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Summary

The visual system transforms complex inputs into robust and parsimonious neural codes that 

efficiently guide behavior. Because neural communication is stochastic, the amount of encoded 

visual information necessarily decreases with each synapse. This constraint requires processing 

sensory signals in a manner that protects information about relevant stimuli from degradation. 

Such selective processing – or selective attention – is implemented via several mechanisms, 

including neural gain and changes in tuning properties. However, examining each of these effects 

in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-

scale population codes. Instead, large-scale activity patterns can be used to reconstruct 

representations of relevant and irrelevant stimuli, providing a holistic understanding about how 

neuron-level modulations collectively impact stimulus encoding.

Keywords

Vision; visual attention; stimulus reconstruction; information theory; neural coding

Visual attention and information processing in visual cortex

Complex visual scenes contain a massive amount of information. To support fast and 

accurate processing, behaviorally relevant information should be prioritized over 

behaviorally irrelevant information. For example, when approaching a busy intersection 

while driving it is critical to detect changes in your lane’s traffic light rather than one nearby 

in order to prevent a dangerous collision. This capacity for selective information processing, 

or selective visual attention, is supported by enhancing the amount of information that is 

encoded about relevant visual stimuli relative to the amount of information that is encoded 

about irrelevant stimuli. Importantly, understanding how relevant visual stimuli are 
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represented with higher fidelity requires considering more than just the impact of attention 

on the response properties of individual neurons. Instead, examining activity patterns across 

large neural populations can provide insights into how different unit-level attentional 

modulations synergistically improve the quality of stimulus representations in visual cortex.

In the scenario above, neurons can undergo several types of modulation in response to the 

relevant light compared to when it is irrelevant: response amplitudes can increase (response 

gain), responses can become more reliable, and receptive field properties can shift (e.g. 

some neurons will shift their spatial receptive field to encompass the attended light). Thus, 

neural responses associated with attended stimuli generally have a higher signal-to-noise 

ratio and are more robust compared to responses evoked by unattended stimuli. 

Accordingly, the behavioral effects associated with visual attention are thought to reflect 

these relative changes in neural activity: when stimuli are attended, participants exhibit 

decreased response times, increased discrimination accuracy, and improved spatial acuity 

([1-3] for reviews).

This selective prioritization of relevant over irrelevant stimuli follows from two related 

principles of information theory [4-7] (Box 1). First, the data processing inequality [7] states 

that information is inevitably lost when sent via noisy communication channels, and that lost 

information cannot be recaptured via any amount of further processing. Second, the channel 

capacity of a communication system is determined by the amount of information that can be 

transmitted and received, and by the degree to which that information is corrupted during the 

process of transmission. In the brain, channel capacity is finite because there is a fixed 

(albeit large) number of neurons and because synaptic connections are stochastic so 

information cannot be transmitted with perfect fidelity. Given this framework, different 

types of attention-related neural modulations can be viewed as a concerted effort to attenuate 

the unavoidable decay of behaviorally relevant information as it is passed through 

subsequent stages of visual processing [8,9]. This framing also highlights the importance of 

understanding how attention differentially impacts responses across neurons, and more 

importantly, how these modulations at the single-unit level interact to support population 

codes that are more robust to the information processing limits intrinsic to the architecture of 

the visual system.

With this goal in mind, we first provide a selective overview of recent studies that examine 

attentional modulations of single measurement units (e.g. single neurons or single fMRI 

voxels) in visual cortex, with a focus on changes in response amplitude and shifts in spatial 

sensitivity profiles. We then introduce a framework for evaluating how attention-induced 

changes in large-scale patterns of activity can shape information processing to counteract the 

inherent limits of stochastic communication systems. This approach emphasizes 

reconstructing representations of sensory information based on multivariate patterns of 

neural signals and relating the properties of these reconstructions to changes in behavioral 

performance across task demands.
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Attention changes response properties of tuned neurons

Single-neuron firing rates in macaque primary visual cortex (V1) [10-12], extrastriate visual 

areas V2 and V4 [12-19], motion-sensitive middle temporal area (MT) [20-22], lateral 

intraparietal cortex (LIP) [23-27], and frontal eye fields (FEF) [28-31] have all been shown 

to reliably increase when either a spatial position or a feature of interest is attended (Fig. 

2A). Heightened neural activity can facilitate the propagation of responses to downstream 

areas, leading to successively weaker distracter-associated responses compared to target-

associated responses. However, even though most studies focus on increases in mean firing 

rates, many studies also report that a substantial minority of cells show systematic decreases 

in firing rates with attention (particularly in excitatory cells, e.g. [32]), an important issue 

when considering population-level neural codes that we revisit below.

In addition to measuring attentional modulations in response to a fixed stimulus set, 

researchers have also parametrically varied stimuli while an animal maintains a constant 

focus of attention in order to measure changes in feature tuning functions (TFs) or spatial 

receptive fields (RFs; that is, a neuron’s response profile to each member of a set of stimuli, 

see Glossary). When an animal is cued to attend to a visual feature, like orientation [15,16], 

color [33] or motion direction [34], neurons tuned to the cued feature tend to respond more, 

while those tuned to uncued features tend to respond less [35]. This selective combination of 

response gain and suppression results in a larger range of possible firing rates, or a larger 

dynamic range (see Glossary), and thus increases encoding capacity such that different 

features will evoke a more easily separable neural response (Fig. 2B) [36,37]. This increase 

in encoding capacity with an increase in dynamic range is analogous to switching between a 

binary and a grayscale image (e.g., a barcode and a black-and-white photograph): the 

number of states each pixel can take increases, meaning more states are discriminable.

When attending to a particular spatial position, the spatial RF of many neurons can also shift 

to accommodate the attended position in V4 [38], MT [39-42], and LIP [43], and the 

endpoint of a saccadic eye movement in V4 [44] and FEF [45]. In MT, for example, RFs 

shrink around the locus of attention when animals are cued to attend to a small region within 

a neuron’s spatial RF (Fig. 2C) [13,39,40]. However, when attention is focused just outside 

the penumbra of a neuron’s spatial RF, the RF shifts and expands towards the focus of 

attention [41]. Finally, the tuning of V4 neurons to orientation and spatial frequency (that is, 

their spectral receptive field) can undergo shifts towards an attended target stimulus when an 

animal is viewing natural images [46]. These changes in the size and position of spatial RFs 

– coupled with increases in response amplitude – may lead to a more robust population code 

via an increase in the number of cells that respond to relevant features ([2,47,48] for a 

review). For example, an increase in single-cell firing rates coupled with a shift in the 

selectivity profile of surrounding spatial RFs towards the locus of attention should generally 

increase the overall entropy (see Glossary) of a population code, and thereby the quality of 

information encoded about a relevant stimulus (Box 1).
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Attentional modulation of large-scale populations

Thus far, we have discussed attentional modulations measured from single neurons in 

behaving monkeys. However, perception and behavior are thought to more directly depend 

on the quality of large-scale population codes [36,49,50], so it is also necessary to assay how 

these small-scale modulations jointly impact the information content of larger-scale neural 

responses. For example, human neuroimaging methods like fMRI and EEG provide a 

window into the activity of large-scale neural populations [51-53], enabling the assessment 

of attention-related changes in voxel- or electrode-level signals that reflect the aggregate 

responses of all constituent neurons.

The firing rate increases observed in single neurons are echoed by attention-related increases 

in fMRI BOLD activation levels [54-59] and amplitude increases in stimulus-evoked EEG 

signals [60-65]. For example, when attention is directed to one of several stimuli on the 

screen, the mean BOLD signal measured from visual cortical regions of interest (ROIs) 

increases [55-59,66,67]. Additionally, when fMRI voxels are sorted based on their 

selectivity for specific features such as orientation [37,68,69] (see also [70]), color [71], face 

identity [72], or spatial position [73], attention has the largest impact on voxels that are 

tuned to the attended feature value.

In addition to changes in response amplitude, recently developed techniques can also assess 

changes in the selectivity of voxel-level tuning functions across different attention 

conditions. One newly developed method has been used to evaluate how the size of voxel-

level population receptive fields (pRFs) changes with attentional demands [74,75]. For 

example, several studies have measured pRF size as participants view a display consisting of 

a central fixation point and a peripheral visual stimulus that is used to map the pRF. On 

different trials, participants either attend to the peripheral mapping stimulus, or they ignore 

the mapping stimulus and they instead attend to the central fixation point. Attending to the 

peripheral mapping stimulus increases the average size of voxel-level pRFs measured from 

areas of extrastriate cortex where single-neuron RFs are relatively large. However, no such 

size modulations are observed in primary visual cortex where single-neuron RFs are smaller 

[76-78]. At first, this result appears to conflict with neurophysiology studies showing that 

single-neuron RFs can either shrink or expand depending on the spatial relationship between 

the neuron’s RF and the focus of attention (see above: Fig 2C, [39-42]). However, the 

response of a voxel reflects the collective response of all single neurons that are contained in 

that voxel. As a result, when the attended mapping stimulus was anywhere in the general 

neighborhood of the voxel’s spatial RF, many single-neuron RFs within the voxel likely 

shifted towards the attended stimulus. In turn, this shifting of single-neuron RFs towards 

attended stimuli in the vicinity of the voxel’s RF should increase the area of visual space 

over which the voxel would respond (i.e. it would increase the size of the pRF compared to 

when the fixation point is attended and these neuron-level shifts would not occur).

The above studies examined how voxel-level pRFs change when the RF mapping stimulus is 

attended. A complementary line of work has addressed how attention to a focused region of 

space alters pRFs measured using an unattended mapping stimulus. In these studies, 

attention was directed either to the left or the right of fixation while a visual mapping 

Sprague et al. Page 4

Trends Cogn Sci. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stimulus was presented across the full visual field. The center of voxel-level pRFs shift 

towards the locus of attention [79]; however, because the authors do not report whether 

pRFs also change in size, it is challenging to fully interpret how shifting the center of a pRF 

would support enhanced encoding of attended information (Box 1, Fig. 3). Furthermore, 

another study found that increasing the difficulty of a shape discrimination task at fixation 

leads to a shift of voxel-level pRFs away from fixation and also to an increase in their size. 

These modulations may thus result in a lower-fidelity representation of irrelevant stimuli in 

the visual periphery when a foveated stimulus is challenging to discriminate [80].

Functionally similar examples of information shunting have also been found in other 

domains: Brouwer and Heeger [71] demonstrated that directing attention to a colored 

stimulus during a color categorization task narrows the bandwidth of voxel-level tuning 

functions, improving the discriminability of voxel responses for distinct colors when the 

color value was important for the task. Similarly, Çukur et al [81] used a high-dimensional 

encoding model (which describes the visual stimulus categories for which each voxel is 

most selective) to show that attending to object categories shifts semantic space towards the 

attended target to increase the number of voxels responsive to a relevant category (see also 

[82,83]). While analogous single-unit neural data are not available for comparison, these 

results support the notion that shifting the feature selectivity profile of a RF is an important 

strategy implemented by the visual system to combat limited channel capacity via increasing 

the sampling density for relevant information (Fig. 1).

With all experiments evaluating responses at the large-scale population level (e.g., the level 

of a single fMRI voxel), it is important to note that these macroscopic measurements reflect 

hemodynamic signals related to net changes in the response across hundreds of thousands or 

more neurons [51]. As a result, it is currently not possible to unambiguously infer whether 

attentional modulations measured at the scale of single-voxels reflect changes in neuron-

level feature selectivity or if voxel-level modulations instead reflect non-uniform changes in 

the response amplitude of neural populations within a voxel that are tuned to different 

feature values. In spite of this limitation, large-scale measurement techniques like fMRI can 

provide a unique perspective on the collective impact of small-scale single-neuron 

modulations on the fidelity of population codes, even though information about the specific 

pattern(s) of single-neuron modulations may be obscured. In turn, changes in voxel-level 

selectivity can support some important general inferences about the impact of attention on 

the encoding capacity of large-scale population responses (Box 1), which are not easily 

accessible via single-neuron recording methods.

Reconstructing region-level stimulus representations

The techniques used to measure single-neuron and single-voxel response profiles help us 

understand how changes at the level of single measurement units (whether single neurons or 

single voxels) can impact encoding capacity to facilitate perception and behavior. But 

understanding how individual encoding units behave, either in isolation or at the level of a 

population average, is only a part of the picture. Indeed, different neurons and voxels are 

often modulated in different ways even in the context of the same experimental design: 

some units increase their response amplitude, others decrease [32]; some show (p)RF size 
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increases, others show decreases [39-42,76-78,80]. To understand how these apparently 

disparate modulations work together to impact the quality of region-level population codes, 

multivariate methods can be used to directly infer changes in the overall information content 

of neural response patterns.

An emerging means of evaluating information content of population-codes is via stimulus 

reconstruction (Box 2). Although population-level reconstruction methods have existed for 

decades [84,85], they have recently found widespread application in the field of human 

neuroimaging [71,75,86-94]. There are many variations on these methods, but all generally 

involve first estimating an encoding model that describes the selectivity profile (feature TF 

or spatial RF) of individual measurement units (e.g., single neurons or single voxels). Next, 

these encoding models are inverted and used to reconstruct the stimulus given a novel 

pattern of responses across the entire set of units (Box 2). Each computed stimulus 

reconstruction contains a representation of the stimulus of interest. Thus, for features like 

color, orientation, or motion, the results of this procedure reflect a reconstruction of the 

response across a set of feature-selective populations [9,71,88-90,95-99]; for models based 

on spatial position, the results reflect reconstructed images of the visual scene viewed or 

remembered by an observer [75,76,86,100,101]. We call this broad framework whereby 

patterns of encoding models are inverted in order to reconstruct stimulus representations 

inverted encoding models (IEM, see glossary).

The ability to reconstruct an image of visual stimuli based on population-level activation 

patterns can be used to assess how modulations observed at the level of measurement units 

are combined to jointly constrain the amount of information encoded about a stimulus. In 

contrast to multivariate classification analyses that partition brain states into one of a set of 

discrete groups ([91,102]) or Bayesian approaches that generate an estimate of the most 

likely stimulus feature value [36,49,50,84,103-105], reconstruction enables the 

quantification of stimulus representations in their native feature space rather than in signal 

space (see Glossary). In turn, quantifying representations within these reconstructions 

supports the ability to evaluate attributes such as the amplitude or the precision of the 

encoded representation. Moreover, because the IEM reconstruction method involves an 

analog mapping from an idiosyncratic signal space that differs across individuals and ROIs 

into a common feature space, it is possible to directly compare quantified properties of 

stimulus reconstructions as a function of attentional demands. This approach thus 

complements previous efforts to establish the presence of stimulus-specific information by 

decoding which stimulus of a set was most likely to have caused an observed pattern of 

activation [75,87,106,107].

Because region-level stimulus reconstructions exploit information contained in the pattern of 

responses across all measurement units, they may be more closely linked to behavioral 

measures than responses of single neurons or even mean response changes across a small 

sample of neurons or brain regions [91,97,108-110]. Additionally, representations within 

these region-level reconstructions can be subjected to similar information theoretic analyses 

as described in Box 1 [9]. Instead of comparing how the response of a small sample of 

neurons changes with attention (Fig. 3A), it is possible to evaluate how all co-occurring 
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response modulations constrain the ability of a neural population to encode relevant 

information about a stimulus (Fig. 3B).

Although this approach can provide a unique perspective on the quality of large-scale 

population codes, stimulus reconstruction methods come at the cost of simplifying 

assumptions about how information is encoded. For instance, IEMs for simple features (Box 

2) will not account for information that is not explicitly modeled. Thus, an IEM for 

reconstructing spatial representations of simple stimuli [76,101] will not recover any 

information that was represented about features such as color or orientation, despite the 

known roles that many visual areas play in encoding these stimulus attributes.

Reconstructions as an assay of population-level information

Attention has been shown to induce a heterogeneous set of modulations at the level of single 

measurement units such as single cells or voxels. Variability in the magnitude or sign of 

attention effects is often treated as noise, and the impact of different types of attentional 

modulation on the quality of stimulus representations is usually not considered (e.g., the 

joint influence of both gain and bandwidth modulation). IEMs can be used to extend these 

unit-level results and to evaluate how all types of attentional modulation collectively 

influence the information content of large-scale population codes.

Similar to the information content of single-unit responses, when the amplitude of a 

population-level stimulus reconstruction increases above baseline, then more of the 

variability in the reconstruction is directly linked with changes in the stimulus (i.e. there is 

an increase in signal entropy). Importantly, in contrast to single units (Fig 3A, see also Box 

1), when a population-level stimulus reconstruction becomes more precise, the population 

may support more precise inferences about stimulus features by improving the 

discriminability of responses associated with different stimulus feature values (Fig 3B, e.g., 

[71,96,97]). Such a change in stimulus reconstructions could be supported by changes in the 

selectivity of individual voxels/neurons, non-uniform application of neural gain across the 

population, or any combination of these response modulations at the unit-level.

In one study where participants categorized colors, voxel-level tuning functions for hue 

narrowed, and region-level reconstructions of color response profiles were more clustered in 

a neural color space compared to when color was irrelevant [71]. This result provides 

evidence for a neural coding scheme whereby relevant category boundaries for a given task 

are maximally separated. Since more of the variability in the population response should be 

associated with changes in the relevant stimulus dimension (greater signal entropy), this 

modulatory pattern should provide a more robust population code that can better 

discriminate different exemplars in color space (Fig. 3B, see also [111,112]).

Similarly, directing attention to the direction of a moving stimulus increased the amplitude 

of direction-selective representations in both V1 and MT relative to attending stimulus 

contrast (Fig. 2D) [9]. This increase in the dynamic range of responses gives rise to an 

increase in the information content of the direction-selective representation in both areas 

(via an increase in signal entropy) when motion was relevant compared to when it was 

irrelevant. In addition, when attention was directed to motion, the efficacy of feature-
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selective information transfer between V1 and MT increased relative to when stimulus 

contrast was attended (Box 1; Fig. 2F). This task-dependent increase in the transfer of 

information between brain regions suggests that attention not only modulates the quality of 

signals within individual cortical regions, but also increases the efficiency with which 

representations in one region influence representations in another [9]. Although the precise 

mechanism for such information transfer remains unknown, changes in synaptic efficacy 

[11] or synchrony of population-level responses such as LFP and/or spike timing [113-115] 

likely contribute.

Spatial attention can change the amplitude of single-neuron responses and their spatial 

selectivity (Fig. 2A-C). One study examined how all these changes jointly modulate 

representations of a visual stimulus within spatial reconstructions of the scene [76]. 

Participants were asked to perform either a demanding spatial attention task or a demanding 

fixation task in the scanner. Their fMRI activation patterns were then used to reconstruct 

stimulus representations from several visual ROIs. Though individual voxel-level pRFs were 

found to increase in size with attention, no changes were found in the size of stimulus 

reconstructions with attention. This pattern of results indicates that attention does not 

sharpen the region-level stimulus representations in this task. However, the study did reveal 

attention-related increases in the amplitude of stimulus representations (Fig. 2E), which 

corresponds to more information about the represented stimulus (greater signal entropy) 

above a noisy, uniform baseline (noise entropy, Box 1; Fig. 3B). These results were echoed 

by a recent report that linked attention-related increases in the size and the gain of spatial 

pRFs in ventral temporal cortex with improved population-level information about stimulus 

position [77].

Concluding remarks and future directions

Selective attention induces heterogeneous modulations across single encoding units, and 

understanding how these modulations interact is necessary to fully characterize their impact 

on the fidelity of information coding and behavior. At present, analysis techniques that 

exploit population-level modulations have primarily been implemented with data from 

large-scale neuroimaging tools, such as fMRI and EEG. Applying these analyses to other 

methods such as 2-photon in vivo calcium imaging of neurons identified genetically 

[116,117] or by cortical depth [118] and electrophysiological recordings from large-scale 

electrode arrays in behaving animals and humans[119,120] will help bridge gaps in our 

understanding of how the entire range of neuron-level attentional modulations are related to 

population-level changes in the quality of stimulus representations (Box 3). Furthermore, the 

development of improved modeling, decoding, and reconstruction methods as applied to 

both human neuroimaging and animal physiology and imaging data should enable new 

inferences about the mechanisms of attention in more complicated naturalistic settings, 

potentially even during unrestrained movement [50,91-94,121].

Additionally, associating neural modulations with changes in behavioral performance is 

critically important as a gold-standard method for evaluating the impact of attention on the 

quality of perceptual representations. The importance of this brain-behavior link was 

recently highlighted by a study in which visual attention was correlated with the modulation 
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of single-neuron activity in visual cortex (increased firing rate, among others). However, 

these modulations in visual cortex were unaffected even after attention-related 

improvements in behavior were abolished by the transient inactivation of the superior 

colliculus, an area that is thought to play an important role in attentional control [122,123]. 

This observation places an important constraint on how we consider different mechanisms 

of attention: attention results in changes to neural codes in visual cortex that should improve 

the information content about relevant stimulus features compared to irrelevant features (e.g. 

firing rate modulations). However, these attention-related improvements in the quality of 

local sensory representations will not necessarily be transmitted to downstream areas, and 

thus may have little or no impact on behavior. Thus, neural responses, both at the neuron- 

and population-level, need to be systematically evaluated against changes in behavior in 

order to establish their overall importance in visual information processing [124].

In future work, one promising approach is to selectively lesion or alter the measured data, 

post-acquisition, by using only units that show particular encoding or response properties to 

compute stimulus reconstructions (e.g., measurement units with RFs near or far from the 

attended stimulus; measurement units that either increase or decrease in response amplitude 

or RF size [76], Fig. 4). Reconstructions computed using only measurement units with 

modulations most critical for improving the fidelity of the neural code for attended stimuli 

compared to unattended stimuli should be associated with increases in mutual information 

between reconstructions and attended stimuli compared to unattended stimuli, and this can 

be verified by comparing the information content of reconstructions to measures of 

behavioral performance across attention conditions [97,98,124]. Using a similar approach, a 

recent study evaluated the necessity of voxel-level attentional gain on population-level 

information about spatial position by artificially eliminating attention-related gain from their 

observed pRFs. They found that pRF gain is not necessary to improve position coding; 

changes in pRF size and position were sufficient [77]. Finally, the information content of 

region-level stimulus reconstructions computed in one brain region can be compared to the 

information content of those measured in other brain regions [125] at different points in time 

to determine how information is transformed across levels of the visual hierarchy. For 

example, reconstructions in V1 should primarily reflect information about relevant low-level 

sensory features, whereas downstream areas in the ventral temporal lobe should encode 

information about more holistic object properties such as the features associated with 

relevant faces or scenes. Comparing successive reconstructions across multiple brain regions 

may highlight those features of visual scenes undergoing attentional selection, how they are 

selected, and what happens to features not selected (Fig. 1).

By emphasizing the link between the information content of reconstructions across multiple 

stages of processing and measures of behavioral performance, a more complete picture will 

emerge about how differently tuned encoding units at each stage – and their associated 

constellation of attention-induced modulations – can give rise to a stable representation that 

is more closely linked with the overall perceptual state of the observer.
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Box 1

Information content of a neural code

Information is related to a reduction in uncertainty [4,5,7]. A code is informative insofar 

as measurement of one variable (e.g., a single neuron’s firing rate) reduces uncertainty 

about another variable (e.g., feature of a stimulus). The amount of uncertainty in a 

random variable (e.g., the outcome of a coin toss or the spiking output of a cell) can be 

quantified by its entropy (see Glossary), which increases with increasing randomness. 

Mutual information (MI) is a measure of the reduction in uncertainty of one variable after 

knowing the state of another variable. MI would be zero for independent variables (e.g., 

two fair coins), whereas MI would be high for two variables that strongly covary.

If a neuron noisily responds at the same level to each feature value, then the MI between 

the state of the stimulus and the state of the neuron’s response is low, because signal 

entropy (variability associated with changes in the stimulus) is low and noise entropy 

(variability unrelated to changes in the stimulus) is high (Fig. IA, see Glossary). Instead, 

if the neuron exhibits a Gaussian-like orientation tuning function (TF; Fig. IB-C), then 

MI is higher, as more of the variability in the neuron’s response is related directly to 

changes in the state of the stimulus. In this latter case, if the amplitude of the neuron’s TF 

increases while noise remains approximately constant, then the ratio of signal entropy to 

noise entropy increases, resulting in greater MI between the neuron’s response and the 

stimulus orientation. However, if the orientation TF changes, this could result in either an 

increase or decrease in the information about the stimulus, and would be contingent upon 

several factors, such as the original tuning width, noise structure, dimensionality of the 

stimulus, and responses of other neurons (Fig. IF-H) [37,126-128]. For a widely-tuned 

neuron, a decrease in tuning width would result in an increase in signal entropy relative 

to noise entropy, increasing the information content of the neuron about orientation. At 

the other extreme, for a neuron perfectly tuned for a single stimulus value with noisy 

baseline responses to other values, a broadening in tuning would result in greater 

variability associated with stimulus features, and consequently greater information (Fig. 

IF-H). Thus, an increase in the amplitude of a neural response (under simple noise 

models) will increase the dynamic range and entropy, whereas a change in tuning width 

can either increase or decrease the information content of a neural code.

Box 2

Inverted encoding models enable evaluation of aggregate effects of 
multiple unit-level response changes on quality of a neural code

When firing rates of single units or activation levels of single voxels are measured in 

response to several different stimulus values (e.g., orientation of a grating or position of a 

stimulus on the screen), it is possible to fit an encoding model (see Glossary) to the set of 

measured responses as a function of feature value. Such an encoding model describes 

how the neuron or voxel responds to different values of a stimulus, and an accurate 

encoding model will predict how the neuron or voxel would respond to a novel stimulus 

value. For example, the best-fit encoding model for an orientation-selective unit would be 
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a circular Gaussian (Fig. IIA), whereas the encoding model for a spatially selective unit 

would be characterized by a 2-d Gaussian (Fig. IIB). Note that encoding models need not 

be visual: measuring firing rates of hippocampal neurons in rodents as they forage for 

food often reveals a particular region of the environment in which the neuron fires – its 

place field – which could potentially be described by a 2-d Gaussian encoding model for 

spatial position within the environment

While the process of estimating encoding models for many single units or single voxels 

across the brain allows for inferences about the manner in which information is 

measured, computed, and transformed across different stages of processing, the approach 

remains massively univariate: all encoding models are estimated in isolation, and 

inferences about neural processing are based on changes in these univariate encoding 

models in aggregate [76-80]. In contrast, the inverted encoding model approach (IEM; 

see Glossary) utilizes the pattern of encoding models estimated across an entire brain 

region (e.g. primary visual cortex) to reconstruct the region-level representation of a 

stimulus given a measured pattern of activation across the measurement units (Fig. IIC). 

These approaches, as implemented presently, rest on assumptions of linearity and are 

only feasible for simple features of the environment (e.g. orientation, color, spatial 

position) for which encoding properties are relatively well understood. To date, this 

general approach has been used to accurately reconstruct feature representations from 

fMRI voxel activation patterns [9,71,76,88,89,94-101,124], patterns of spike rate in 

rodent hippocampus [84,119], and human EEG signals measured non-invasively at the 

scalp [90].

Box 3

Outstanding questions

The IEM technique has recently been adapted for use with scalp EEG signals that can 

provide insights about the relative timing of attentional modulations of stimulus 

reconstructions with near-millisecond precision [90]. How do these signals measured 

with scalp electrodes carry information about features like orientation? And what other 

types of neural signals (such as 2-photon in vivo calcium imaging [116]) can be used for 

image reconstruction via IEMs?

Correlated variability among neurons is an important limiting factor in neural 

information processing [108,129-133]. How can this correlated variability be 

incorporated into the IEM approach, and what are the scenarios in which correlated 

variability helps and hurts the information content of a population code as measured via 

stimulus reconstructions?

It is possible to compute region-level feature-specific reconstructions across each of the 

many visual field maps in cortex [134-136]. However, the role(s) of each of these visual 

field maps in supporting visual perception and behavior remains largely unknown. By 

comparing how properties of stimulus representations vary across different visual field 

maps with measures of behavioral performance, in combination with causal 

manipulations such as TMS, optogenetic excitation or inhibition of subpopulations of 
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neurons, and electrical microstimulation, the relative contributions of each region’s 

representation to behavioral output can be compared, and accordingly the role(s) of the 

region in visual behavior may be inferred.

Application of IEMs for tasks requiring precise maintenance of or attention to visual 

stimulus features such as orientation, color, or motion direction [9,96,97,124] often 

reveal different results from those requiring attention to or maintenance of spatial 

positions [76,98,101]. Attending to a feature sharpens or shifts stimulus reconstructions 

in a manner well-suited for performing the task, whereas attending to a position enhances 

the amplitude of stimulus reconstructions over baseline. How do the circumstances in 

which stimulus reconstructions change in their amplitude differ from those in which 

reconstructions change their precision?
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Glossary

Bit unit of entropy (base 2)

Decoder algorithm whereby a feature or features about a stimulus (orientation, 

spatial position, stimulus identity, etc) is/are inferred from an observed 

signal (spike rate, BOLD signal). Typically, the signal is multivariate 

across many neurons/voxels, but in principle a decoder can use a 

univariate signal

Dynamic range the set of response values a measurement unit can take. An increase in 

a unit’s response gain will increase the range of possible response 

values, which will increase its entropy

Encoding 
model

a description of how a neuron (or voxel) responds across a set of 

stimuli (e.g., a spatial receptive field can be a good encoding model for 

many visual neurons and voxels, see Box 2)

Entropy a measure of uncertainty in a random process, such as a coin flip or 

observation of a neuron’s spike count. A variable with a single known 

value will have 0 entropy, whereas a fair coin would have > 0 entropy 

(1 bit).

Feature space after reconstruction using the IEM technique, data exist in feature 

space, with each data point defined by a vector of values corresponding 

to the activation of a single feature-selective population response (e.g., 

orientation, spatial position); common across all participants and visual 

areas
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Inverted 
encoding model 
(IEM)

when encoding models are estimated across many measurement units, 

it may be possible to use all encoding models to compute a mapping 

from signal space into feature space when allows for reconstruction of 

stimulus representations from multivariate patterns of neural activity 

across the modeled measurement units (Box 2).

Multivariate when analyses are multivariate, signal from more than one measured 

unit is analyzed; utilizing information about the pattern of responses 

across units rather than simplifying the data pattern by taking a statistic 

over the units (e.g., mean)

Mutual 
Information

amount of uncertainty about a variable (e.g., state of the environment) 

that can be reduced by observation of a state of the random variable 

(e.g., voxel or neuron’s response)

Noise entropy variability in one signal that is unrelated to changes in another signal

Receptive field 
(RF)

region of the visual field which, when visually stimulated, results in a 

response in a measured neuron or voxel (population RF, or pRF)

Tuning 
function (TF)

response of a neuron or voxel to each of several values of a feature, 

such as orientation or motion direction

Signal entropy variability in one signal that is related to changes in another signal

Signal space data as measured exist in signal space, with a dimension for each 

measurement unit (fMRI voxel, EEG scalp electrode, 

electrocorticography subdural surface electrode, animal single-cell 

firing rate or calcium signal); cannot be directly compared across 

individual subjects without a potentially suboptimal coregistration 

transformation
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Highlights

Brains are capacity-limited due to a finite number of neurons and stochastic synapses 

Attention enhances relevant information at the expense of irrelevant information Multiple 

attentional modulations are seen at the single neuron or voxel level Population-based 

stimulus reconstructions index net attention effects on neural codes
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Figure 1. Attention filters behaviorally-relevant information
When viewing a complex natural scene (left), visual processing by a noisy neural system 

will necessarily result in an overall information loss. If your eyes were fixated on the center 

of the image, but you were directing attention to the temple nestled among the trees near the 

top, information about the attended temple would be selectively preserved from degradation 

by noisy neural processing such that, even at successively later stages of computation, 

information about the attended location and/or features of the image is still maintained, 

despite substantial loss of information about unattended components of the image (right 

panel).
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Figure 2. Attention improves the information content of small- and large-scale neural codes
When attention is directed towards a stimulus presented to a feature-selective neuron, 

several types of responses are commonly observed. (A) Response amplitudes often increase, 

which increases the dynamic range of the response, and accordingly improves the ability of 

the neuron to discriminate between two stimuli (B). This increased dynamic range enables 

improved discrimination of multiple stimulus feature values. (C) Many neurons show 

changes in RF properties with attention such that the spatial profile of their response is 

focused around an attended stimulus placed inside the RF. In contrast, population-level 

stimulus reconstructions (Box 2) enable assessment of the net impact of all unit-level 

response changes with attention. (D) When participants are instructed to attend to the 

direction of motion of a moving dot stimulus (as opposed to its contrast), the amplitude of 

motion direction-selective responses increases in both V1 and MT. (E) When participants 

attend to a flickering checkerboard disc, the reconstructed stimulus image (Box 2) is higher-

amplitude compared to when they attend to the fixation point, especially in extrastriate 

visual ROIs such as human area V4 (hV4). (F) When motion is attended (see D), the mutual 

information between V1 and MT is greater compared to when stimulus contrast is attended, 

suggesting that attention maximizes the transfer of relevant information between brain 

regions at a population level. Panels A-C cartoon examples. Panels D & F adapted from [9] 

with permission from the Society for Neuroscience, panel E adapted from [76] with 

permission from Nature Publishing Group, colormap adjusted.

Sprague et al. Page 21

Trends Cogn Sci. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Information content of units and populations
(A) As described in Box 1, the mutual information (MI) between a unit’s response strength 

and the associated stimulus value is a non-monotonic function of its tuning bandwidth. A 

non-selective unit will have very low MI (as a result of little variability in response 

associated with variability in the stimulus feature), but so will a highly selective unit, 

because it has lower overall entropy. The particular selectivity bandwidth for which a unit 

has greatest MI about a stimulus feature depends on the shape of the tuning function (TF), 

noise properties, and the relative frequency of occurrence of different feature values. (B) In 

contrast, for population-level stimulus reconstructions, a narrower reconstructed stimulus 

representation is more informative, as it reflects a greater level of discriminability between 

different stimulus feature values. Plotted are cartoon reconstructions of different values of a 

stimulus. Each color corresponds to a different feature value, and each point along each 

curve corresponds to the reconstructed activation of the corresponding population response 

(as in Figs. 2 D-E).
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Figure 4. Using stimulus reconstructions to exploit and understand the net impact of 
heterogeneous response modulations
(A) Attentional modulations of different units are often heterogeneous, reflecting 

combinations of amplitude increases, baseline changes, and selectivity changes. Thus, even 

though the mean attentional modulations across units often point in the same direction 

across studies, there is substantial variability within a given sample of neurons (as shown 

here in simulated cartoon neural TFs), and any information that is encoded by this variability 

is usually ignored. (B) When using the inverted encoding model (IEM) technique, which 

combines across modulations across all constituent units, it is possible to ascertain how 

different types of unit-level response modulations may contribute to stimulus 

reconstructions by selecting measurement units post hoc that exhibit one type or another of 

response modulation (e.g., only bandwidth narrowing or broadening) to compute stimulus 

reconstructions.
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Figure I. Comparison of unit-level information content (mutual information)
For a cartoon neural tuning function (TF; measured in arbitrary units, a. u.) with no (A), 
intermediate (B) or high (C) feature selectivity, the overall entropy of the neural response 

(given equal stimulus probability) is the same (D) but the mutual information (MI) between 

the neural response and the feature value (E) is much higher when the neuron exhibits 

selectivity (e.g., C) than when it is non-selective (e.g., A), with intermediate selectivity (e.g., 

B) falling in between. In cases where attention narrows the selectivity of a unit, whether 

such a change results in improved information content depends on the original selectivity 

before narrowing [127,128]. (F) Cartoon of neural TFs for stimulus orientation with 

different tuning widths (top: narrow tuning width/high selectivity; bottom: large tuning 

width/low selectivity). (G) When MI is plotted as a function of tuning width, any changes in 

tuning width that are associated with attention can either increase or decrease MI depending 

on the original tuning width. Vertical lines indicate tuning width values of example TFs in 

(F). (H) For a modest attention-related narrowing in tuning (e.g. ~10% reduction in tuning 

width), a unit with a small tuning width may actually carry less information with attention, 

while a unit with a large tuning width would carry more information. Note: panels F-H do 

not equate total entropy across tuning widths (as in panels A-C), accounting for differences 

in MI plots between panel E and panels G-H.
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Figure II. Encoding models and stimulus reconstruction
Measurements of neural responses to different stimulus feature values (such as orientation, 

(A), or spatial position, (B)) often reveal selectivity for particular feature values (such as 

orientation TFs or spatial RFs). Such selectivity can be observed with single-unit firing 

rates, calcium transients, fMRI BOLD responses, or even scalp EEG. When encoding 

models are measured for many neurons/voxels/electrodes, it is possible to combine all 

encoding models to compute an inverted encoding model (IEM, C). This IEM allows a new 

pattern of activation measured using a separate dataset to be transformed into a stimulus 

reconstruction (D), reflecting the population-level representation of a stimulus along the 

features spanned by the encoding model (here, visual spatial position). This reconstruction 

(right) reflects data from a single trial, which is inherently noisy. However, when many 

similar trials are combined (Fig. 2E), high-fidelity stimulus representations can be 

recovered.

Sprague et al. Page 25

Trends Cogn Sci. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


