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Abstract

Leptin was initially best known for its role in energy homeostasis and regulation of energy 

expenditure. In the past few years we have realized that leptin also plays a major role in 

neuroendocrine regulation and bone metabolism. Here, we review the literature on indirect and 

direct pathways through which leptin acts to influence bone metabolism and discuss bone 

abnormalities related to leptin deficiency in both animal and human studies. The clinical utility of 

leptin in leptin deficient individuals and its potential to improve metabolic bone disease are also 

discussed. We are beginning to understand the critical role leptin plays in bone metabolism; future 

randomized studies are needed to fully assess the potential and risk – benefit of leptin's use in 

metabolic bone disease particularly in leptin deficient individuals.
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1. Introduction

Leptin is an adipokine composed of 167 amino acids which is secreted in a pulsatile fashion 

to maintain energy homeostasis [1]. Leptin is primarily secreted from adipocytes at levels 

determined mainly by the number of adipocytes, and thus amount of body fat, and 

secondarily by acute changes in food intake [2]. Although circulating leptin levels mainly 

signify the amount of energy stored in adipose tissue, and thus reflect obesity, insulin levels 

and alcohol intake have also been associated with increased circulating leptin levels [3]. In 

epidemiology studies, a wide variability in leptin levels has been reported, even among 

individuals with the same body mass index (BMI) implying the influence of both genetic 

and environmental factors. For instance, a comparison of heterozygous relatives of 

congenitally leptin deficient individuals with control subjects of the same ethnicity and BMI 

reveals an increased percentage of body fat and reduced leptin levels [4]. In addition to 
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genetic determinants, the circulation of leptin also responds to acute caloric changes, 

decreasing with acute energy deprivation [5]. Sleep and fasting as well as circulating 

hormone and cytokine levels have been shown to regulate leptin levels in healthy 

individuals. Finally, circadian sleep/wake cycle is intimately linked in the regulation of 

leptin levels and disturbance of which could potentially cause an increase in circulating 

leptin [6].

The primary actions of leptin have been thought to occur in the arcuate nucleus of the 

hypothalamus, where leptin inhibits the actions of neuropeptide Y (NPY) and agouti-related 

peptide (AgRP) and enhances the actions of pro-opiomelanocortin (POMC) and cocaine- 

and amphetamine-related transcript (CART) to decrease food intake (Figure 1) [7-9]. Leptin 

also affects hypothalamic pathways to regulate reproduction and development [10-13] but 

importantly it also acts in several peripheral metabolically important organs. These actions 

of leptin are mediated through the leptin receptor (LepRb) which is found throughout the 

brain and brain stem as well as in peripheral organs [14, 15]. Once leptin binds to LepRb, 

the receptor dimerizes and initiates a downstream cascade (including janus kinase 2(JAK2)/

signal transducer and activator of transcription 3 (STAT3), src homology-2-containing 

protein tyrosine phosphatase 2 (SHP2)/mitogen-activated protein kinase (MAPK)/forkhead 

box protein O1 (FoxO1)/phosphatidylinositol 3 kinase (PI3K)/Protein Kinase B (Akt)/

mammalian target of rapamycin (mTOR)/adenosine monophosphate-activated protein kinase 

(AMPK), Suppressor of cytokine signaling 3 (SOCS3), Src homology-2 protein tyrosine 

phosphatase (SHP2), Protein-tyrosine phosphatase 1B (PTP1B), regulating several 

physiological functions including energy homeostasis, neuroendocrine action and insulin 

resistance [16]. The range of signaling pathways activated by leptin, as well as the number 

of peripheral tissues that leptin targets, have recently been expanded. Several of these novel 

pathways, including inflammatory activation through nuclear factor kappa-light-chain-

enhancer of activated B cells (NFkB)/IKK need to be further delineated in the future [17]. 

Research continues to illuminate and define these pathways, which have widespread impacts 

throughout the brain as well as in the periphery.

2. Leptin and Neuroendocrine Regulation

In addition to regulating energy homeostasis, leptin also regulates several hypothalamic 

pituitary peripheral neuroendocrine axes, including the thyroid, gonadal, cortisol and growth 

hormone axes [10-13]. It is important to understand how all these HPP axes are influenced 

by leptin and/or leptin deficiency, as they may all mediate the connection between leptin and 

bone which is further discussed below.

Farooqi et al. [4, 11, 18] and Ozata et al. [19] identified leptin deficient homozygous 

individuals and described neuroendocrine responses in this phenotype. A missense leptin 

gene mutation was identified in his family and homozygous individuals were found to have 

extreme obesity [10]. Thus, congenital, complete leptin deficiency is associated with 

extreme obesity, and leptin replacement in such individuals has led to improvement in obese 

state by increasing energy expenditure and reducing caloric intake [11]. Additionally, leptin 

therapy for patients who have disturbed neuroendocrine axes has been shown to restore 
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functioning of other hypothalamic axes, including the thyroid, gonadal, cortisol, and growth 

hormone [11, 20-23], which are all linked to bone metabolism.

All heterozygous members of the extended family with leptin deficiency studied by Ozata et 

al. [19] had normal weight while homozygous members had morbid obesity. Out of the four 

heterozygous individuals, the adult patients (2 females and 1 male) had normal thyroid 

function while the child had elevated thyroid-stimulating hormone (TSH), negative 

antibodies and exaggerated response to TSH stimulation [19]. Significant elevations of TSH 

levels have been seen in patients with leptin deficiency which has normalized on leptin 

replacement therapy and has subsequently led to treatment discontinuation of levothyroxine 

[24]. Studies in healthy, lean men were done to see the changes in neuroendocrine hormones 

in well fed state as compared to a 72 hour fasting state with placebo or replacement doses of 

metreleptin [5]. Changes in hypothalamic-pituitary-gonadal axis, in part changes of 

hypothalamic-pituitary-thyroid axis and binding capacity of insulin-like growth factor 1 

(IGF1) in serum were rescued in patients who were starving but received replacement doses 

of r-met Huleptin as opposed to the patients who received placebo [5].

Leptin also plays a significant role in the maintenance of hypothalamic-gonadal-pituitary 

axis. Delayed puberty is often seen in leptin deficient states. Indeed, both congenital and 

acquired leptin deficiencies have been associated with hypothalamic amenorrhea or the 

cessation of the menstrual cycle and infertility [25]. Decrease leptin levels and increase 

soluble leptin receptor protein (sLep-R) were also seen in healthy volunteers after a four-

week reduced calorie diet of 1000-1200 kcal/day intake [26]. Ozata et al. [19] described 

hypogonadism in all three adult homozygous patients in his study. Normal gonadotropin 

responses were demonstrated in all these patients in response to gonadotropin releasing 

hormone (GnRH) stimulation indicating a hypothalamic defect in these individuals. A leptin 

rise of approximately 50% was described just before the onset of puberty in prepubertal 

boys, which decreased to baseline levels after the initiation of puberty [27]. Normal pituitary 

gonadal axis was noted in healthy men after 72 hour fast with replacement of recombinant 

leptin as opposed to placebo, indicating important physiological role of leptin in regulation 

of neuroendocrine axes in healthy individuals [5]. Leptin replacement for 2-3 months was 

also shown to result in resumption in ovulation, increase in LH and estradiol levels in blood 

and increase in follicular diameter and number in women with hypothalamic amenorrhea as 

compared to control subjects [28]. Moreover, replacement of leptin in deficient individuals 

has led to the successful treatment of hypogonadism by gonadotropin secretion and the 

restoration of puberty and fertility [29].

An inverse relationship has been described between leptin levels and serum cortisol and 

adrenocorticotropic hormone (ACTH) levels [30]. The homozygous leptin deficient patients 

were also found to have high cortisol, high ACTH levels, a disturbed diurnal variation, but a 

normal dexamethasone suppression response [19]. Higher body fat has been shown to be 

associated with decreased cortisol inhibitory feedback signaling [31]. In a study of leptin 

therapy in lean humans, no significant change was noted in cortisol or corticotropin levels 

from their baseline during leptin treatment [28]. Also, no significant change in corticotropin 

pulsatility was noted after two week treatment with metreleptin [28]. Similarly no significant 

change was noted in the baseline cortisol or 24-hour urine free cortisol with fasting and/or 
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metreleptin replacement healthy volunteers after a 72 hour fast [5]. Longer, randomized 

controlled trials of leptin administration demonstrated an effect of leptin to normalize the 

ACTH-cortisol axis in women with exercise induced hypothalamic amenorrhea [5].

Studies on growth hormone deficient individuals as compared to healthy adults showed a 

negative correlation of leptin to IGF1 [32]. Blunt growth hormone response is seen in obese 

individuals in response to insulin induced hypoglycemia as compared to healthy people [33]. 

In normal healthy men, after a 72-hour fasting, a rise in serum growth hormone (GH) levels, 

pulsatile frequency of GH and 24-hour integrated GH concentrations, but a decrease in 

IGF1, were noted, which was not reversed with leptin recombinant therapy [5]. Although no 

change was noticed in free IGF-1 with leptin replacement, total IGF-1 levels were increased, 

reflecting increase in binding capacity in the serum [5]. In women with hypothalamic 

amenorrhea increase in IGF1 was seen in month 1 and an increase in IGF binding protein 3 

(IGF-BP3) was seen in months 2 and 3. IGF1 levels declined to baseline on follow-up at 2 

and 3 months [28].

Several animal studies have been done to establish relationship between leptin and its effect 

on sympathetic system, but similar studies have failed to demonstrate a similar role in 

response to at least short term leptin changes in humans [34]. Since the main role of leptin as 

an adipokine is to maintain energy homeostasis, it can be considered a messenger that relays 

information about energy stores in the body to the brain. Its role in bone formation was 

thought to be regulated by sympathetic nervous system. Offspring whose mothers were on a 

high fat diet have altered sensitivity to leptin and ghrelin in the hypothalamus that results in 

adverse cardiovascular outcomes [35]. Central leptin infusion increased insulin sensitivity 

via sympathetic regulation of insulin-like growth factor binding protein 2 (IGFBP-2) levels 

in animal models. An intracerberoventricular leptin infusion in sheep was shown to increase 

skeletal muscle IGFBP-2 resulting in improved glucose tolerance and increased insulin 

levels in response to a glucose challenge, which was blocked by a beta-adrenergic blocker, 

indicating sympathetic regulation of leptin [36]. High bone mass is shown to result after 

ablation of adrenergic signaling, which is even resistant to correction by 

intracerebroventricular leptin [37]. Decreased leptin states show a decline in sympathetic 

nervous system tone [38]. This may only be the case in animals, as these findings have not 

been reliably replicated in humans. For instance, it was found that changes in heart rate, 

catecholamines, and other sympathetic nervous system parameters during fasting were 

independent of leptin levels in healthy humans [34].

3. Leptin's Impacts on Bone Metabolism

3.1. Direct Mechanisms

The leptin receptor can be found in adult primary osteoblasts and chondrocytes, suggesting 

that the effects of leptin on bone growth and metabolism may be direct [39]. Other studies 

have shown that leptin may impact bone growth through the activation of fibroblast growth 

factor 23 (FGF-23) [40]. Leptin also impacts and regulates osteocalcin, which in turn 

regulates not only bone metabolism, but also insulin sensitivity and energy expenditure [41]. 

Locally, bone marrow adipocytes have been found to secrete leptin, and this may mediate 

leptin's local effects on bone [42]. Indeed, replacement of bone tissue in mice that lack a 
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functional leptin receptor (db/db) increases bone mass without affecting energy homeostasis, 

suggesting that some of the effects of leptin on bone metabolism may be peripheral rather 

than central [43].

3.2. Indirect Mechanisms

Although leptin may act peripherally on bone, central leptin administration in ob/ob mice 

has been found to restore bone mass to control levels, suggesting that leptin may indirectly 

impact bone mass [44]. The ventromedial hypothalamus (VMH) may activate local 

noradrenergic signaling at the osteoblasts in response to leptin, mediating this effect [37]. 

Indeed, lesions of the VMH have been found to prevent the restoration of bone mass with 

leptin administration for ob/ob mice, suggesting that the VMH is key to leptin's control of 

bone mass [37].

Leptin may also act indirectly through the brainstem and serotonergic signaling, though 

these effects shown in animal models have not been shown in humans yet. Leptin and 

serotonin have opposite effects on bone mass [45]. Leptin appears to decrease serotonin 

synthesis and inhibit serotonergic receptors [45]. Serotonin appears to bind to the serotonin 

2c receptors in the VMH and serotonin 1b receptor on osteoblasts to inhibit bone growth 

[45, 46]. In cases of leptin inhibiting serotonin, these effects would be reversed, inducing 

bone growth.

In the most human studies, it is difficult to parcel apart the effects of leptin per se vs. its 

hypothalamic effectors, such as estrogen, cortisol, IGF-1and parathyroid hormone on bone 

mass [47]. Leptin therapy increases all of these hormones along with improving bone mass, 

and thus whether the effects on bone mass occur directly or indirectly through other 

hormones remains to be fully clarified [12, 48]. Estrogen, activated through the 

hypothalamic-pituitary-gonadal axis by leptin [49], itself induces growth of human 

osteoblasts [50, 51]. The effect of hormonal replacement therapy in women with 

postmenopausal osteoporosis on the increase in bone density and reduction of osteoporotic 

fracture is established [52, 53] although a few studies have not linked improvement in 

estrogen levels with improvements in bone density [54-56]. Although the potential role of 

estrogen indirectly modulating this connection cannot be discounted, the combination of low 

bone density or mass with low estrogen levels may be more of an impact of leptin on both 

estrogen and bone mass than of estrogen on bone mass.

Cortisol is another potential indirect pathway for leptin to act on bone, as it is inhibited 

through the hypothalamic-pituitary-adrenal axis by leptin [57]. Cortisol has been found to 

inhibit the growth of osteoblasts and osteoclasts, as well as inhibiting growth hormone, 

which also have an anabolic effect on bone [58-60]. Indeed, strong correlations have been 

seen between cortisol and markers of bone growth, where higher cortisol levels correlate 

with decreased bone mass and growth markers like osteocalcin [58, 61]. The effect of 

cortisol and other glucocorticoids on bone may be mediated through pathways such as the 

hepatocyte growth factor signaling pathways (e.g. IGF-1) [59]. In the case of high adiposity, 

which can increase leptin and cortisol, central leptin resistance may mediate the unexpected 

negative effects of obesity on bone metabolism [62, 63]. Thus, leptin's inhibition of cortisol 

and glucocorticoids may help to improve bone growth.
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Thyroid and parathyroid hormones may also mediate relationships between leptin and bone 

metabolism. Leptin activates thyroid hormones through the hypothalamic-pituitary-thyroid 

axis [64]. Leptin is known to regulate thyroid-stimulating hormone (TSH) levels and thus 

influence this axis [65]. Parathyroid hormone activates osteoblasts and bone growth when 

administered intermittently, whereas it has catabolic action in bone when it is stably 

increased (e.g., in hyperparathyroidism or hypothalamic amenorrhea) [66]. Parathyroid 

hormone also increases calcium absorption in the intestines and reabsorption in the kidneys 

[67]. Metreleptin decreased parathyroid hormone and RANKL and increased 

osteoprotegerin (OPG) in women with hypothalamic amenorrhea together with an increase 

in bone mass [68].

Growth hormone and IGF-1 are other potential mediators, activated through the 

hypothalamic-pituitary-growth hormone axis by leptin [69]. Growth hormone causes IGF-1 

secretion from the liver and bone [70]. Importantly, growth hormone is not the only 

activator of IGF-1, but parathyroid hormone, estrogen and cortisol have also been shown to 

affect IGF-1 levels at bone [71-76]. Given these complex relationships, it is not hard to 

believe that leptin may act indirectly to affect bone metabolism.

4. Impacts of leptin deficiency on bone mass: Evidence from animal studies

Leptin has been linked to decreased bone mass in both cases of obesity with hyperleptinemia 

but leptin resistance, and in cases of extreme leanness with hypoleptinemia. Mice who 

cannot produce leptin (ob/ob) are obese and have reduced bone mass [77]. Hamrick et al. 

[78] first studied the bone microarchitecture in leptin deficient obese mice as compared to 

lean controls. They had reported a differential leptin action on bone density and 

mineralization in axial and appendicular skeleton. In the peripheral skeleton, namely femur, 

leptin-deficient mice had shorter length, decreased mineralization and low bone mineral 

density. Cortical thickness, and trabecular bone volume of femur was also low as compared 

to the controls. On the other hand, in the axial skeleton (lumbar vertebrae) of leptin deficient 

mouse increase in trabecular volume, cortical thickness, mineralization and density were 

observed. Increased number of adipocytes were noted in femoral bone marrow and 

decreased in vertebrae bone marrow. Muscle mass likely may contribute to this difference, 

as low muscle mass (sarcopenia) in obese mice were associated with low mineral density 

[78]. Intracerebrovesicular infusion of leptin in leptin deficient mice was initially shown to 

result in bone loss indicating that leptin, through central nervous system, inhibits bone 

formation [44]. However, more recently, intracerebroventricular injection of leptin was 

shown to promote the expression of pro-osteogenic factors in bone marrow, leading to 

enhanced bone formation in ob/ob mice [79]. Similarly, peripheral effect of leptin on bone 

was found to be anabolic. Leptin increased proliferation of isolated fetal rat osteoblasts in 

bone and inhibited osteoclastogenesis in bone marrow, leading to new bone formation, 

higher bone density and reduction in fracture risk [80]. Similarly, other authors recently 

observed decreases in bone growth, osteoblast-lined bone perimeter and bone formation rate 

were observed in ob/ob mice, which was greatly increased following subcutaneous 

administration of leptin [81]. Similarly, hypothalamic leptin gene therapy increased 

osteoblast-lined bone perimeter in ob/ob mice. In spite of normal osteoclast-lined bone 

perimeter, db/db mice exhibited a mild but generalized osteopetrotic-like (calcified cartilage 
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encased by bone) skeletal phenotype and greatly reduced serum markers of bone turnover 

[81]. The authors of this study supported that leptin, acting primarily through peripheral 

pathways, increases osteoblast number and activity [81]. Therefore, it seems that, regardless 

of intracerebroventricular or subcutaneous leptin administration, leptin increased muscle 

mass, bone mineral density, bone mineral content, bone area, marrow adipocyte number and 

mineral apposition rate in both the appendicular and axial skeleton [43, 79].

Furthermore, it was reported that leptin is expressed in a unique time course during fracture 

healing. Delay in callus maturation was demonstrated radiographically and histologically in 

the ob/ob mice, which was reversed by local leptin administration, thereby indicating that 

leptin deficiency (ob/ob mice) leads to impaired fracture healing, which is reversed by its 

administration [82].

5. Bone abnormalities in hypoleptinemia and leptin resistance: Evidence 

from human studies

Individuals with anorexia nervosa have low leptin levels that correlate directly to low BMI 

and percent body fat [83]. Additionally, low BMI in constitutionally thin women is also 

associated with lower bone mass and poor bone mineralization [84]. Higher bone mass 

density (BMD) in obese patients was believed to be protective effect of obesity on bone 

health and mineralization [85], which may be partially true, since obese patients with 

sarcopenia may have low bone density and increased fragility [86]. Poor bone quality and 

increased fracture risk is found in patients with anorexia nervosa and hypoleptinemia. Low 

bone mineral density was seen in women with anorexia nervosa at lateral spine, AP spine 

and total hip [87]. Although bony abnormalities are multifactorial in anorexia nervosa, leptin 

has been shown to play a major role in bone health. Leptin levels are positive associated 

with bone microarchitecture and structural integrity [88]. Abnormal microarchitecture, even 

in the presence of normal BMD, results in increased fracture risk, thus placing low leptin 

state conditions with abnormal microarchitecture at a higher fracture risk category.

In cases of obesity, a state of leptin resistance, there have also been observed abnormalities. 

Obesity caused decreased bone mass density in a controlled study of rats [62]. Obesity may 

also cause increased fracture risk in humans [63]. Although in the past, it was thought that 

obesity was protective against osteoporosis and bone fracture risk, new evidence may 

suggest that obesity, implicated with low-grade inflammation and sarcopenia, may not 

confer benefits on bone mass [63, 89]. This relationship may be altered through the states of 

leptin or insulin resistance found in obesity and which in turn seem to relate to poorer bone 

health outcomes [90, 91]. In a large study of lean, healthy adolescents, bone mass was found 

to be inversely related with percent fat mass, when body weight was controlled [92]. Several 

other studies have found similar results of increasing adiposity leading to decreased bone 

mass with obese and/or lean participants, an effect that is most pronounced in obesity 

[93-96]. Certain bone regions may be more sensitive to these effects. For instance, cortical 

bone may be more sensitive to adiposity than trabecular bone [92, 94]. At higher levels, 

leptin, acting as a proinflammatory adipokine, may activate inflammatory pathways in 

osteoblasts that may cause poorer bone and cartilage health [97].
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6. Interventional studies in humans

Several interventional studies have been done with leptin to look at its effect on body mass, 

body fat content, bone composition and bone mass, particularly in individuals with 

hypothalamic amenorrhea and lipodystrophy. Much of the evidence comes from women 

with hypothalamic amenorrhea, a state of infertility which can be caused by energy 

deficiency-through excess exercise and/or inadequate food intake [25]. Women with 

hypothalamic amenorrhea have markedly low leptin levels in addition to decreased estrogen 

and other hypothalamic output hormones, including thyroid hormones and growth hormones 

[12, 25]. They also have poor bone mass density, which can lead to low-energy bone 

fractures despite young age [25]. Remarkably, all hormonal abnormalities and inappropriate 

bone density can be reversed by metreleptin therapy [12, 25, 28, 98]. Welt et al. [28] 

examined eight women with more than six month long hypothalamic amenorrhea due to 

strenuous exercise, i.e. by definition women with decreased bone mass. All the study 

patients were treated with metreleptin subcutaneously for two to three months, with forty 

percent of the daily dose of leptin given in the morning and the remaining sixty percent at 

night to mimic natural diurnal variation [28]. Women were studied on and off treatment, 

serving as their own controls, in addition to a separate untreated control group [28]. Leptin 

treatment resulted in increased mean luteinizing hormone (LH) levels and LH pulse 

frequency, as well as in increased levels of estrogen, IGF1, IGF-BP3, and thyroxine, all of 

which have positive impacts on bone health [28]. It also increased levels of bone turn over 

markers, including bone alkaline phosphatase and osteocalcin (markers of bone formation), 

thereby indicating an osteoanabolic action [28]. Bone mineral density remained stable at a 3 

months follow-up visit of the study [28], but the duration of this pilot study may not be long 

enough to detect changes in bone density. A longer study in young women with 

hypothalamic amenorrhea who underwent metreleptin treatment for two years showed 

significant improvements in bone mineral density and content at the lumbar spine [98]. The 

bone mineral density of hip and radius showed a trend towards improvement as well [98]. 

This may be related to the influences of estrogen, a hormone which also improves with 

leptin therapy in hypothalamic amenorrhea [98] in addition to other hormonal axes that were 

improved in response to exogenously administered leptin. Indeed, leptin's effect on bone is 

very similar to that of estrogen. Like estrogen, it also increases osteoprotegerin (OPG) 

levels, which leads to binding receptor activator of nuclear factor kappa-b ligand (RANKL), 

and in turn, results in reducing osteoclast activity [99]. Therefore, in clinical trials, it is 

difficult to parcel apart which hormone may causing the end effects of improving bone 

density and further studies may need to determine whether this is a direct or indirect effect 

of leptin. Regardless, these findings do show that leptin does, whether directly or indirectly, 

restore normal hypothalamic and bone metabolism/functioning. While leptin levels have 

shown strong positive correlation with BMD in women, it seems to have a weaker effect in 

men [100]. It seems to be rational, since testosterone, rather than estrogen, is a stronger 

determinant of bone mass in men; in this regard, it would be of interest to investigate the 

effect of metreleptin treatment in men with hypogonadotrophic hypogonadism and 

hypoleptinemia.
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Leptin therapies, in the context of non randomized uncontrolled studies, have also be proven 

useful for lipodystrophic patients [101]. Lipodystrophy is characterized by a complete or 

partial loss of adipose tissue [101]. Moran et al. [102] studied 14 patients (3 men and 11 

women) with congenital hypoleptinemia due to congenital or acquired lipodystrophy. At 

baseline, they had decreased fat mass, BMI and very low leptin levels, whereas their 

baseline BMD was normal. By four months of therapy, leptin levels were restored [102]. 

Leptin administration decreased lean body mass and fat content, decreased energy 

expenditure and caloric intake, but had no impact on bone mineralization/BMD, bone 

resorption, or bone metabolism biomarkers in these patients with lipodystrophy [102]. 

However, high baseline BMD may partly account for this paradox. Unlike patients with 

hypothalamic amenorrhea, patients with lipodystrophy often have comorbid insulin 

resistance which may increase their bone density due to the high insulin and IGF1 levels 

present [103].

Summarizing the aforementioned data, leptin may normalize bone density in hypoleptinemic 

individuals, when it is impaired, whereas it may have no or minimal action when it is not. 

However, further larger studies are needed to elucidate the effect of metreleptin treatment on 

bone metabolism.

7. Clinical Utility of Leptin

Leptin plays a crucial role in regulation of neuroendocrine axes, fat and glucose metabolism 

and hence has been studied in detail in several “proof of concept” clinical trials as a 

potential therapeutic agent in leptin deficient states. Treatment with leptin in deficient 

individuals not only decreases appetite and weight but also has significant effect on 

neuroendocrine axes leading to normalization of several hormone levels [103, 104]. In 

addition to congential lipodystrophy mentioned above, metreleptin replacement in leptin 

deficient HIV patients with highly active antiretroviral therapy (HAART)- induced 

lipoatrophy has shown improvement in fasting insulin levels, insulin resistance, body fat-

mass (especially truncal) and high-density lipoprotein levels [105]. Leptin replacement has 

also shown benefit in balancing immune function in deficient individuals. Interventional 

studies have shown improvement in circulating cytokines and CD4 (+) T cells with leptin 

replacement in congenitally deficient individuals [18]. In lean women with chronic energy 

deprivation and relative leptin deficiency, replacement with recombinant leptin for 8 weeks 

showed increase in TNFα receptor levels, indicating correction of immunological function 

[106]. Myalept (metreleptin) is now approved for use in individuals with lipodystrophy but 

not those with HIV lipodystrophy. The potential side effects and contraindications include 

headache, weight loss, abdominal pain, arthralgia, dizziness, ear infection, fatigue, nausea, 

anemia, back pain, and diarrhea. It also bears the risks of neutralizing antibodies, lymphoma, 

hypoglycemia (when used with insulin), autoimmune disease, and allergic reactions to the 

compound.

Leptin replacement has shown significant improvement in bone mineral density of lumbar 

spine giving hope of leptin use in metabolic bone disease, including osteoporosis, 

particularly in leptin deficient individuals [98]. Osteoporosis is characterized by low bone 

mass and density that makes bone fragile and increases fracture risk. Over 10 million people 
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worldwide have proven to have osteoporosis and 34 million have osteopenia. The disease 

carries a huge burden and osteoporosis related fractures cost the U.S. healthcare system 

nearly $17 billion annually with an increasing curve every year [107]. Several 

pharmacological drugs have been FDA approved for treatment of osteoporosis. Most of 

them are antiresorptive agents that directly or indirectly inhibit osteoclasts (e.g. 

bisphosphonates and calcitonin).

Given the heavy socio-economic burden of osteoporosis, newer molecules, ideally in the 

context of a more personalized treatment, are needed. Leptin provides a potentially 

promising future anabolic therapy for leptin deficient individuals, due to its effect on bone 

formation markers. Osteocalcin and bone alkaline phosphatase have shown significant 

increases after treatment with leptin in hypothalamic amenorrheic women. Long-term 

metreleptin treatment increases bone mineral density and content at the lumbar spine of lean 

hypoleptinemic women [12, 98]. There is currently no approved therapy for women with 

hypothalamic amenorrhea, and this unmet clinical need should be addressed; in this regard, 

current data warrant the design of larger controlled phase III clinical trials involving 

metreleptin administration [12].

Long-term trials with recombinant leptin therapy and its effect on bone mineral density and 

turnover markers in leptin deficient osteoporotic women should also be studied. Studies 

have definitively shown positive correlations of leptin with BMD, especially in 

postmenopausal women. The effect of leptin treatment on bone density, bone turnover 

markers, and mainly on low-energy fracture of hypoleptinemic postmenopausal women 

needs further clarification. Although the association between leptin treatment and lymphoma 

remains to be elucidated, leptin treatment seems to be safe and well tolerated [108]. 

However, it remains unknown whether the side effects and potential complications 

mentioned in trials on lipodystrophic individuals would also be seen in the context of 

randomized, placebo controlled studies in women with osteoporosis or osteopenia.

This adipokine can possibly provide therapeutic option in osteoporosis and other metabolic 

bone diseases in leptin deficient individuals, and future research should test and expand on 

this possibility.
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LepRb leptin receptor

JAK2 janus kinase 2

STAT3 signal transducer and activator of transcription 3

SHP2 src homology-2-containing protein tyrosine phosphatase 2
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Highlights

• Leptin has both direct and indirect effects on bone metabolism.

• Leptin therapy has a normalizing effect on bone density of hypoleptinemic 

subjects.

• Future studies need to assess benefits and risk of leptin's usefulness in bone 

disease.
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Figure 1. 
Actions of leptin to alter food intake and energy expenditure. Leptin inhibits AGRP/NPY 

and activates POMC/CART neurons in the arcuate nucleus of the hypothalamus. These 

neurons in turn act on paraventricular (PVN) neurons to increase or decrease food intake as 

well as to modulate sympathetic activity and energy expenditure through the Nucleus of the 

Solitary Tract. Leptin signaling in the hypothalamus also activates other hypothalamic-

pituitary-peripheral (HPP) axes, which also have consequences for bone metabolism.
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