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Abstract

Cancer patients often show heterogeneous drug responses such that only a small subset of patients 

is sensitive to a given anti-cancer drug. With the availability of large-scale genomic profiling via 

next generation sequencing (NGS), it is now economically feasible to profile the whole 

transcriptome and genome of individual patients in order to identify their unique genetic mutations 

and differentially expressed genes, which are believed to be responsible for heterogeneous drug 

responses. Although subtyping analysis has identified patient subgroups sharing common 

biomarkers, there is no effective method to predict the drug response of individual patients 

precisely and reliably. Herein, we propose a novel computational algorithm to predict the drug 

response of individual patients based on personal genomic profiles, as well as pharmacogenomic 

and drug sensitivity data. Specifically, more than 600 cancer cell lines (viewed as individual 

patients) across over 50 types of cancers and their responses to 75 drugs were obtained from the 

Genomics of Drug Sensitivity in Cancer (GDSC) database. The drug-specific sensitivity 

signatures were determined from the changes in genomic profiles of individual cell lines in 

response to a specific drug. The optimal drugs for individual cell lines were predicted by 

integrating the votes from other cell lines. The experimental results show that the proposed drug 

prediction algorithm can be used to improve greatly the reliability of finding optimal drugs for 

individual patients and will thus form a key component in the precision medicine infrastructure for 

oncology care.
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I. Introduction

Traditionally, cancer types have been defined by their anatomical origin. Molecular analysis 

now shows that cancers of different organs may share similar features while cancers from 

the same organ are often quite distinct, as evidenced by the observation that cancer patients 

with the same cancer type often show heterogeneous responses to the same therapy. It is 

believed that complex and distinct genomic instability is responsible for the diversity in drug 

response [1, 2]. For example, one non-small cell lung cancer (NSCLC) patient was found to 

be responsive to Dasatinib dramatically and remained cancer-free four years later [3]. In the 

consequent genomic analysis, an inactivating BRAF mutation (Y472C) was found in the 

patient's tumor while no inactivating BRAF mutations were found in the non-responding 

tumors [3]. The Pan-Cancer project [4], which aims to analyze the molecular aberrations in 

cancer cells across a range of tumor types, combines all of the data from different tumor 

types and enables researchers and scientists to find new patterns of genomic aberrations.

To support studies on uncovering the relationship between the genomic aberrations and 

diverse drug responses, many valuable large-scale genomic data sets funded by federal 

agencies have been generated for public access. For example, Cancer Cell Line 

Encyclopedia (CCLE) [5] and Genomics of Drug Sensitivity in Cancer (GDSC) [6] are two 

projects that generate such databases and aim to systemically study the causal correlations 

between drug sensitivity and genomic biomarkers in hundreds of cancer cell lines. 

Moreover, The Connectivity Map (CMAP) generated gene expression signature data of 

different cell lines under various perturbations by more than 1,000 small molecules [7]. 

These data have since been scaled over 1,000 times and is publicly available at the Library 

of Integrated Network-based Cellular Signatures (LINCS) (http://www.lincscloud.org/). 

These large-scale data sets have been used to enable drug repositioning [8, 9], predict drug 

combinations [10, 11] and delineate mechanisms of action (MoA) [12] and are becoming an 

important component in drug discovery [13, 14]. Meanwhile, Gene Expression Omnibus 

(GEO) [15], a public database repository, also archives millions of microarray data sets of 

various types of cancer under different treatments and perturbations.

Many approaches have been developed to reposition or repurpose known drugs to new 

indications [16, 17], based on the assumption that drugs sharing similar chemical structures 

would have same targets. With the advance of large-scale genomic profiling techniques, it is 

economically feasible to profile the whole transcriptome and genome (e.g., microarray, 

RNAseq, DNAseq and somatic copy number alterations (SCNAs)) [18-20] of individual 

patients and identify their unique genetic mutations and differentially expressed genes, 

which in turn can be used as biomarkers to predict drug sensitivity for those patients. For 

example, The Cancer Genome Atlas (TCGA) [21, 22] database repository has collected 

comprehensive genomics profiles of over ten thousand patient samples covering more than 

30 types of cancer. Also, the International Cancer Genome Consortium (ICGC) [23] was 

formed to coordinate the generation and management of large-scale genomic data sets from 

Sheng et al. Page 2

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.lincscloud.org/


over fifty cancer types or subtypes collected from all over the world. These large-scale and 

comprehensive genomic profiling data sets are invaluable in identifying predictive 

biomarkers of an individual's drug response, these unique biomarkers can be used for 

personalized medicine [15, 24-26].

Though subtyping analysis of cancer patients has identified patient subgroups sharing 

common biomarkers, the genomic instability patterns among the subtypes of a cancer are 

complex and not easily distinguishable [18, 22, 27-29]. Thus, these genomic patterns 

derived from the subtyping analysis often fail to offer insight into drug sensitivity and 

identify reliable predictive biomarkers of individual subtypes. Herein, we propose a novel 

computational algorithm to predict the optimal drugs for individual patients based on 

personal genomic profiles, as well as available pharmacogenomics and drug sensitivity 

information across cancer types. Specifically, 624 cancer cell lines (viewed as individual 

patients) and their responses to 75 drugs were obtained from GDSC. The drug-specific 

sensitivity signatures were obtained with the genomics profile changes of individual cell 

lines. Then, the optimal drug treatments for individual cell lines were predicted by 

integrating the drug response information from the other cell lines. To test the accuracy of 

our drug prediction algorithm, we performed two-fold cross-validation on GDSC dataset and 

further downloaded 480 cell lines and their responses to 11 drugs from CCLE for validation. 

The results show that our prediction algorithm can significantly improve the chance of 

finding sensitive drugs for individual patients.

II. Data and Methodology

2.1 Data

The simplified molecular-input line-entry system (SMILES) data that describe the structure 

of compounds using short ASCII strings were downloaded from PubChem (version 2.0.1, 17 

Oct, 2011) [30]. Gene expression data of cell lines, and the IC50 data of drugs on the cell 

lines were downloaded from GDSC (release 4, march 2013) and CCLE (version 2.17, 

August 2014). Only drugs that have both SMILES and IC50 information, and cell lines that 

have both IC50 and gene expression profile data were used in our analysis. In summary, 

IC50 data of 75 drugs on 624 cell lines in GDSC and 24 drugs on 504 cell lines in CCLE 

were obtained.

2.2 Algorithm overview

Figure 1 shows an overview of the proposed drug prediction algorithm. Let D be the set of 

known drugs in GDSC, C be the cell line set, and G be the drug-related gene signature 

consisting of differentially expressed genes between the drug-specific resistant and sensitive 

cell lines, where nd = |D|, nc = |C|, ng = |G| denoting the number of drugs, cell lines, and 

genes respectively. Let A = (aij) be the cell line expression matrix, where aij is the 

expression value of gene gi ∈ G in cell line Cj ∈ C. Let B = (bjk) be the IC50 value matrix, 

where bjk is the normalized IC50 value of cell line Cj ∈ C treated by drug dk ∈ D. For each 

drug-cell line pair, we first calculate similarity scores for pairwise drugs based on their 

chemical structures and then select most similar drugs to the given one. A gene signature is 

calculated based on the IC50 values of the selected drugs and gene expression profiles of the 
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cell lines. A flexible similarity score between cell lines was calculated based on the gene 

signature and finally we assign a drug-cell line effect score by combining drug-similarity 

scores and cell line similarity scores. Using this method, we predicted the top candidate 

drugs that have the best sensitivity for the given cell line.

2.3 IC50 value normalization

As suggested by GDSC, cell lines with IC50 values greater than the maximum concentration 

of a drug are likely to be resistant to that drug while those with IC50 values smaller than 

maximum concentration are likely to be sensitive. So we divide the raw IC50 value by the 

maximum concentration of dk ∈ D and then log2-transform it as normalized IC50 value. For 

drug-cell line pairs that lack IC50 values from GDSC, we set their normalized IC50 to 0. 

Cell lines with a normalized IC50 value greater than 0 are considered to be resistant cell 

lines to the drug while others with normalized IC50 value smaller than 0 were considered to 

be sensitive. As the range of IC50 values of sensitive cell lines differs from the range of 

resistant cells, we further scaled the normalized IC50 value to the range of [-1,1] for the 

following analysis.

2.4 Drug-drug similarity

Given two drugs dk1 ∈ D and dk2 ∈ D, the ‘rcdk’ R package [31] is used to retrieve their 

fingerprint information fpk1 and fpk2 from the SMILES data. The similarity between the two 

drugs, S(dk1, dk2), is calculated using Tanimoto coefficient:

where c is the number of fingerprints that appear in both fpk1 (figureprints of dk1 by using 

the ‘fingerprint’ R package) and fpk2 (figureprints of dk2), a is the number of fingerprints 

that only appear in fpk1, and b is the number of fingerprints that only appear in fpk2.

2.5 Patient-patient genomics similarity

Even if two cell lines (or patient cells) share similar overall gene expression signatures, they 

might still have different drug-treatment response due to the variability in gene expressions 

of the drug-resistance related genes. Here, we propose a new method of calculating the cell 

line similarity scores based on drug-specific related genes, i.e., different similarity scores are 

given to each pair of cell lines for different drugs as follows.

For a given drug dgiven ∈ D, to calculate cell line similarity, we first calculate the drug-drug 

similarities, Sk = S(dgiven, dk), between dgiven and all other drugs dk ∈ D. Then, we rank dk 

in descending order Sk. Top rd drugs, which show the most similarity to the given drug, are 

selected as Ddgiven. The next step is to find a gene signature for Ddgiven and calculate cell 

line similarity score based on this signature.

For each drug dt ∈ Ddgiven, we separate cell lines into two groups according to their 

normalized IC50 values. If bjt, which is the IC50 value of cell lines Cj treated by drug dt, is 

greater than 0, Cj is assigned to group 1 (the resistant group); whereas the others with bjt < 0 
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are assigned to group 2 (the sensitive group). For each gene gi, we calculate its fold change 

between the mean expression levels of the two groups, 

. The top 1% genes with the largest or smallest fold 

change are selected as the gene signature of dt, denoted by Gdt. Then, signatures of all drugs 

in Ddgiven are combined together as the signature of Ddgiven, denoted by G(dgiven) = 

U dt∈Ddgiven
Gdt.

Using the k signature genes in G(dgiven) as the features, we define the similarity values S(cj1, 

Cj2) between two cell lines cj1, cj2 ∈ C under drug dgiven as the Pearson Correlation 

Coefficient between <ai1j1,ai2j1, …, aikj1>(aij1) and <ai1j2,ai2j2, …, aikj2>(aij2), where gi ∈ 

G(dgiven). To be consistent to the drug-drug similarity score, we scale S(cj1, cj2) to [0,1]. 

Given a cell line cgiven, the top rc cell lines that are most similar to it are selected as Ccgiven.

2.6 Drug-patient similarity

Given the gene expression profile of a patient, we rank the effects of all drugs in GDSC on 

this patient by defining the drug-patient effect score S(dgiven, cgiven). We first find Ddgiven to 

include top rd drugs that are most similar to dgiven and Ccgiven. to include top rc cell lines that 

are most similar to cgiven. Then the drug-patient effect score is defined by:

III. Results

The raw IC50 values for 75 drugs on 624 cell lines from GDSC and their cell line expression 

profiles were collected, and normalized as described in Method part. Figure 2 shows the 

heatmap of the normalized IC50 values (column scaled). The normalized IC50 values were 

further scaled to [-1,1] (-1 means the most sensitive, and 1 means the most resistant) for the 

subsequent analysis. We selected the top 1% genes (about 300 genes) with the largest or 

smallest fold change between the resistant group and sensitive group as the gene expression 

signature of individual drugs. Figure 3 shows the distinct gene expression signatures of 

AICAR and Dasatinib. To predict the effectiveness between a given cell line and a given 

drug, the top rd most similar drugs and rc cell lines were tested. Finally, we assigned a 

similarity score for each drug-cell line (patient) pair. Given a new cell line, the top ranked 

drugs were considered to be the best candidates.

We have conducted two new validation strategies to reduce the bias in validation and for 

selecting optimal values for rd and rc. The first one is to use two-fold cross-validation for 

modeling GDSC dataset, and the second one is to use GDSC dataset as the training set and 

CCLE dataset as the independent testing set.

First, we apply two-fold cross-validation on GDSC dataset, i.e., randomly divide the cell 

lines into two sub-groups, with equal size and each time use one as training set and the other 
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as testing set. The testing results are then averaged for each rd and rc. The drug response on 

the testing set were estimated using drug treated IC50 values on the training set. Top ten 

prioritized drugs for each testing cell line were selected. All the drugs were ranked in 

increasing order based on their normalized IC50 values on the given cell line. We then 

calculated the enrichment score of the ten drugs in the ordered drug list using Gene Set 

Enrichment Analysis (GSEA) [32], denoted as EScl. The enrichment score, EScl, which 

ranges from -1 to 1, and would be close to 1 if the selected drugs were found at the top of 

the ranked drug list and vice versa. To test whether our selected drugs for the given cell line 

ranked higher than random selection, we randomly selected ten drugs for each cell line for 

five thousand times and recalculated the enrichment score, denoted by ESi, i = 1,..,5000. The 

p value was calculated as: , where . Small p value (here we set 

the threshold as p<0.05) means that the prediction can discover the more sensitive drugs to 

the given cell line, compared with the random selection. The percentage of cell lines with 

corresponding p value<0.05 were then averaged (two-fold cross-validation) to for each rd = 

[1, …,4] and rc = [1,…,10]. The results were shown in Figure 4. As can be seen, the 

prediction power of single drug (rd=1) decreases when more similar cell lines being added 

(noise sensitive). Whereas, the prediction power with multiple similar drugs increases with 

more similar cell lines (noise robust). Especially, the parameter setting, rd =3 and rc =9, 

generates the best prediction power.

Moreover, the CCLE data sets were also collected for the validation. There are 11 drugs in 

both GDSC and CCLE database. We use GDSC data as the training set, and download drug 

treated IC50 values for 480 cell lines of the 11 drugs from CCLE database as the testing 

dataset. We then predict the drug responses on 480 cell lines in CCLE for 11 drugs. Since 

there are only 11 drugs available, it is hard to find sensitive drugs for each cell line. We thus 

select top 10 drug-cell line pairs predicted using our model and compare their IC50 values in 

CCLE with all other drug-cell line IC50 values. Then p values were calculated for each rd 

and rc using GSEA as described above. The results were shown in Table 1. As we can see, 

the p values are smaller than 0.05 in almost all the cases, which means the top 10 drug-cell 

line pairs predicted by our model have a much lower IC50 value compared with random 

selection and thus the cell lines are more sensitive to these drugs. Note that the p value for 

rd=3 and rc =9 was smaller than 4e-04. By considering both validation method, we suggest 

to use rd=3 and rc=9 in our model.

In summary, the proposed prediction algorithm can improve the effective drug selection 

significantly, and the evaluation results indicate the possibility of selecting the optimal drugs 

among all anti-cancer drugs based on their genomic profiles to achieve better therapeutic 

outcomes.

IV. Discussion

It is difficult to determine “sensitive” responses to drugs. We use normalized IC50 score to 

measure the cell line sensitivity based on the documents of GDSC which suggest that cell 

lines with acute drug response, IC50<max drug concentration and small confidence intervals 

are supposed to be sensitive to drugs. In the latest release of GDSC (release 5, June 2014), a 
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Z-score is calculated for each cell line to define “sensitive” and “resistance” to drugs. Both 

measurements should be fine and people can also use other drug response data to replace the 

normalized IC50 values in our algorithm.

There also exist other algorithms to find differentially expressed genes between sensitive 

groups and resistant groups. We first tested if t test could be used to find drug signatures. 

We did Shapiro-Wilk test on the expression values of genes across cell lines and found that 

the expression value of most of the genes (over 10,000) did not form normal distribution. 

Thus t test and other similar methods such as SAMR were not suitable here. Then we tested 

Wilcoxon rank sum test which was a nonparametric statistic test followed by the Benjamini 

and Hochberg method (Journal of the Royal Statistical Society Series B 57, 289–300, 1995) 

to control false discovery rate. Genes with adjusted p value <0.05 were selected as drug 

signature. However, the number of differentially expressed genes varies significantly from 

tens to thousands; furthermore, the drug prediction result is worse than using the top 1% fold 

change genes. One possible reason is that the sample size of sensitive cell lines for each drug 

is usually too small (less than 10) to provide sufficient power for statistic testing.

V. Conclusion

Patients with the same type of cancer often respond differently to the same drug treatment, 

and only a small subset of patients has profound sensitivity to the given drugs. The complex 

and distinct genomic instability of individual cancer patients is believed to be responsible for 

that diversity in drug response. Due to recent advances made in the next generation 

sequencing, large-scale pharmacogenomic databases are now publicly available while 

genomic profiling of individual patients is becoming economically affordable. It is timely to 

leverage such information to predict the drug sensitivity for each patient in order to achieve 

optimal personalized treatment. However, computational analysis is the bottleneck in 

associating the complex genomic profiles reliably with heterogeneous drug responses.

Motivated by the public availability of informative data resources, this study contributed a 

computational algorithm for predicting the best drugs for individual cell lines (representing 

individual patients) based on their genomic profiles and drug response data. Our cross-

validation showed that the best drug prediction results on over 40% cell lines are improved 

significantly compared to random selection. Moreover, the results from CCLE validation 

showed that the top ten most sensitive drug-cell line pairs predicted by our model using 

GDSC database have significant lower IC50 values than others. Our research finding 

suggests the potential of selecting optimal drugs among anti-cancer drugs for individual 

patients based on their genomic profiles, which will impact the cancer clinical regimen 

profoundly. Our ongoing work of integrating the drug prediction algorithm into the precision 

medicine framework being developed at Houston Methodist Cancer Center to investigate 

personal genomic profiles from patients, evaluate the prediction results on patient-derived 

xenograft models, and track the predictive performance on selected patients under treatment 

at Houston Methodist Hospital.
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Fig. 1. 
An overview of the drug prediction algorithm.
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Fig. 2. 
Heatmap for normalized IC50 values of 75 drugs (columns) on 624 cell lines (rows). Green 

means the most sensitive, red means the most resistant.

Sheng et al. Page 11

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Heatmap for mRNA expression of gene signatures (rows) of two drugs (AICAR and 

Dasatinib) on 624 cell lines (columns).
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Fig. 4. 
Two-fold cross-validation results for different rd and rc values.
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