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Introduction

Fear of falling (FoF) is an autonomic,
cognitive and behavioural response to
a real or imminent threat of a fall
(Hadjistavropoulos et al. 2011). Given its
multidimensional nature, the assessment
of fear usually relies on self-report and
converging evidence from a number
of independent but related measures,
such as anxiety (Davis et al. 2010),
confidence (self-efficacy) and arousal
(Hadjistavropoulos et al. 2011). Recent
studies, in which young healthy adults have
been exposed to a postural threat (e.g.
standing on an elevated platform where
the consequences of a fall are severe),
have shown that fear and related factors
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directly affect control of quiet standing
and dynamic balance responses (Brown &
Frank, 1997; Carpenter et al. 2001, 2004;
Sibley et al. 2010); however, the mechanisms
underlying these fear-related postural
changes are yet to be understood fully.
Of recent debate is whether FoF-related
changes in vestibular function, as evidenced
by modulation (or lack thereof) of
vestibular-evoked balance responses, might
contribute to threat-related adjustments
in balance behaviours (Osler et al. 2013;
Horslen et al. 2014). Our position is that FoF
does influence vestibular-evoked balance
responses.

Evidence in support of our position

We would expect to observe changes in
vestibular-evoked balance responses with
FoF because of the strong excitatory
reciprocal projections between all vestibular
nuclei and neural regions responsible
for fear-related processes, including the
amygdala, the parabrachial nuclei (Balaban,
2002) and the histaminergic system (de
Waele et al. 1992). These fear-related
networks have been implicated in the
relationship between anxiety and vestibular
or dizziness disorders (Furman & Jacob,
2001; Staab et al. 2013). These networks are
also thought to be engaged transiently to
limit body movement with threat (Balaban,
2002), as part of the ‘freezing’ response
to threatening stimuli (Lang et al. 2000).
As such, larger vestibular-evoked balance
responses may be a result of excitation of
the central vestibular system, which might
normally serve to limit movement, in the
presence of a postural threat (Horslen et al.
2014).

Vestibular-evoked balance responses can
be probed with percutaneous electrical
stimulation over the mastoid processes
bilaterally to modulate vestibular afferent
firing rates (Goldberg et al. 1984). This

activation of vestibular afferents leads to
a virtual head perturbation (Fitzpatrick &
Day, 2004). Electrical vestibular stimulation
(EVS) evokes patterned activity in axial and
appendicular muscles which, when added
vectorially, exert a net force onto the ground
causing whole-body movement (Britton
et al. 1993; Fitzpatrick & Day, 2004; Forbes
et al. 2015). The early responses are most
likely to reflect the body’s compensation
to an isolated vestibular perturbation
(Fitzpatrick & Day, 2004). If the stimulation
persists, then feedback from non-vestibular
sources can be used to counteract the evoked
balance response (Day & Guerraz, 2007).
Continuously varying stochastic electrical
vestibular stimulation (SVS; Fitzpatrick
et al. 1996; Dakin et al. 2007) evokes
muscle and balance responses similar to
those elicited with EVS (Dakin et al.
2007). Cross-correlations (between SVS
and physiological recordings) can resolve
the short- (SL) and medium-latency (ML)
responses typically examined in response
to EVS (Dakin et al. 2007, 2010; Reynolds,
2010). Likewise, frequency-based analyses
can be used to assess the strength of
input–output coupling and gain of the
relationship (Dakin et al. 2010).

In recent experiments, we showed incr-
eased vestibular-evoked balance responses
to SVS when subjects stood with their toes at
the edge of a platform 3.2 m high, compared
with standing at ground level (Horslen et al.
2014). Specifically, height-induced threat
significantly increased vestibular-evoked SL
and ML peak force amplitudes (Fig. 1A), as
well as gain and coherence between SVS and
ground reaction forces. Vestibular-evoked
balance responses were also increased
in postural muscles when subjects stood
under the threat of unpredictable lateral
support surface tilt perturbations (Lim,
2014). Both SL and ML peak muscle
responses were larger (Fig. 1B and C), and
gain and coherence were increased when
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the threat of perturbation was present,
compared with no-threat conditions.
Taken together, these findings indicate that
the threat of increased consequence or
likelihood of a fall increases vestibular gain,
as measured by vestibular-evoked balance
responses. Osler et al. (2013), in contrast,
used square-wave EVS to evoke balance
responses in subjects who stood with feet
in a tandem orientation on an elevated
beam and found that trunk kinematic
responses were only affected (reduced) in
later phases of the response (>800 ms).
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Figure 1. Short- (SL) and medium-latency (ML) vestibular-evoked balance responses
with threat
Amplitude-normalized cumulant density plots representing cross-correlation between stochastic
electrical vestibular stimulation (SVS) and anterior–posterior ground reaction forces acting on
the body (A), vastus lateralis (B) and soleus muscle activity (C). In all cases, positive peaks reflect
a positive correlation between SVS and the respective measure [e.g. a positive current caused
a forward-directed force (A) or increase in muscle activity (B and C)]. The ground reaction force
trace (A) is reproduced from Horslen et al. (2014; their Fig. 2C); SVS (2–25 Hz bandwidth) evoked
balance responses while subjects (n = 10) stood at low and high surface heights with feet at the
edge and head turned 90 deg to the right. The muscle activity traces (B and C) were reproduced
with permission from Lim (2014; her Fig. 3.12); SVS (0–25 Hz) evoked responses while subjects
(n = 13) stood with the head facing forward with and without the threat of laterally directed
support surface perturbations.

They concluded that FoF has no effect
on early ‘feedforward vestibular-evoked
balance responses’, but ‘strongly attenuates
the feedback’ response (Osler et al. 2013).
While these results may seem contradictory
to the observations of Horslen et al.
(2014) and Lim (2014), methodological
considerations may account for the
reported differences. In particular, the
high-frequency threat-related changes
observed in ground reaction forces
(Horslen et al. 2014) and muscle activity
(Lim, 2014) would be less evident in trunk

kinematics because of natural low-pass
filtering in conversion from muscle activity
or force to sway (Dakin et al. 2010; Forbes
et al. 2015). Likewise, differences in the level
of stability due to foot position (tandem
vs. side by side), threat location/type (both
sides vs. front vs. support surface tilt)
and/or EVS characteristics (square-wave
vs. zero-mean stochastic) may offer
additional explanations for the incongruent
observations of threat-related changes in
early vestibular-evoked balance responses
between studies (Osler et al. 2013; Horslen
et al. 2014; Lim, 2014).

Further evidence supporting fear-related
influences on vestibular-evoked responses
can be drawn from studies that have used
alternative methods to probe vestibular
function. Vestibular-evoked myogenic
potentials (VEMPs) use loud auditory
tones or clicks to activate the vestibular
receptors directly and evoke short-latency
reflexes in tonically engaged muscles
(Rosengren et al. 2010). Naranjo et al.
(2015) observed significant increases in
VEMP amplitudes in neck and leg muscles
actively involved in stabilizing the body
and head when subjects stood at the edge
of a high compared with a low surface.
Furthermore, changes in VEMP amplitude
were positively correlated with changes in
both FoF and anxiety. These results are
consistent with prior evidence of increased
vestibulo-ocular reflex gain in conditions
of increased anxiety (Yardley et al. 1995)
or vigilance (Collins, 1988) that would
normally accompany a fear response.
The SVS, VEMP and vestibulo-ocular
reflex studies all demonstrate anxiety-
or fear-related excitation of vestibular
responses. Combined, this evidence
implicates the vestibular nuclei as a
likely site for modulation, because
vestibular-evoked reflexes in the leg, neck
and eye muscles all relay through the
vestibular nuclei.

Concluding remarks

Based on the evidence reviewed here, we
conclude that FoF increases the amplitude
of vestibular-evoked balance responses. One
question that remains is how (and if)
changes in vestibular-evoked balance res-
ponses with FoF contribute to the incre-
ases in balance-correcting responses to
whole-body perturbation with threat
(Brown & Frank, 1997; Carpenter et al.
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2004; Sibley et al. 2010). Vestibular-evoked
balance responses are thought to reflect
reactions to virtual head perturbation
and are distinct from balance-correcting
responses to whole-body support surface
perturbations (Wardman et al. 2003).
However, support surface perturbations
induce early head accelerations (15–40 ms;
Carpenter et al. 1999), and balance-
correcting responses are known to be
attenuated with vestibular deficits (Horlings
et al. 2009). As such, it is possible that the
networks responsible for vestibular-evoked
responses can contribute, at least in part, to
fear-related changes in balance-correcting
responses.

Call for comments

Readers are invited to give their views on this
and the accompanying CrossTalk articles in this
issue by submitting a brief (250 word) comment.
Comments may be submitted up to 6 weeks after
publication of the article, at which point the
discussion will close and the CrossTalk authors
will be invited to submit a ‘Last Word’. Please
email your comment to jphysiol@physoc.org.
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