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INTRODUCTION
Obstructive sleep apnea (OSA) is a respiratory disorder 

characterized by repetitive pharyngeal collapses during sleep, 
causing snoring and transitory cessation (apneas) or reduction 
(hypopneas) of airflow amplitude, which result in intermit-
tent hypoxemia.1,2 During these respiratory events, a profound 
increase in cerebral blood flow (CBF) is initially observed 
followed by an important decrease below resting values.3 Re-
spiratory events generally end with a cortical arousal, which 
causes sleep fragmentation and further hemodynamic changes 
through an elevation of sympathetic tone.4 Hypoxemia and 
nocturnal CBF fluctuations lead to cerebral hypoxia and neu-
ronal, glial, and endothelial damage.5–8 Thus, altered cerebral 
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perfusion, changes in vascular function, sleep fragmentation, 
and cellular damage may explain why OSA has been linked to 
excessive daytime sleepiness, cognitive deficits, and increased 
risk of cerebrovascular diseases.1,9–12

So far, few neuroimaging studies have been performed in 
subjects with OSA during wakeful rest to estimate the impact 
of nocturnal respiratory events on brain functions. Among 
them, studies using transcranial Doppler have shown that OSA 
individuals have impaired vascular regulation during wakeful-
ness.3,13–15 Studies using magnetic resonance imaging (MRI) 
and emission tomography techniques have shown that OSA af-
fects brain regions differently. In fact, one study using arterial 
spin labeling showed reduced regional CBF (rCBF) in several 
white matter tracts involved in the coordination of respiratory 
musculature, autonomic regulation, and cognition.16 Further-
more, using single photon emission computed tomography 
(SPECT) or positron emission tomography (PET) combined to 
a statistical parametric mapping (SPM) approach, four studies 
investigated gray matter rCBF or glucose metabolism in un-
treated OSA individuals. Combined, these studies observed 
hypoperfusion or hypometabolism in the prefrontal cortex, the 
sensorimotor areas, the limbic system, the parietal lobes, the 
superior temporal cortex, and the anterior occipital cortex.17–20

Although interesting, these studies show great inconsisten-
cies regarding the cerebral regions affected in OSA, possibly 
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due to methodological variability including the use of different 
apnea-hypopnea index (AHI) thresholds for OSA diagnosis 
(varied between 10 to 30 events/h), different cardiovascular 
exclusion criteria, sample sizes (≤ 30 subjects in 3 of the 4 
published SPECT and PET studies), and different statistical 
thresholds for neuroimaging results. In addition, most neu-
roimaging studies have focused on middle-aged adults with 
severe OSA, and therefore older patients, especially those 
with mild or moderate OSA, are generally not investigated. 
Considering that the prevalence of OSA increases from 2% 
to 14% in the middle-aged adult population to 32% to 42% 
in individuals over 60 years of age,21 studying the impact of 
OSA in this age group is of utmost importance. In addition to 
presenting reduction in total CBF,22 findings from an animal 
study suggest that older individuals could be more vulnerable 
to intermittent hypoxia,23 which may lead to a more severe 
impact of OSA on brain function. Accordingly, brain perfu-
sion changes during wakeful rest could be observed not only 
in severe OSA, but also in milder forms of OSA.

The present study aimed at evaluating rCBF as a measure 
of brain function during wakeful rest using Technetium-
99m Hexa-methyl-amino-propyleneamine-oxime (99mTc-
HMPAO) high-resolution SPECT in newly diagnosed and 
untreated mild, moderate, and severe OSA patients aged 
from 55 to 85 years and comparing them to controls without 
OSA. The novelty of the present study lies in the fact that a 
large sample was investigated to verify whether the pattern 
of reduced regional brain perfusion previously described 
in middle-aged OSA individuals would be observed in 
older subjects. This large sample size allowed us to divide 
our groups according to severity, which has not been done 
in previous studies. Another strength and novelty of this 
study was the high-resolution NeuroFOCUS SPECT scanner 
used, which provides 2.5 mm spatial resolution contrary to 
standard SPECT scanner (spatial resolution of 6–15 mm), 
enabling perfusion measurement in smaller regions. We hy-
pothesized that OSA of mild or moderate severity in older 
subjects would be associated with reduced perfusion in cere-
bral regions previously reported as abnormal in middle-aged 
OSA patients. More specifically, these areas of hypoperfu-
sion could be observed concomitantly in regions sensitive 
to hypoxemia (prefrontal cortex and hippocampus)24,25 and 
in regions showing relative hypoperfusion in normal aging 
(limbic system and association cortex, especially frontal 
lobes).26 Another novel aspect of the present study is that we 
assessed the relationship between rCBF and several markers 
of OSA severity. We hypothesized that more severe levels 
of OSA (more respiratory events, lower oxygen saturation, 
and more fragmented sleep), daytime sleepiness, and the 
presence of cardiovascular comorbidities as well as obesity 
would predict abnormal rCBF.

METHODS

Sample
Seventy subjects aged between 55 and 85 years (mean age: 

64.5 ± 6.7; 15 females) were recruited from the pulmonary de-
partment of the Hôpital du Sacré-Coeur de Montréal and by 
ads in local newspapers. Participants with one or more of the 

following conditions were excluded: (1) central nervous system 
disorders (e.g. dementia, neurological diseases, traumatic brain 
injury, epilepsy); (2) uncontrolled diabetes or hypertension; (3) 
treatment with continuous positive airway pressure or other 
types of treatment such as a mandibular advancement device; 
(4) body mass index (BMI) > 40 kg/m2; (5) use of medication, 
drugs, or natural products known to influence cognition, cere-
bral functioning, sleep, and/or affect; and (6) history of stroke 
(patients with a history of transient ischemic attacks were not 
excluded), sleep disorders other than OSA, or any major psy-
chiatric disorders or pulmonary diseases. Written consent was 
obtained from each participant, and the research protocol was 
approved by the ethics committee of the Hôpital du Sacré-
Coeur de Montréal.

Questionnaires
Beck Depression Inventory-II27 and Beck Anxiety Inven-

tory28 were used to document depression and anxiety symp-
toms. All participants were assessed for subjective daytime 
sleepiness using the Epworth Sleepiness Scale.29 Vascular risk 
factors and comorbidities were assessed using the Vascular 
Burden Index developed and validated by Villeneuve et al.30,31 
This questionnaire screens for the presence of hypertension, 
hypotension, hypercholesterolemia/dyslipidemia, coronary 
diseases (angina pectoris, myocardial infarction, coronary ar-
tery bypass), transitory ischemic attack, diabetes, arrhythmia, 
and carotid stenosis, with a maximum total score of 8 points. 
Presence of these risk factors was based on previous medical 
observations.

Polysomnographic Recording
All participants underwent a polysomnographic recording 

that used measurements from thoraco-abdominal strain 
gauges, an oronasal canula, and a transcutaneous finger pulse 
oximeter to measure oxygen saturation. Electroencephalo-
graphic sleep recordings were performed using an 18-channel 
montage accompanied by an electrooculogram, electromyo-
gram on the chin and legs, and electrocardiogram. An apneic 
episode was defined as total cessation of airflow lasting ≥ 10 
s. A hypopneic episode was defined as a reduction in air-
flow ≥ 30% from baseline lasting ≥ 10 s and accompanied by 
an oxygen desaturation ≥ 3% or accompanied by an episode 
of arousal.32 The sum of apnea and hypopnea episodes divided 
by the number of hours of sleep provides the AHI. Sleep was 
recorded and scored by an experienced electrophysiology 
technician according to standard methods.33 For comparison 
purposes, based on published criteria,1 participants were cat-
egorized in three groups consisting of mild (AHI > 5 and ≤ 15), 
moderate (AHI > 15 and ≤ 30), and severe OSA (> 30). Partici-
pants with AHI ≤ 5 were considered as controls. Polysomno-
graphic results are shown in Table 1 for all groups.

99mTc-HMPAO SPECT Image Acquisition
All participants underwent a daytime 99mTc-HMPAO SPECT 

study during wakeful rest with a high-resolution brain-dedi-
cated scanner (NeuroFOCUS, NeuroPhysics, Shirley, MA, 
USA) providing a 2.5 mm full-width half-maximum (FWHM) 
spatial resolution. This resolution allows accurate evalua-
tion of perfusion distribution in much smaller brain regions 
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than with conventional 2- or 3-headed gamma camera-based 
SPECT scanners. A dose of 750 MBq of 99mTc-HMPAO pre-
pared in the morning of testing was administered followed 
by a saline flush of 30 cc while the subject lay awake on a 
stretcher with their eyes closed. A static, 30-min acquisition 
was performed 20 minutes later. Thirty-two slices were re-
constructed on a 128 × 128 matrix using a filtered back pro-
jection, and an attenuation correction was performed using 
Chang’s method with a coefficient of 0.01/cm. Reconstructed 
voxel size was 1.56 mm3. This SPECT system does not allow 
for recording of the whole cerebellum in most subjects, and 
the cerebellar region was excluded from analysis. SPECT ac-
quisitions were performed between 10:15 and 15:00 hours and 
were on average obtained 25.2 ± 23.1 days after the polysom-
nographic recording.

Image Analysis
All SPECT images were evaluated visually for abnormali-

ties. Using SPM8 (Statistical Parametric Mapping 8, Well-
come Department of Imaging Neurosciences, Institute of 
Neurology, University College London, UK) with MatLab 
(version 7.3, The MathWorks, Natick, MA, USA), individual 
SPECT studies were registered and spatially normalized to 
the standard SPECT template included in the SPM8 software. 
Then, normalized images were smoothed using a 14-mm 
FWHM Gaussian filter. A proportional scaling normalization 
was used during analyses between images for their individual 
global mean signal. Thus, final regional results are relative to 
the mean global signal of CBF. Voxel size of the final images 
was 2.0 × 2.0 × 2.0 mm.

Statistical Analysis
Descriptive statistics were performed for all study vari-

ables with STATISTICA 10.0 (Statsoft Inc., Tulsa, USA). Chi-
square and t-tests were used, with a statistical significance of 
P < 0.05 to compare controls to OSA subjects in relation to 
their demographic, clinical, and polysomnographic variables. 
For the first research objective, group differences in rCBF dis-
tribution were assessed using SPM8 (two-sample t-tests be-
tween healthy controls and each OSA group), corrected for 
multiple comparisons using false discovery rate (FDR)34 at 
P < 0.05 with an extent threshold of 50 contiguous signifi-
cant voxels across all gray matter, as previously described in 
Joo and al.17 In order to compare our results with other pub-
lished imaging studies performed in subjects with OSA,19,20 
a less stringent significance level with a height threshold 
of P < 0.001 uncorrected was also used. However, we then 
increased the extent requirement to 200 contiguous signifi-
cant voxels in order to reduce the false positive rate. For the 
second objective, rCBF was correlated with all participants’ 
respiratory events (AHI, apnea index, hypopnea index), ox-
ygen saturation (minimum, mean, total sleep time spent under 
90%), proportion of sleep time spent snoring, sleep efficiency, 
microarousal index, Epworth Sleepiness Score, BMI, and 
vascular burden index. All correlations (multiple regression 
design) were done with age as a nuisance covariant, and the 
same two statistical thresholds mentioned before were used. 
The creation of a gray matter mask and the identification of 
significant regions (ICBM atlas) were performed with the 
software PickAtlas software (version 3.0, ANSIR Labora-
tory, Wake Forest University School of Medicine, NC, USA). 

Table 1—Demographic, clinical, and polysomnographic variables for control subjects and OSA groups.

 (A)
Control
n = 20

 (B)
Mild OSA

n = 23

 (C)
Moderate OSA

n = 14

 (D)
Severe OSA

n = 13

P

A vs B A vs C A vs D
Variables

Gender 8F; 12M 5F; 18M 1F; 13M 1F; 12M ns < 0.05 < 0.05
Age (years) 64.1 (7.1) 64.5 (7.0) 63.9 (4.8) 65.8 (8.0) ns ns ns
BMI (kg/m2) 25.6 (3.3) 27.3 (3.3) 28.1 (3.3) 27.6 (2.5) ns < 0.05 ns
Epworth Sleepiness Scale score 9.0 (5.9) 7.0 (4.2) 11.5 (4.6) 9.2 (7.1) ns ns ns
Beck Depression Inventory score 5.9 (5.2) 6.7 (6.0) 8.7 (5.2) 6.8 (5.4) ns ns ns
Beck Anxiety Inventory score 4.8 (4.8) 3.7 (4.2) 6.0 (6.4) 5.0 (4.5) ns ns ns
Vascular burden index 0.9 (1.0) 1.5 (1.3) 1.1 (1.0) 1.6 (1.6) ns ns ns
Subjects with vascular burden > 2/8 (%) 20 52 43 39 ns ns ns

Polysomnographic Variables
AHI (events/h) 2.8 (2.0) 10.1 (2.7) 23.0 (4.3) 40.9 (11.1) < 0.001 < 0.001 < 0.001
Apnea index (events/h) 0.7 (1.1) 3.3 (3.0) 10.7 (6.0) 26.9 (11.7) < 0.001 < 0.001 < 0.001
Hypopnea index (events/h) 2.1 (1.7) 6.8 (2.8) 12.3 (5.6) 14.1 (5.9) < 0.001 < 0.001 < 0.001
Minimal SpO2 (%) 89.5 (2.9) 87.8 (5.3) 82.4 (6.0) 82.0 (5.5) ns < 0.001 < 0.001
Mean SpO2 (%) 94.9 (0.9) 95.4 (1.2) 94.2 (0.8) 94.5 (0.6) ns < 0.05 ns
TST with SpO2 < 90% (min) 0.5 (1.0) 1.0 (1.5) 6.5 (5.7) 15.4 (19.1) ns < 0.001 < 0.001
Snoring (% of TST) 8.6 (14.5) 14.5 (15.5) 34.4 (24.4) 15.5 (12.9) ns < 0.001 ns
Microarousal index (number/h) 11.4 (3.7) 11.9 (4.6) 15.8 (7.5) 21.6 (6.9) ns < 0.05 < 0.001
Sleep efficiency (%) 78.9 (12.4) 77.5 (13.1) 78.6 (12.7) 76.1 (11.3) ns ns ns

Results are presented as mean (standard deviation). OSA, obstructive sleep apnea; F, females; M, males; ns, nonsignificant; BMI, body mass index; AHI, 
apnea-hypopnea index; SpO2, oxygen saturation; TST, total sleep time.
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Resulting regions were superimposed on the SPECT template 
available in the SPM8 package. Figures were realized with 
the MRIcron software (Analyze viewer, Chris Rorden, PhD, 
Neuropsychology Lab, Columbia, SC, USA).

RESULTS

Demographic, Clinical, and Polysomnographic Variables 
across Groups

Twenty-three subjects had mild OSA, 14 subjects had 
moderate OSA, and 13 subjects had severe OSA—for a 
total of 50 OSA subjects who were compared to 20 con-
trols (see Table 1 for group’s demographic, clinical, and 

polysomnographic characteristics and statistics). No differ-
ences in age, levels of subjective daytime sleepiness, depres-
sion, anxiety, vascular burden, or sleep efficiency were found 
between groups.

Group Difference for rCBF
Compared to controls, participants of the severe OSA group 

had decreased rCBF within a large cluster of voxels of the left 
hemisphere that includes the precentral and postcentral gyri 
and the superior and inferior parietal lobules (P < 0.05 cor-
rected with FDR, see Table 2 and Figure 1). Additional regions 
of hypoperfusion were found in severe OSA patients compared 
to controls using uncorrected threshold of P < 0.001: namely 
the right postcentral gyrus and the right precuneus. Mild and 
moderate OSA groups showed no significant differences in 
rCBF with either statistical threshold when compared to con-
trols. No regions of increased rCBF were found in OSA groups 
in comparison to healthy controls.

Correlation Analyses between rCBF and OSA-Related Variables
In the correlational analysis including all subjects with or 

without OSA, several hypoperfusion foci were associated with 
increased disease severity (Table 3 and Figure 2). Among the 
significant correlations observed, we found that higher AHI 
and higher hypopnea index were associated with hypoper-
fusion in the lateral portions of the left frontal (inferior and 
middle frontal gyri), sensorimotor (precentral and postcentral 
gyri), temporal (middle temporal gyrus), and parietal lobe 
(inferior parietal lobule), in addition to the right precuneus. A 
higher proportion of sleep spent snoring was associated with 
hypoperfusion in the left anterior parahippocampal gyrus, 
the anterior pole of the temporal lobe, and the inferior frontal 
gyrus. Hypoxemia, and more specifically the time spent with 
oxygen saturation below 90%, was correlated with reduced 
rCBF in the left dorsolateral prefrontal cortex, while subjec-
tive sleepiness measured by the Epworth Sleepiness Scale was 
associated with hypoperfused bilateral dorsomedial prefrontal 
cortex.

OSA severity (higher AHI, apnea index and microarousal 
index) was also associated with hyperperfusion. Contrary to 
hypoperfusion (mostly in the lateral portion of the frontal, 
temporal, and parietal cortex), regions of hyperperfusion were 

Table 2—Hypoperfused regions in severe OSA compared to control subjects.

Cluster size (k) Location P Side BA
Peak 

t-values
MNI Coordinates
x y z

729 Postcentral gyrus 0.05 corrected L 2 4.54 −55 −28 54
Superior parietal lobule L 7 4.20 −30 −60 67
Precentral gyrus L 4,6 4.19 −41 −16 68
Inferior parietal lobule (angular gyrus) L 40 4.07 −58 −50 46

244 Postcentral gyrus 0.001 uncorrected R 2 5.54 14 −50 78

274 Precuneus 0.001 uncorrected R 7 4.67 7 −78 52

236 Inferior parietal lobule (supramarginal gyrus) 0.001 uncorrected L 40 3.77 −67 −32 32
Postcentral gyrus L 3 3.63 −68 −16 29

MNI, Montreal Neurological Institute; BA, Brodmann area; L, left; R, right.

Figure 1—Location of the significant reductions in regional cerebral 
blood flow (rCBF) in severe obstructive sleep apnea (OSA) subjects 
compared with controls. (A) Glass view of the significant clusters and (B) 
overlays of significant regions on the SPECT template. Hypoperfusions 
were found in the left superior and inferior parietal lobules, the left 
precentral gyrus, bilateral postcentral gyri, and right precuneus gyrus. 
Left side of images represents the left hemisphere of the brain.
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all observed in the subcortical or medial cortical regions, in-
cluding the caudate nucleus, the putamen, the amygdala, the 
hippocampus, the insula, and the parahippocampal gyrus 
(Table 4 and Figure 3), mostly in the right hemisphere. No cor-
relation was found between rCBF and sleep efficiency.

For cardiovascular comorbidities, no correlation was found 
between rCBF and the vascular burden index with either statis-
tical threshold. However, higher BMI representing obesity was 
associated with both modest hypoperfusion in the postcentral 
gyrus and hyperperfusion in the hippocampi and the left para-
hippocampal gyrus extending to the globus pallidus (Tables 3 
and 4, Figures 2 and 3).

DISCUSSION
In the present study, we investigated rCBF using a high-

resolution SPECT scanner in a large sample of older subjects 
with mild, moderate, and severe OSA during wakeful rest in 
order to evaluate brain function impairment in this population. 
Group comparisons showed that only severe OSA subjects 
had reduced rCBF in sensorimotor areas and parietal lobes, 

especially on the left hemisphere. Additionally, correlational 
analyses showed that higher levels of respiratory disturbances 
during sleep, greater daytime sleepiness, and obesity were as-
sociated to lateral cortical hypoperfusion of the parietal, tem-
poral and frontal lobes. On the other hand, more respiratory 
events, fragmented sleep, and obesity were associated with 
hyperperfusion of subcortical and medial cortical structures, 
namely the basal ganglia, the limbic system, and the insula.

Reduced rCBF in Older Subjects with Severe OSA
The parietal hypoperfusion found in the present study could 

be a particularity of older OSA subjects. A recent SPECT 
study performed in 15 middle-aged subjects with severe 
OSA showed reduced rCBF only in the prefrontal areas.20 
Another SPECT study investigating a relatively large sample 
of middle-aged men (27 controls and 27 severe OSA) found 
reduced rCBF in the parahippocampal and lingual gyri, but 
not in the parietal cortex.17 Even though SPECT studies in 
middle-aged OSA subjects failed to observed parietal hypo-
perfusion, two studies using PET in older middle-aged OSA 

Table 3—Location of hypoperfused regions associated with OSA-related variables.

Cluster size (k) Location P Side BA
Peak 

t-values
MNI Coordinates
x y z

Apnea-hypopnea index 
848 Postcentral gyrus 0.05 corrected L 3 4.41 −58 −38 50

Precentral gyrus L 6 3.64 −64 −16 44
Inferior parietal lobule (angular gyrus) L 40 3.56 −56 −42 52

288 Precuneus 0.001 uncorrected R 7 4.85 7 −78 52

212 Inferior frontal gyrus 0.001 uncorrected L 47 4.62 −54 30 0
Hypopnea index

683 Inferior parietal lobule (supramarginal gyrus) 0.05 corrected L 40 4.44 −70 −28 26
Middle temporal gyrus L 21 3.86 −67 −6 −6
Postcentral gyrus L 40 3.69 −58 −28 54

389 Inferior frontal gyrus 0.001 uncorrected L 47 4.31 −56 28 −2

340 Middle frontal gyrus 0.001 uncorrected L 6 4.09 −58 6 46
Proportion of time spent snoring (%)
2442 Parahippocampal gyrus 0.05 corrected L 34 4.86 −14 −4 −26

Medial temporal pole L 38 4.83 −34 16 −32
Lateral temporal pole L 38 4.22 −54 14 −26
Inferior frontal gyrus L 45 3.61 −56 34 4

Time spent with oxygen saturation < 90%
297 Superior frontal gyrus 0.001 uncorrected L 8 4.82 −16 28 54

219 Middle frontal gyrus 0.001 uncorrected L 9 4.41 −48 28 36
Epworth Sleepiness Scale

580 Superior medial frontal gyrus 0.05 corrected L 9 4.25 −8 48 40
Superior medial frontal gyrus L 8 3.85 −6 34 44
Superior medial frontal gyrus R 8 3.76 4 20 50

Body mass index
218 Postcentral gyrus 0.001 uncorrected R 2 4.44 64 −18 28

MNI, Montreal Neurological Institute; BA, Brodmann area; L, left; R, right.
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subjects (54.8 ± 5.7 and 49.8 ± 7.0 years old, respectively) re-
ported reduced glucose metabolism in the parietal cortex.18,19 
This suggests that either PET is more sensitive than SPECT in 

detecting parietal anomalies in middle-aged subjects or that 
changes in the parietal cortex tend to occur after the age of 50. 
Parietal hypoperfusion is a well-documented marker of early 
Alzheimer disease, especially on the left hemisphere.35–39 Con-
sidering that OSA has been identified as a risk factor for mild 
cognitive impairment and dementia,40–42 a proportion of our 
severe OSA subjects may have underlying neurodegenerative 
processes. Indeed, hypoxia increases both the accumulation of 
amyloid-β and tau phosphorylation,43 which are pathological 
markers of Alzheimer disease. Additional longitudinal cohort 
studies of OSA patients are definitely needed to understand 
how OSA contributes to abnormal cognitive decline in older 
subjects and whether parietal hypoperfusion is an early marker 
of subsequent dementia in OSA.

Other mechanisms combined or not with the hypothetical 
neurodegenerative process may explain the regional cerebral 
hypoperfusion observed in older OSA individuals, namely vas-
cular dysfunction and/or neuronal injury. First, during respira-
tory events, intermittent hypoxemia in combination with fast 
fluctuations in CBF and variations in blood pressure can lead 
to oxidative stress, inflammation, endothelial dysfunction, and 
atherosclerosis.8,43,44 Endothelial dysfunction and atheroscle-
rosis directly reduce the diameter of blood vessels in addition 
to affect vasoreactivity, leading to hypoperfusion even during 
wakefulness.43,45 Concordant with this hypothesis, several 

Figure 2—Hypoperfused regions associated with OSA severity. 
Location of hypoperfusions that correlated with variables representing 
more severe obstructive sleep apnea (OSA). Regions showing 
hypoperfusions were as follow: (A) and (B) left inferior and middle 
frontal, precentral, postcentral, and middle temporal gyri, inferior parietal 
lobule, and right precuneus; (C) left parahippocampal, anterior temporal 
pole, and inferior frontal gyri; (D) left dorsolateral prefrontal cortex; 
(E) bilateral dorsomedial prefrontal cortex; (F) right postcentral gyrus. 
Results are overlays on the SPECT template and left side of images 
represent the left hemisphere of the brain.

Figure 3—Hyperperfused regions associated with OSA severity. 
Locations of hyperperfusion that correlated with variables representing 
more severe obstructive sleep apnea (OSA). Regions showing 
hyperperfusion were as follow: (A) right basal ganglia, amygdala, and 
hippocampus; (B) right parahippocampal gyrus, insular cortex, and left 
putamen; (C) bilateral hippocampi, left parahippocampal gyrus, and 
globus pallidus. Results are overlays on the SPECT template and left 
side of images represent the left hemisphere of the brain.
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studies have shown that OSA severity is associated with im-
paired cerebrovascular reactivity during wakefulness.13–15,46,47 
More specifically, subjects with OSA have reduced cerebrovas-
cular autoregulation at rest, during hypoxia and hypercapnia, 
and during orthostatic hypotension.

The second mechanism that could be responsible for de-
creased rCBF in OSA is neuronal injuries occurring as a 
consequence of nocturnal hypoxia and fluctuations in blood 
pressure and perfusion during respiratory events. Other pro-
cesses secondary to respiratory events, including endothelial 
dysfunction, proteasomal activity, reactive gliosis, inflamma-
tion, reduced dendritic branching, impaired neurotransmitters 
production, and oxidative stress may also lead to neuronal 
function impairment and/or death.7,8,23,48,49 Since regional 
brain perfusion is closely correlated with local neuronal ac-
tivity,50 altered neuronal function following injuries or even 
loss could lead to hypoperfusion. Accordingly, several regions 
showing hypoperfusions in the present study were reported to 
have altered resting-state connectivity51–53 as well as cortical 
thinning or reduced gray matter density in middle-aged OSA 
individuals.18,54–56

Although mechanisms underlying the vulnerability of some 
brain regions to vascular dysfunction or neuronal loss in the 
context of OSA are not fully understood, some characteris-
tics of these regions may explain their susceptibility. In fact, 
during hypoxia, cortical associative regions, which are phy-
logenically newer, are less protected in comparison to subcor-
tical structures.57 Moreover, a study with severe OSA subjects 
using SPECT during sleep found reduced left parietal rCBF,58 
which suggests an increased risk of vascular and neuronal im-
pairment leading to daytime hypoperfusion. Finally, the in-
ferior parietal lobe and the precuneus are part of the default 
mode network,59 as well as several regions found as impaired 
in association with OSA severity markers in our correlation 

analysis. It has been hypothesized that the default mode net-
work could be particularly vulnerable to various injuries oc-
curring in aging and in Alzheimer disease,60 and this network 
has been shown to be impaired in previous functional MRI 
studies in OSA.52,61–63

Normal rCBF in Mild and Moderate OSA
Based on previous empirical evidence from an animal 

model of OSA in aging rats23 and on the reduction of global 
CBF with age,22 we expected that older subjects with mild and 
moderate OSA would show regional hypoperfusion, but our 
results did not confirm this hypothesis. The absence of brain 
anomalies among older subjects with mild OSA corroborates 
previous results in middle-aged patients, where a higher level 
of OSA severity was necessary to observe neuroimaging find-
ings, namely silent lacunar infarctions and periventricular hy-
perintensities,64 as well as altered metabolite concentrations 
representing reduced neuronal integrity.65,66 Our results are 
also consistent with those found in neuropsychological studies 
of middle-aged and elderly subjects, which showed that cogni-
tive deficits are more likely to be observed in individuals with 
moderate and severe OSA than in those with mild OSA or in 
healthy controls.67,68 These studies, combined with our results, 
suggest that a certain level of OSA severity, as measured with 
the AHI, is necessary to observe changes in brain function and 
metabolism, independently of age.

Hypoperfusion and Markers of OSA Severity
We found that OSA-related variables including hypopneas, 

proportion of time spent snoring, hypoxemia, and subjective 
sleepiness were also associated with hypoperfusion in lateral 
portions of the parietal, temporal and frontal lobes, especially 
in the left hemisphere. While hypopnea episodes were associ-
ated with reduced perfusion, apneas were not. Since apneas 

Table 4—Location of hyperperfused regions associated with OSA-related variables.

Cluster size (k) Location P Side
Peak 

t-values
MNI coordinates
x y z

Apnea-hypopnea index
470 Amygdala, Hippocampus 0.001 uncorrected R 4.45 30 −6 −16

Caudate nucleus, Putamen R 3.83 10 10 −4
Apnea index

501 Amygdala, Hippocampus 0.05 corrected R 4.53 30 −6 −16
Caudate nucleus, Putamen R 3.88 10 8 −2

Microarousal index
585 Parahippocampal gyrus 0.05 corrected R 4.38 26 2 −14

Insula R 3.73 32 18 −6

249 Putamen 0.001 uncorrected L 3.99 −28 2 −6
Body mass index

397 Hippocampus 0.001 uncorrected L 3.82 −26 −20 −12
Parahippocampal gyrus L 3.61 −18 −25 −16
Globus pallidus (lentiform nucleus) L 3.46 −18 −9 5

208 Hippocampus 0.001 uncorrected R 3.82 32 −14 −16

MNI, Montreal Neurological Institute; L, left; R, right.
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and hypopneas are characterized by different levels of hy-
poxemia, arousals, and heart rate increases,69 further studies 
will be needed to understand the differential effect of cessa-
tion (apnea) and reduction (hypopnea) of airflow amplitude 
on brain perfusion and neuronal function. In addition to AHI 
and hypopnea index, snoring was also associated with reduced 
rCBF in the left anterior temporal pole extending to the frontal 
lobe. Habitual snoring in children without OSA increases 
the risk for cognitive problems and poorer academic perfor-
mance,70 but the relation between brain function and snoring 
is not well understood in adults. It is possible that respiratory 
disturbances provoking snoring without reaching criteria to be 
considered apneas or hypopneas could affect the brain differ-
ently that apnea and hypopnea events. Although correlational 
analyses with markers of OSA severity are of particular impor-
tance in OSA studies, our group analyses leaded to two regions 
of hypoperfusion that were not observed in the correlational 
analyses (left superior parietal lobule, right postcentral gyrus), 
which could be caused by a nonlinear relationship between 
markers of OSA severity and rCBF.

We also found that hypoxemia and sleepiness were associ-
ated with abnormal perfusion in the prefrontal cortex. Consis-
tent with our findings, previous SPECT and PET studies that 
investigated OSA subjects with higher levels of hypoxemia 
and subjective sleepiness than in our study, showed reduced 
prefrontal perfusion or metabolism,19,20 a region that seems 
particularly sensitive to hypoxemia and sleep deprivation.24 
However, the prefrontal regions were not found to be altered 
in our group comparisons, suggesting that hypoxemia and sub-
jective sleepiness should be considered as contributing factors 
to brain dysfunction independently of level of OSA severity as 
measured by the AHI in older individuals.

Association between Hyperperfusion and OSA-Related 
Variables

Also of interest, significant higher rCBF in several subcor-
tical areas (putamen, caudate nucleus, globus pallidus, amyg-
dala, and hippocampus) and medial cortical regions (insula 
and parahippocampal gyrus) were associated with higher AHI, 
apnea, and microarousal indexes. To our knowledge, hyper-
perfusion has not been previously reported in SPECT and PET 
studies in middle-aged OSA subjects.17–20 However, a resting-
state fMRI study in OSA reported increased connectivity in 
the basal ganglia and insula.53 These areas of hyperperfusion 
may be specific to the older OSA population, but it is also pos-
sible that our large sample size used for the correlation analysis 
and the high spatial resolution of our SPECT scanner allowed 
the observation of small but significant changes in rCBF that 
were not previously found in emission tomography studies. In 
addition, hyperperfusion observed in the present study was 
not found in our group analysis, suggesting that increased 
rCBF is a more subtle change in brain functioning that occurs 
with increasing OSA severity and sleep fragmentation. This 
pattern of lateral cortical hypoperfusion and subcortical hy-
perperfusion may be explained by preferential protection of 
critical brain regions during apneic events and sleep depriva-
tion. In fact, subcortical structures show marked increases in 
perfusion during hypoxia as compared to cortical regions,57 
which may explain why subcortical regions could maintain 

higher perfusion values during wakefulness in subjects with 
OSA. On the other hand, some studies have shown anatomical 
changes in subcortical structures in middle-aged individuals 
with OSA,18,71–73 which could suggest neuronal injuries. Thus, 
despite altered structure, increased perfusion during hypoxia 
could partially protect those regions compared to lateral cor-
tical regions, represented by a hyperperfusion and increased 
connectivity during wakeful rest.

However, our analysis is scaled in function of the individual 
global signal of rCBF. It has been shown that OSA subjects 
have reduced mean CBF velocity,14 and we found reduction in 
rCBF in lateral cortical regions. This may result in reduced 
global rCBF, and in comparison, subcortical rCBF could be 
represented as hyperperfused with increased OSA severity, 
as has been previously suggested in the aging population.74 
Therefore, our hyperperfusion results may be a representation 
of either subcortical preservation of perfusion or compensa-
tory increases in perfusion.

Although BMI was associated with a reduction in rCBF of 
the left parietal cortex, it was mostly correlated with increased 
perfusion in central structures including the hippocampus and 
parahippocampal gyrus, which were also increased in perfu-
sion in association with the AHI, apneas, and microarousals. 
The hippocampus and parahippocampal gyrus have been 
widely studied in the context of OSA, and several studies have 
shown reduced volume or density,18,54–56,71,72,75–77 changes in 
neuronal function assessed by fMRI,51 and alteration in me-
tabolites ratios.66,78,79 In animal studies, it was shown that ap-
neas induce excitotoxicity in hippocampal neurons,25 that sleep 
fragmentation affects hippocampal synaptic plasticity,80 and 
that a diet with excess fat and refined carbohydrate enhances 
symptoms associated with hypoxic insult to the hippocampus.81 
Thus, obesity could increase vulnerability to intermittent hy-
poxia and sleep fragmentation in OSA, and these alterations 
could be linked to increased daytime perfusion. Furthermore, 
the early stage of Alzheimer disease may be characterized by 
hippocampus hyperactivity, thus suggesting again an under-
lying neurodegenerative process.82

Impact of Neuroimaging Statistical Thresholding
In the current study, we used corrected and uncorrected 

statistical thresholds for neuroimaging analyses. It has been 
suggested that the vast differences in regions found in im-
aging studies on OSA could be attributed in part to the use of 
different statistical thresholds.83 Some variables were associ-
ated with rCBF changes only with the uncorrected threshold, 
such as the time spent with low oxygen saturation and BMI, 
which suggests that their effect could be less pronounced 
than other parameters. This is consistent with the fact that 
our subjects were not severely hypoxic nor morbidly obese. 
In addition, regions that were found to be significant with the 
less stringent statistical threshold were generally observed to 
be significantly affected by similar variables with the cor-
rected threshold. Therefore, we suggest that the uncorrected 
threshold with a larger extent threshold could justifiably be 
used in the context of resting-state metabolic or perfusion 
tomography, while the use of a corrected threshold could 
hide some modest changes in OSA, especially in studies with 
small sample sizes.
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Limitations
Some limitations in our study should be acknowledged. 

First, our scanning system did not allow for consistent evalu-
ation of cerebellar perfusion changes. Although it has been 
often overlooked in OSA, the cerebellum seems to be vul-
nerable to intermittent hypoxia in an animal model84 and in 
humans.85 Thus, further studies should specifically investi-
gate cerebellar function in OSA and its role in cognition in 
this population. Another limitation is that our OSA subjects 
were not severely hypoxic, with minimal oxygen saturation 
drops in the severe OSA group to an average of 82% ± 5.5%. 
It is possible that more hypoxic patients were not recruited 
in our study because they presented exclusion factors, such 
as a history of stroke or BMI > 40. Thirdly, our groups were 
not matched for sex. Although results concerning sex differ-
ences in regional brain perfusion are highly inconsistent,86 a 
study performed in older subjects showed that females have 
reduced rCBF in regions that were reported as hypoperfused 
in our study, including parietal areas.87 This suggests that our 
unmatched groups could have lead to increased risk of false 
negatives, since most of the females in our study were in the 
control group. Finally, the lack of relationship between vas-
cular disease burden and regional perfusion could be due to 
the low number of concomitant comorbidities and risk factors 
in our subjects. Therefore, we could not eliminate the pos-
sibility that OSA and vascular risk factors interact to affect 
the brain.

CONCLUSIONS
Our results show that older individuals with newly diag-

nosed severe OSA show rCBF anomalies at rest, mostly in 
sensorimotor areas and the left parietal cortex. Considering 
that AHI is known to increase up to 53% in 17 months in older 
apneic patients without significant weight gain,88 particular at-
tention should be given to individuals with mild or moderate 
OSA in order to reduce their risk of eventually presenting 
brain/cognitive dysfunction linked to their condition. In ad-
dition, different variables representing OSA severity should 
be taken into account since they could independently con-
tribute to abnormal brain and neuronal function. While most 
markers of respiratory disturbances, sleepiness, and obesity 
are associated with regional reductions of brain perfusion 
in lateral frontal, temporal and parietal areas, other factors 
such as respiratory events, sleep fragmentation, and obesity 
are associated with increased perfusion in subcortical and 
medial cortical areas including the limbic system, the insula 
and basal ganglia. These changes in regional perfusion could 
underlie vascular impairment and neuronal injuries, and be 
associated with deficits in several cognitive domains. The 
perfusion pattern observed in our study is similar to what is 
observed in early stage of Alzheimer disease, which suggests 
the presence of undergoing neurodegenerative processes. In-
deed, hypoperfusion in Alzheimer disease is observed before 
clinical symptoms and is implicated in the progression of the 
disease.43 Thus, the role of OSA in neurodegeneration should 
be investigated as well as whether these functional changes 
are reversible or not with an appropriate treatment in future 
studies.

ABBREVIATIONS
AHI, apnea-hypopnea index
BA, Brodmann area
BMI, body mass index
CBF, cerebral blood flow
FDR, false discovery rate
FWHM, full-width half-maximum
MNI, Montreal Neurological Institute
MRI, magnetic resonance imaging
OSA, obstructive sleep apnea
PET, positron emission tomography
rCBF, regional cerebral blood flow
SPECT, single-photon emission computed tomography
SPM, statistical parametric mapping
99mTc-HMPAO, technetium 

hexa-methyl-amino-propyleneamine-oxime
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