Skip to main content
. Author manuscript; available in PMC: 2015 Aug 11.
Published in final edited form as: Stat Med. 2012 Mar 16;31(18):1944–1960. doi: 10.1002/sim.5346

Table IV.

Comparison of the Bayesian design of Huang et al. [15], using adaptive randomization (AR) or equal randomization (ER), with its frequentist counterpart.

Case Frequentist
Bayesian AR
Bayesian ER
pr(S) E(T) E(N) pr(S) E(T) E(N) pr(S) E(T) E(N)
A 0.049 4.97 462 0.221 5.23 446 0.018 6.90 517
B 0.050 4.48 445 0.220 5.37 450 0.015 6.95 518
C 0.050 4.87 456 0.368 5.07 431 0.027 6.84 514
D 0.018 3.88 407 0.900 3.09 318 0.231 6.36 503
F 0.040 4.99 460 0.197 5.54 463 0.021 6.84 514
G 0.033 4.06 424 0.205 5.61 466 0.016 6.95 519
1 0.909 5.45 489 0.995 2.68 286 0.981 4.82 451
2 0.932 5.28 487 0.998 2.51 273 0.988 4.55 440
3 0.938 5.10 482 1.000 2.39 257 0.958 4.54 439
4 0.927 5.02 481 0.997 2.27 242 0.857 4.52 441
5 0.918 5.09 487 1.000 2.34 254 1.000 3.91 418
6 0.934 5.10 481 0.999 2.32 251 0.999 3.93 421
7 0.914 5.35 487 0.998 2.69 298 1.000 4.07 434
8 0.908 5.41 488 0.990 3.00 321 0.982 4.89 456
9 0.912 5.43 487 0.995 2.85 306 0.986 4.82 453

The baseline survival distribution is Weibull with hazard function λ0(t) = 0.45t0.8.