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INTRODUCTION
Acute REM sleep behavior disorder (RBD) can be induced 

by the use of antidepressants, especially serotonin reuptake in-
hibitors (SSRI),1–7 suggesting a role of the serotonergic system 
in the pathogenesis of RBD. Overall, serotonin promotes the 
wake state and inhibits REM sleep.8 The cholinergic neurons 
in the pons are under the inhibitory control of brainstem se-
rotonergic and noradrenergic neurons and they trigger REM 
sleep by activating the glutamatergic sublaterodorsal nucleus.9 
Then, the glutamatergic pathway activates glycinergic and GA-
BAergic neurons, inhibiting motoneurons as well as brainstem 
serotonergic and noradrenergic neurons.9 Thus, the physiolog-
ical reduction in serotonin release during REM sleep reinforces 
REM atonia by reducing motoneuron activation,10 while an ab-
normal increase in serotonergic tone (possibly due to SSRI) 
might induce REM sleep without atonia (RSWA). An animal 
study is in agreement with this hypothesis by showing that se-
rotonin cells in the dorsal raphe fail to switch off during REM 
sleep in cats with experimentally induced RSWA.11 According 
to this hypothesis, an increased serotonergic tone would be ex-
pected in RBD patients, compared to normal subjects. However, 
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the serotonin system integrity in idiopathic RBD (iRBD) pa-
tients has not been evaluated yet. With the hypothesis of an 
altered serotonin system at brainstem level in iRBD patients 
compared to normal subjects, we performed 123I-FP-CIT single 
photon emission computed tomography (SPECT) scans to as-
sess serotonin transporter (SERT) brainstem level in a group 
of consecutive iRBD patients and we compared findings with 
a group of normal subjects. In fact, 123FP-CIT-SPECT is widely 
used as a marker of dopamine transporter (DAT) binding at 
basal ganglia level,12–14 but it has also been used as a marker of 
SERT binding at brainstem level, assuming that tracer binding 
at this level is predominantly related to SERT.15–17

METHODS

Subjects
Twenty-four consecutive iRBD outpatients were recruited 

at the sleep unit of our University Department. The diagnosis 
of iRBD was made according to the second edition of the In-
ternational Classification of Sleep Disorders (ICSD-2) criteria18 
by a sleep disorders expert (DA) based on the results of both 
video polysomnography (PSG) findings and clinical interviews 
with patients and bed partners. All patients underwent brain 
magnetic resonance imaging (MRI), or computed tomography 
(CT) in the case MRI was unfeasible, to rule out other brain dis-
eases. Patients with brain infarcts on MRI/CT or with a history 
of stroke or transient ischemic attacks were excluded, whereas 
the presence of small white matter hyperintensities on MRI 
was not an exclusion criterion if they did not involve the basal 
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ganglia and the pons-mesencephalon. Dementia was excluded 
by means of clinical interview and questionnaires for activities 
of daily living (ADL) and instrumental ADL. The Mini-Mental 
State Examination (MMSE) was used as a measure of global 
cognition. The Beck depression inventory-II (BDI-II) was 
administered to rate depression. Patients with any abnormal 
finding suggestive of parkinsonism, other neurological or psy-
chiatric disorder, or showing moderate or severe sleep apnea 
(apnea-hypopnea index ≥ 15) were excluded. Twenty iRBD pa-
tients matched these criteria and were enrolled in the study. 123I-
FP-CIT-SPECT was performed in all iRBD patients in order to 
explore the DAT binding at basal ganglia level and the SERT 
binding at brainstem level. A group of 23 normal subjects in 
the same age range as patients served as controls for 123I-FP-
CIT-SPECT comparison with iRBD patients. Their healthy 
condition was carefully checked by reviewing their general 
medical history and clinical examination; the exclusion criteria 
were the same as for iRBD patients. None of the controls had 
a history of dream-enacting behaviors. MMSE was performed 
and only subjects with a score ≥ 28 were enrolled. The study 
protocol met the approval of the local Ethics Committee and an 
informed consent form was signed by all participants, in com-
pliance with the Helsinki Declaration of 1975.

Polysomnographic Recording
All iRBD patients underwent overnight video-PSG (BE-

Plus LTM, EBNeuro, Florence, Italy), performed by tech-
nicians with expertise in the field and the sleep scoring was 
performed following current criteria.19 Polysomnographic 
derivations were placed according to recommended rules of 
standard criteria19 in order to evaluate sleep scoring, respira-
tory, cardiac, and limb events. In order to support the diagnosis 
of iRBD, EMG was evaluated by means of the cutoff value 
established by Montplaisir et al.20 All patients were asked to 
withdraw melatonin and/or clonazepam for 2 weeks before the 
recording.

123I-Ioflupane Single Photon Emission Computed Tomography 
(123I-FP-CIT-SPECT)

Both iRBD patients and controls underwent 123I-FP-CIT-
SPECT. Scans were performed no more than 6 months apart 
from PSG. Images were acquired 3–4 h after intravenous ad-
ministration of about 185 MBq of 123I-FP-CIT (DaTSCAN, GE 
Healthcare, Little Chalfont, Buckinghamshire, UK) by means 
of a dual-head gamma camera equipped with low-energy, 
high-resolution collimators (Millenium VG, GE Healthcare, 
Little Chalfont, Buckinghamshire, UK), according to the Euro-
pean Association of Nuclear Medicine (EANM) guidelines.14 
Six iRBD patients and 6 controls were taking SSRI for mild 
depressive trait, not fulfilling the DSM-IVr criteria for the di-
agnosis of depression, at the time of the scan, and they were 
all asked to hold the medication the day of the examination. 
Further technical data for SPECT acquisition and image recon-
struction are detailed elsewhere.21 123I-FP-CIT-SPECT scans 
were visually reported by a nuclear medicine physician (SM).

Image Analysis
Since DAT is a presynaptic membrane protein respon-

sible for the reuptake of dopamine into dopaminergic nerve 

terminals and its density in extrastriatal regions is negligible,22 
the 123I-FP-CIT uptake at basal ganglia level reflects the ni-
grostriatal pathway integrity. The reconstructed 123I-FP-CIT-
SPECT images were exported in analyze format and processed 
by the automatic BasGan algorithm23 based on a high-def-
inition, three-dimensional (3D) striatal template, derived 
from Talairach’s atlas (details in Calvini et al.23) in order to 
evaluate the DAT binding at basal ganglia level. Background 
uptake was subtracted by putamen and caudate uptake as fol-
lows: (Caudate- or Putamen-uptake – Background-uptake)/
Background-uptake to compute specific to non-displaceable 
binding ratios (SBR). Subsequently, gamma camera-calibrated 
SBR values were corrected for age and gender based on the 
European normative database of the ENC-DAT study.24 Since 
SERT is a presynaptic selective transporter of serotonin, it 
could be hypothesized that changes in SERT availability are 
seen when either external stimuli, such as drugs, disturb the 
homeostasis to maintain the serotonergic tone or in the pres-
ence of alteration of the serotonergic system integrity. Thus, 
studying SERT availability at brainstem and thalamus levels 
where the highest density of SERT was observed25 should 
provide an indirect measure of the serotonin system, as DAT 
density at those levels is negligible.22 In order to study SERT 
binding, 123I-FP-CIT-SPECT images, exported in analyze 
format, were analyzed using SPM8 package (Wellcome De-
partment of Cognitive Neurology, London, UK) implemented 
in Matlab 7.5 (MathWorks, Natick, Massachusetts, USA). A 
customize brain 123I-FP-CIT-SPECT template was built from 
20 brain MRI and SPECT scans of healthy subjects that are not 
included in the control group of the present study. Template 
editing was performed according to published procedures.26,27 
123I-FP-CIT-SPECT scans were subjected to affine and non-
linear spatial normalization into the MNI space, using the 123I-
FP-CIT-SPECT template. Next, a set of 3D regions of interest 
(ROIs) defining the pons, the midbrain, and the thalamus was 
identified by means of the SPM8 WFU-PickAtlas toolbox. An 
occipital cortex (OC) ROI served as reference region. Mean 
counts per voxel were extracted for each ROI by means of the 
SPM8 MarsBaR toolbox. SBR in each brainstem ROI was 
computed according to the formula SBR = (target ROI-OC)/
OC.

Statistics
Unpaired t-test was performed for each ROI (right and left 

caudate and putamen, pons, midbrain, and thalamus) to com-
pare SBR values between iRBD and control groups. Since the 
use of SSRI could affect SERT binding at brainstem nuclei,28,29 
ROI analysis was repeated considering only subjects not 
taking SSRI, including 14 patients and 17 controls. To further 
check for between-group differences, voxel-based analysis 
was also performed using SPM8. The spatially normalized set 
of images was smoothed with an isotropic gaussian kernel of 
FWHM 12 mm to blur individual variations in gyral anatomy 
and to increase the signal-to-noise ratio. Resulting counts were 
normalized to OC values. As a first step, the “whole brain” 
comparison was performed in order: (i) to verify the expected 
nigrostriatal deafferentation in iRBD patients,30–32 and (ii) to 
explore other differences between groups. SPM t-maps were 
thresholded using a P < 0.005 at voxel level, uncorrected for 
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multiple comparisons. Only clusters containing > 100 signifi-
cant voxels were considered for subsequent analysis. The se-
lected threshold is accepted as a reasonable choice, as it takes 
into account the need to balance between type I and type II 
errors, and also considering the relatively low sensitivity of 
SPECT in the lack of repeated measures.33 The significance 
of identified regions was established by means of a 2-sample 
t-test design at a P < 0.05, corrected for multiple comparisons 
with the false discovery rate (FDR) option at the cluster level 
and taking into account age and the use of SSRI as “nuisance” 
variables. The comparison was performed in both ways: (1) 
Controls minus iRBD and (2) iRBD minus Controls. In order 
to locate significant clusters, correction of SPM coordinates 
to match the Talairach coordinates was achieved by using 
the Lancaster transform.34 As a last step, in order to explore 
between-group differences in SERT binding at brainstem 
and thalamus levels, we performed the same SPM compari-
sons, using an ROI analysis by means of the PickAtlas toolbox 
implemented in the SPM 2-sample t-test design, at pons, mid-
brain, and thalamus levels independently, and taking age and 
the use of SSRI into account as “nuisance” variables. IBM-
SPSS Statistics for Windows (Version 19.0. Armonk, IBM 
Corp., NY, USA) and SPM8 implemented in Matlab 7.5 were 
used for statistical analysis.

RESULTS
Main PSG features are shown in Table 1. SBR values were 

significantly lower in iRBD patients than controls in all basal 
ganglia nuclei (P < 0.0001). SBR at pons, midbrain, and thal-
amus levels did not differ between groups, even when the 
comparison was limited to the subjects not taking SSRI. SBR 
mean values, standard deviation, and 
relative P values are shown in Table 2. 
The voxel-based “whole brain” anal-
ysis showed a significant reduction 
in 123I-FP-CIT uptake in iRBD group 
compared to controls at basal ganglia 
level of both hemispheres (FDR-cor-
rected P < 0.0001 at cluster level). No 
significant difference was found with 
the SPM-implemented ROI analysis at 
brainstem and thalamus levels.

DISCUSSION
Our data show that the SERT 

availability at brainstem level, as 
evaluated by means of 123I-FP-CIT-
SPECT, is not significantly different 
in a group of iRBD patients in com-
parison with normal subjects in the 
same age range. This finding does not 
confirm the hypothesis of an altered 
SERT availability in iRBD and is in 
line with recent data showing no dif-
ference in SERT binding at brainstem 
level, as evaluated by means of [11C]-
DASB positron emission tomography, 
between PD patients either with or 
without RBD symptoms.35 In that 

study the patients had mild to moderate PD, with mean disease 
duration of 6 years. Serotonergic raphe complex neurons are 
degenerated in PD, even in a relatively early stage of the dis-
ease, and serotonergic deficit is involved in several non-motor 
symptoms.36 Thus, in PD patients any further subtle changes in 
serotonergic functioning, possibly responsible for RBD symp-
toms could be blurred by the neurodegenerative process due to 
PD pathology. A confirmation of the finding of Kotagal et al.35 
in a group of patients with RBD but without PD was needed, 
and our data seem to provide it, as our patients had iRBD, thus 
without parkinsonism or other neurological disease, and they 
all have a PSG-confirmed diagnosis of RBD. Indeed, Kotagal et 
al. evaluated the presence of RBD by means of a questionnaire, 
and RBD was not confirmed by PSG. Thus, the present data 

Table 1—Main polysomnographic features of iRBD patients.

Mean SD Range
Total sleep time, min 380.1 92.8 217.5–630
WASO, min 96.1 40.5 33.5–174
Sleep efficiency, % 71.9 13.7 38.9–91.5
N1, % 11.6 5.7 2.4–21.4
N2, % 43.4 10.3 28–59.9
N3, % 27.1 10.5 11.2–46
Stage REM, % 17.9 6.2 5.5–29.1
PLMS index, /h 18.3 23.9 2.1–78
AHI, /h 3.4 4.9 0–14.3

AHI, apnea-hypopnea index; PLMS, periodic leg movements during 
sleep; SD, standard deviation; WASO, wake after sleep onset.

Table 2—Main clinical, demographic and 123I-FP-CIT-SPECT SBR features (mean ± SD) of the two 
groups.

Controls iRBD P value
Number 23 20 n.a.
Gender 10 M, 13 F 19 M, 1 F < 0.001
Age, y (range) 70 ± 7.7 (48–80) 66 ± 7.1 (52–81) n.s.
MMSE (range) 29 ± 0.8 (28–30) 29 ± 1.5 (26–30) n.s.
BDI-II (range) – 11 ± 8.6 (0–34) –
SSRI use, patients 6 6 n.s.
Left Caudate a 4.54 ± 0.7 (−0.81 ± 0.4) 3.10 ± 0.7 (−1.44 ± 0.3)  < 0.00001 (< 0.000001)
Right Caudate a 4.47 ± 0.8 (−0.84 ± 0.3) 3.02 ± 0.8 (−1.47 ± 0.3)  < 0.00001 (< 0.000001)
Left Putamen a 3.81 ± 0.9 (−0.85 ± 0.3) 2.39 ± 0.9 (−1.53 ± 0.3)  < 0.00001 (< 0.000001)
Right Putamen a 3.98 ± 0.8 (−0.78 ± 0.3) 2.54 ± 0.8 (−1.47 ± 0.3)  < 0.00001 (< 0.000001)
Midbrain b 0.50 ± 0.2 0.48 ± 0.2 n.s.
Pons b 0.27 ± 0.1 0.27 ± 0.2 n.s.
Left Thalamus b 0.50 ± 0.3 0.52 ± 0.2 n.s.
Right Thalamus b 0.55 ± 0.3 0.56 ± 0.2 n.s.

a: �123I-FP-CIT-SPECT DAT-SBR at basal ganglia level are reported as computed by means of the 
BasGan software23; in parenthesis the z scores, adjusted for age and gender, according to the ENC-
DAT European normative values.24 

b: �123I-FP-CIT-SPECT SERT-SBR at brainstem and thalamus levels are reported as computed by 
means of SPM8. See text for details. 

BDI, Beck Depression Inventory II; F, female; iRBD: idiopathic REM sleep behavior; M, male; MMSE, 
Mini Mental State Examination; n.a., not applicable; n.s., not significant; y, years; SBR, specific to non-
displaceable binding ratios; SD, standard deviation.
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and the data of Kotagal suggest that the serotonergic system, at 
least at brainstem level, is not involved in RBD. Several data 
have shown that antidepressant drugs, in particular SSRI, may 
induce or exacerbate RSWA as well as RBD.1,3,6,7,37–41 Moreover, 
RBD is strongly associated with depression and antidepressant 
use.2,4,5,42–44 However, Postuma et al.45 recently suggested that 
antidepressants unveil a subclinical RBD, triggering an early 
clinical presentation of RBD nonetheless due to underlying 
neurodegeneration. In fact, even if acute RBD has been re-
ported in patients taking SSRI drugs, the prevalence of dream 
enactment in patients under antidepressant therapy is only 
about 6%, with slightly higher incidence in older subjects.2,4,5,43 
If the increased serotonergic tone provoked by antidepressant 
therapy induced RBD symptoms by itself, a higher prevalence 
of RBD in patients taking antidepressants should be expected. 
An alternative explanation is that antidepressant drugs induce 
RBD because of their anticholinergic effect. Although the ef-
fect of acetylcholinesterase inhibitors on RBD symptoms is 
still controversial,1 an involvement of the cholinergic system in 
RBD pathophysiology has been suggested.35,46,47 However, in a 
recent neuropathological study no difference has been found 
in brainstem cholinergic nuclei between Lewy body disease 
patients either with or without RBD.48 Our finding suggest that 
the serotonergic system is not directly involved in the pathogen-
esis of RBD, even if an increased serotonergic tone could un-
veil acute RBD in predisposed subjects. This notion, translated 
into clinical practice, suggests that an antidepressant-induced 
RBD could reveal subjects with high risk to develop a neuro-
degenerative disease. A limitation of the present study is that 
123I-FP-CIT has not a selective affinity to the SERT. DAT/SERT 
selectivity for 123I-FP-CIT is 2.8:1.49 However, DAT and SERT 
show different distributions in subcortical cerebral structures. 
DAT is mostly expressed at basal ganglia level while SERT 
levels are highest in the thalamus and midbrain, where DAT is 
extremely low.50–52 Thus, it is reasonable to assume that 123I-FP-
CIT uptake at basal ganglia level mainly reflects DAT avail-
ability whereas at midbrain and thalamus level it reflects SERT 
availability. FP-CIT has also shown some, albeit lower, sen-
sitivity to the noradrenaline molecular transporters,53 even if 
its extrastriatal binding has been primarily attributed to SERT 
binding.15 Moreover, the noradrenergic system might also be 
involved in RBD pathogenesis10 since noradrenergic antagonist 
drugs have been reported to induce RBD.54,55 However, both 
dorsal and medial raphe nucleus could exhibit serotonin and 
the connections involved in the control of sleep of both nuclei 
are found in both midbrain and pons,56 while the noradren-
ergic locus coeruleus is the pons. We independently evalu-
ated 123I-FP-CIT uptake at both levels, and no differences were 
found at either level. It has been suggested that approximately 
70% of FP-CIT thalamic uptake reflects SERT binding15; thus, 
modifications of FP-CIT thalamic uptake could at least par-
tially reflect SERT availability. However, no FP-CIT uptake 
difference between iRBD and controls has been found in the 
thalami. Finally, 123I-FP-CIT binding could be influenced by 
several factors such as age57–59 and SSRI use.28,29 Thus, we also 
performed ROI analysis taking into account only patients not 
taking SSRI; moreover, SBR values at basal ganglia level were 
corrected for age and gender based on the European normative 
database of the ENC-DAT study.24 Finally, all the voxel-based 

analysis were performed using both age and the use of SSRI as 
“nuisance” covariates. In conclusion, we found that the SERT 
availability, evaluated by means of 123I-FP-CIT-SPECT, in a 
group of PSG-confirmed iRBD patients is comparable to the 
SERT availability in normal subjects. This finding suggests 
that the serotonergic system is not directly involved in the 
pathogenesis of RBD. Further, longitudinal studies, possibly 
with more serotonin-selective tracers, are needed to confirm 
these data.
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