0 ± 23.7 73.9 ± 31.4 3.9 ± 30.7 73.1 ± 33.0 73.1 ± 39.0 −0.1 ± 34.0 0.12 0.29
Fasting blood glucose, mg/dLe 81.4 ± 7.1 82.2 ± 7.6 0.8 ± 6.9 81.4 ± 6.0 82.0 ± 7.1 0.7 ± 7.1 0.01 0.88
Fasting insulin, μlU/mLf 8.1 ± 7.6 11.3 ± 13.2 3.2 ± 10.4 8.4 ± 9.0 9.2 ± 7.8 0.8 ± 10.0 0.24 0.06
Systolic blood pressure percentile 43.5 ± 24.6 42.9 ± 24.3 −0.6 ± 29.1 47.5 ± 23.6 45.7 ± 24.2 −1.8 ± 26.1 0.05 0.62
Diastolic blood pressure percentile 61.5 ± 21.5 62.6 ± 21.4 1.2 ± 26.2 62.6 ± 20.0 61.9 ± 22.2 −0.7 ± 24.5 0.07 0.47
Average heart rate during sleep, bpm 84.2 ± 9.3 82.3 ± 8.6 −2.0 ± 7.6 83.5 ± 8.9 82.2 ± 7.9 −1.4 ± 8.3 −0.08 0.39
Heart rate NREM sleep, bpm 82.6 ± 9.8 81.2 ± 9.5 −1.4 ± 8.1 82.1 ± 9.4 80.7 ± 8.1 −1.4 ± 8.6 −0.01 0.90
Heart rate REM sleep, bpm 85.7 ± 8.9 83.5 ± 8.2 −2.2 ± 7.3 85.0 ± 8.8 83.6 ± 8.2 −1.5 ± 8.0 −0.09 0.31
Resting heart rate during wakefulness 86.5 ± 12.4 83.7 ± 10.5 −2.8 ± 13.7 87.4 ± 10.5 85.6 ± 11.7 −1.8 ± 13.6 −0.07 0.53

Descriptive statistics were presented as mean ± standard deviation. All P values were adjusted for age (5 to 7 y vs. 8 to 9 y), race (black vs. other), weight 
status (overweight or obese vs. nonoverweight), sex, and study site. *Change is from baseline to follow-up. Normative range: a< 3 μg/mL; b1–5 y: Male: 
40–128 mg/dL, Female: 62–128 mg/dLl; 6–10 y: Male: 49–130 mg/dL, Female: 58–129 mg/dL; c1–5 y: Male: 26–64 mg/dL, Female: 29–72 mg/dL; 6–10 y: 
Male: 25–74 mg/dL, Female: 30–67 mg/dL; d1–5 y: Male: 44–157 mg/dL, Female: 42–155 mg/dL; 6–10 y: Male: 44–188 mg/dL, Female: 44–194 mg/dL; 
e60–100 mg/dL; f1–15 μlU/mL. eAT, early adenotonsillectomy; HDL, high-density lipoprotein; hs-CRP, high-sensitivity C-reactive protein; LDL, low-density 
lipoprotein; NREM, nonrapid eye movement; REM, rapid eye movement; WWSC, Watchful Waiting with Supportive Care.
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blood pressure percentile. Further adjustment for percentage of 
REM sleep had no effect on these associations (data not shown).

No associations were observed between change in AHI, stage 
N2, stage N3, and REM sleep with any of the metabolic measures.

In an exploratory analysis assessing change in cardiomet-
abolic parameters from baseline to follow-up within the 253 
children who had “resolution of OSAS” (reduction in AHI 
to < 2 and apnea index to < 1), we found significantly increased 
levels of insulin and decreased heart rate (heart rate during 
sleep and resting heart rate during wakefulness) following in-
tervention (P = 0.004 and P = < 0.001).

DISCUSSION
In this large, randomized controlled trial of eAT for PSG-

confirmed childhood OSAS, we found that eAT compared 
to the WWSC group did not result in a significant change in 

fasting glucose, insulin, lipids, hs-CRP, blood pressure or 
heart rate over a 7-mo intervention period in children ages 5 
to 9 y, the majority of whom had normal cardiometabolic pa-
rameters at baseline examination. We also did not observe sig-
nificant correlations between polysomnographic indices and 
cardiometabolic variables other than an association between 
measures of OSAS severity (AHI, ODI, EtCO2) and heart rate 
in sleep (particularly REM sleep). We also observed that over 
the 7-mo intervention period, improvements in measures of 
oxygen saturation and end tidal CO2 levels were associated 
with decreases in heart rate during sleep. Wake heart rate also 
improved in association with improved AHI and ODI. These 
results indicate that of all the measured cardiometabolic pa-
rameters, relatively simple indices of average heart rate during 
wakefulness and sleep were sensitive to OSAS severity. We 
also observed several interesting associations between N3 
sleep and cardiometabolic parameters. In particular, increases 
in stage N3 sleep over the intervention period were associated 
with decreases in systolic blood pressure. However, the posi-
tive correlation between stage N3 sleep and triglyceride level 
was unexpected and of unclear significance.

Animal, adult, and pediatric studies implicate intermit-
tent hypoxemia and sleep fragmentation in the pathogenesis 
of OSAS-related dysregulation of blood pressure, autonomic 
function, inflammation, and glucose and lipid metabo-
lism.9,17–23,42–45 Because children with severe hypoxemia were 
excluded from our study, it is possible that the lack of a sig-
nificant effect of eAT on cardiometabolic outcomes reflects 
the modest level of hypoxemia in the CHAT sample. Our find-
ings are not inconsistent with the limited and observational 
literature, which has shown variable cardiometabolic effects 
of treatment in children with OSAS. A study of 62 obese and 
nonobese children with OSAS reported significant improve-
ments in serum lipid profiles and CRP after surgical removal 
of hypertrophic tonsils and adenoids in the entire cohort. How-
ever, significant improvements of insulin were only present in 
obese children.26 Another small study found that children with 
resolution of OSAS (either by AT, positive pressure ventilation, 
or spontaneously) experienced a small but significant decrease 
in total cholesterol levels. However, no changes in insulin, 
glucose, triglycerides, or HDL cholesterol could be shown, 
whether or not treatment occurred.27 Li et al.46 demonstrated 
a significant reduction of CRP following treatment (AT, nasal 
corticosteroids, or positive pressure ventilation) in 16 children 
with OSAS, whereas lipid profiles remained unchanged. Sim-
ilar to the findings of two other studies, we could not find a 
significant association between severity of OSAS with levels 
of fasting insulin and glucose.47,48 Shamsuzzaman et al.24 found 
that ODI rather than AHI was associated with increased insulin 
resistance in children with OSAS, an interesting result that 
could not be replicated in our study. One study on long-term 
outcomes of children with OSAS of whom 29% were treated 
with either AT, nasal steroids or a combination of treatments, 
including a nonsnoring control group, revealed that improve-
ment of SDB (spontaneously or as a result of treatment) was 
associated with improved baroreflex control of blood pressure. 
However, there was no difference in either wake or overnight 
systolic blood pressure in the control, resolved, and unresolved 
groups at follow-up, which is in line with our study results.29 In 

Table 4—Associations between changes from baseline to follow-up in 
cardiac measures and changes in corresponding sleep measures.

Cardiometabolic 
Marker*

Polysomnographic 
Measure* β SE P

Systolic blood 
pressure 
percentile

AHI 0.03 0.17 0.85
Stage N2 0.28 0.18 0.11
Stage N3 −0.44 0.17 0.01
REM sleep 0.16 0.29 0.58
Sleep duration −1.01 0.96 0.29
Peak EtCO2 −0.29 0.37 0.43
EtCO2 > 50 mmHg −0.10 0.08 0.18
ODI 3 −0.04 0.16 0.81
Oxygen saturation ≤ 92% 0.05 0.37 0.90

Diastolic blood 
pressure 
percentile

AHI −0.20 0.15 0.19
Stage N2 0.05 0.16 0.76
Stage N3 −0.05 0.16 0.74
REM sleep 0.18 0.27 0.51
Sleep duration −0.89 0.87 0.31
Peak EtCO2 −0.46 0.33 0.16
EtCO2 > 50 mmHg −0.05 0.07 0.45
ODI 3 −0.11 0.15 0.47
Oxygen saturation ≤ 92% 0.47 0.34 0.17

Average heart 
rate asleep

AHI 0.19 0.05  < 0.001
Stage N2 −0.07 0.05 0.16
Stage N3 0.02 0.05 0.64
REM sleep −0.08 0.08 0.34
Sleep duration −0.28 0.26 0.28
Peak EtCO2 0.29 0.10 0.004
EtCO2 > 50 mmHg 0.05 0.02 0.02
ODI 3 0.23 0.05  < 0.001
Oxygen saturation ≤ 92% 0.30 0.11 0.006

Linear regressions were used to assess the association of change in 
cardiac measures outcomes with change in sleep measures from baseline 
to follow-up, adjusting for age, race (black vs. other), weight status 
(overweight or obese vs. nonoverweight), sex, and study site. *Change 
from baseline to month 7. AHI, apnea-hypopnea index; ETCO2, peak 
end-tidal carbon dioxide; NREM, nonrapid eye movement; ODI, oxygen 
desaturation index; REM, rapid eye movement; SE, standard error.
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contrast to our study, most prior research reported on patients 
with more severe OSAS, were not randomization trials, and 
did not robustly consider potential confounders.

In contrast to a null effect of eAT on cardiometabolic out-
comes, we observed that improvement in AHI (or ODI or 
EtCO2) and increased stage N3 sleep in the intervention period 
was associated with reduction in heart rate and systolic blood 
pressure, respectively. The more significant associations ob-
served for changes in PSG parameters than an effect of inter-
vention per se (eAT vs. WWSC) may reflect the fact that there 
was within-group heterogeneity in changes in OSAS severity 
over the intervention period. In particular, 46% of children 
in the WWSC group had resolution of their OSAS and 21% 
of the eAT group had persistence of OSAS at follow-up, po-
tentially reducing the between-group differences for the sur-
gical and control arms.33 Furthermore, the eAT group gained 
more weight than the WWSC group,35 and weight gain may 
have confounded other treatment effects. Consistent with this 
notion, insulin sensitivity as measured by fasting insulin and 
glucose showed a trend toward worsening in the eAT group 
compared to the WWSC group at follow-up, and in fact was 
significantly increased in the subgroup in whom OSAS was 
resolved.

The sensitivity of change in heart rate to improvement in 
OSAS indices across the study period was consistent with the 
results of the baseline analysis showing that higher AHI, ODI, 
and EtCO2 were each associated with higher heart rate. Heart 
rate has been described to be elevated in association with re-
spiratory disturbances.2,30,49 Recently, Walter et al.25 compre-
hensively investigated nocturnal autonomic function in school 
children with SDB. In all sleep stages, children with moderate 
to severe OSAS had significantly higher heart rates compared 
with the control group. Moreover, children with SDB showed 
a significant lower heart rate variability during sleep than con-
trol children without SDB.25 In another study, Muzumdar et 
al.30 showed a significant reduction in heart rate during sleep in 
association with a reduction in AHI after adenotonsillectomy 
with a decrease in sympathetic balance as demonstrated by 
heart rate variability. It has been proposed that an accelerated 
heart rate induced by sympathetic nervous system over activity 
is responsible for the reported risk of long-term cardiovascular 
events and all-cause mortality.50,51 Our results extend those re-
ports by showing that OSAS is associated not only with heart 
rate measures during sleep as well as during wakefulness, al-
beit changes are small.

Increase in stage N3 sleep (also known as slow wave sleep; 
SWS) from baseline to post intervention was associated with a 
decrease in systolic blood pressure percentile. Stage N3 sleep is 
when parasympathetic tone is highest and sympathetic tone the 
lowest, corresponding to the stage when heart rate and blood 
pressure decline. In adults, decreased SWS has been linked to 
incident hypertension in older men.52 In children, support for a 
relationship between blood pressure and SWS can be found in 
a recent study from Hannon et al.53 that reported an association 
between decreased amounts of REM and N3 sleep with greater 
morning blood pressure in obese adolescents.

In baseline analyses, stages N1 and N3 sleep were positively 
associated with heart rate while stages N2 and REM sleep were 
negatively associated with heart rate. Although speculative, it 

is possible that these associations reflect differences in homeo-
static drive (i.e., resulting in more N3 sleep when studied in the 
laboratory) in some of the children who may be sleep deprived 
and have elevated sympathetic tone. Because sleep architecture 
changes and cardiometabolic function changes with puberty, it 
is also possible that pubertal influences may have confounded 
this association.54,55 Although our analysis controls for age and 
sex and analyzed children younger than 9 y, there is a trend 
for earlier puberty, especially among African Americans who 
constituted a majority of our sample.56

This study has a number of significant strengths, including 
its large sample, inclusion of a racially diverse group, random-
ized design, and rigorous collection of measurements. How-
ever in the interpretation of our findings, several limitations 
must be considered. First, cardiometabolic parameters were 
assessed on only two time points, 6 to 7 mo apart. Measure-
ment variability could bias the findings toward the null. It is 
possible that associations between cardiometabolic parameters 
and sleep indices may be stronger or weaker at later time points. 
Second, findings are applicable to children with mild to mod-
erate levels of OSAS and should not be generalized to children 
who are markedly hypoxemic. Furthermore, results should not 
be generalized to primary snorers or those with upper airway 
resistance syndrome. Finally, analyses were not subject to cor-
rection for multiple comparisons, so that the likelihood of false 
positive findings is increased. The analyses in this paper were 
secondary to the primary results of the CHAT study, and thus 
require future independent replication.

In summary, this study evaluated the effect of eAT for 
OSAS on cardiometabolic parameters using a randomized 
controlled design. In contrast to our expectations, changes 
in levels of glucose, lipids, insulin, CRP, blood pressure, and 
heart rate were not different between eAT and WWSC groups. 
However, we identified the potential sensitivity of heart rate as 
an index of OSAS severity and a measure of responsiveness to 
OSAS improvement. We also identified a negative association 
between N3 sleep and lower blood pressure, a finding previ-
ously reported in adults. Because elevated heart rate and blood 
pressure are associated with increased cardiovascular risk, our 
results support further research aimed at clarifying the role of 
OSAS and its treatment of cardiovascular health of children.
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SUPPLEMENTAL MATERIAL

Table S1—Change of sleep measures and BMI z-score from baseline to follow-up in the early Adenotonsillectomy compared to the Watchful Waiting with 
Supportive Care group.

Outcome
eAT WWSC Effect

Size PBaseline Follow-up Change* Baseline Follow-up Change*
AHI, events/h 6.9 ± 5.7 1.6 ± 3.0 −5.3 ± 6.2 6.6 ± 5.6 5.9 ± 10.1 −0.7 ± 9.5 −0.57  < 0.001
Stage N1, % TST 8.6 ± 4.2 6.8 ± 3.2 −1.8 ± 3.8 8.8 ± 4.2 8.4 ± 4.7 −0.4 ± 4.7 −0.32 0.001
Stage N2, % TST 41.2 ± 7.5 44.5 ± 7.2 3.3 ± 8.2 41.4 ± 7.9 42.8 ± 7.0 1.4 ± 7.8 0.24 0.02
Stage N3, % TST 31.4 ± 7.3 30.0 ± 7.0 −1.4 ± 8.2 31.8 ± 7.7 30.9 ± 6.7 −0.8 ± 7.7 −0.07 0.47
REM sleep, % TST 18.8 ± 4.2 18.6 ± 3.9 −0.1 ± 4.8 18.1 ± 4.4 17.9 ± 4.2 −0.2 ± 4.9 0.004 0.85
Peak EtCO2, mmHg 55.3 ± 3.8 54.2 ± 3.6 −1.1 ± 4.3 54.1 ± 3.8 54.4 ± 4.2 0.3 ± 4.9 −0.31 0.008
EtCO2 > 50 mmHg, % of TST 12.0 ± 19.9 7.3 ± 14.6 −4.7 ± 20.8 9.0 ± 19.1 9.5 ± 18.5 0.5 ± 24.5 −0.23 0.07
ODI 3, events/h 7.4 ± 6.9 2.9 ± 3.7 −4.6 ± 7.1 6.8 ± 6.3 6.3 ± 10.4 −0.5 ± 9.3 −0.49  < 0.001
Oxygen saturation ≤ 92%, % TST 0.6 ± 1.3 0.3 ± 2.2 −0.3 ± 2.5 0.7 ± 3.5 0.6 ± 3.3 −0.2 ± 4.6 −0.04 0.77
Sleep duration, h/day 9.4 ± 1.3 9.4 ± 1.3 −0.1 ± 1.5 9.6 ± 1.4 9.6 ± 1.3 0.0 ± 1.8 −0.05 0.66
BMI z-score 0.9 ± 1.4 1.2 ± 1.2 0.3 ± 0.4 0.8 ± 1.3 1.0 ± 1.3 0.2 ± 0.4 0.30 0.003

Descriptive statistics were presented as mean ± standard deviation. All P values were adjusted for age (5 to 7 years of age vs. 8 to 9 years of age), race 
(black vs. other), weight status (overweight or obese vs. non-overweight), gender and study site. *Change is from baseline to follow-up. AHI, apnea-
hypopnea index; BMI, body mass index; eAT, early adenotonsillectomy; ODI, oxygen desaturation index; REM, rapid eye movement; WWSC, Watchful 
Waiting with Supportive Care.


