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Macro-micro imaging of cardiac–neural circuits in
co-cultures from normal and diseased hearts
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Abstract The autonomic nervous system plays an important role in the modulation of normal
cardiac rhythm, but is also implicated in modulating the heart’s susceptibility to re-entrant
ventricular and atrial arrhythmias. The mechanisms by which the autonomic nervous system is
pro-arrhythmic or anti-arrhythmic is multifaceted and varies for different types of arrhythmia
and their cardiac substrates. Despite decades of research in this area, fundamental questions
related to how neuron density and spatial organization modulate cardiac wave dynamics remain
unanswered. These questions may be ill-posed in intact tissues where the activity of individual cells
is often experimentally inaccessible. Development of simplified biological models that would allow
us to better understand the influence of neural activation on cardiac activity can be beneficial. This
Symposium Review summarizes the development of in vitro cardiomyocyte cell culture models
of re-entrant activity, as well as challenges associated with extending these models to include the
effects of neural activation.
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Introduction

Re-entrant arrhythmias – where an excitatory wave travels
in a circuit, repeatedly reactivating its cardiac substrate –
are a leading cause of death in the developed world.
The transition from normal sinus rhythm, where peri-
odic wavefronts spread from a central pacemaking site to
trigger cardiac contraction, to re-entry has been the sub-
ject of numerous studies over the last century. Re-entrant
tachycardias are often self-terminating, spontaneously
converting back to a healthy sinus rhythm. However,
termination of the arrhythmia is not guaranteed – and
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when they occur in ventricular tissue, sustained tachy-
cardias can quickly evolve to a highly disorganized rhythm
called fibrillation, which is fatal unless treated within
minutes. The dynamics of these arrhythmias is difficult
to predict, as they may partly depend on the activity of the
autonomic nervous system.

The heart is richly innervated by sympathetic and
parasympathetic neurons, which have a well understood
role in modulating rate and inotropy in the healthy
heart, but also effect arrhythmogenticity in diseased
tissue. For example, hyperactivity of the sympathetic
nervous system, which often occurs in diseases such
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as hypertension (Julius, 1998; Esler, 2000) is frequently
associated with increased risk of re-entrant arrhythmias,
especially in the context of pre-existing conditions such
as long QT syndrome and ischaemia (Shen & Zipes,
2014). Sympathetic overflow during seizures may also
contribute to sudden unexplained death in epilepsy
(SUDEP; Devinsky, 2004). In contrast, vagal stimulation
increases the fibrillation threshold in ventricular tissue
(Brack et al. 2013), but supports tachyarrhythmia and
fibrillatory activity in atria (Chen et al. 2014).

The different effects of sympathetic and parasy-
mpathetic nerves on arrhythmogenesis can be partially
understood by their heterogeneous distribution and
influence on cardiac currents (Fig. 1). Sympathetic activity
releases noradrenaline (norepinephrine), which acts on
cardiac β-adrenergic receptors leading to action potential
duration (APD) shortening and an increase in cytoplasmic
calcium, which in turn can trigger early and delayed after-
depolarizations (EADs and DADs) in susceptible tissues
(Rubart & Zipes, 2005). Sympathetic innervation is also
spatially heterogeneous, which can lead to an increase in
dispersion of refractoriness when stimulated (Liu et al.
2003; Mantravadi et al. 2007). Ischaemic or scarred myo-
cardium is especially vulnerable to sympathetic drive as
diseased tissue can give rise to localized nerve sprouting
(Shen & Zipes, 2014), which in turn further increases
the cardiac substrate’s electrophysiological heterogeneity.
Parasympathetic activity releases acetylcholine, which
triggers cardiac muscarinic M2 receptors leading to
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Figure 1. Autonomic nerves and arrhythmogenesis
Parasympathetic (blue) and sympathetic (green) innervate the atria
and ventricles in a heterogeneous fashion, with (A) less prominent
parasympathetic innervation in the ventricles. Parasympathetic
activity can also inhibit sympathetic activity directly (B). Diseases such
as myocardial infarction promote sympathetic nerve sprouting (C)
which further increases heterogeneity. Activity in either autonomic
branch decreases atrial APD (D), which promotes tachyarrhythmia.
Sympathetic activity decreases APD in the ventricle (E), while
parasympathetic activity both increases ventricular APD and flattens
the APD restitution curve, which is cardioprotective.

reduced cytoplasmic calcium. Parasympathetic activity
also reduces atrial APD, which can be pro-arrhythmic as it
enables atrial tachycardias, but increases APD and flattens
the APD restitution curve in the ventricles, which is cardio-
protective. Parasympathetic modulation of ventricular
APD may be driven by a nitric oxide-dependent pathway
(Brack et al. 2013), or might be a consequence of the
relatively low concentration of M2 receptors ventricles
compared to the atria (Brodde et al. 2001; though see
Coote, 2013 for an alternate view) and the ability of
vagal stimulation to directly inhibit tonic sympathetic
activity (Levy, 1984; Paton et al. 2002). Vagal inhibition
of sympathetic activity could potentially increase APD
(via reduced slow delayed rectifier K+ current (IKs)
current) in the ventricles but not the atria, where greater
parasympathetic innervation would result in an increase
in muscarinic potassium channel activity, shortening
APD.

The arrhythmogenic effects of parasympathetic and
sympathetic activity are influenced by a number of
parameters that are difficult to address in intact tissue.
For example, the spatial organization of neurons on
the tissue undoubtedly plays a role in increasing the
cardiac substrates heterogeneity, but the distribution of
neurons is not under experimental control. Similarly,
experiments on isolated cells or cardiac/neuron cell
pairs provide valuable mechanistic insights, but cannot
address fundamental questions related to the stability
of macroscopic propagating waves in myocardium. A
biological model system that allows cell-level access
while providing insights into tissue level activity is
required.

Cardiac monolayers as models of arrhythmogenesis

Biological models with varying degrees of complexity have
been developed to shed light on re-entrant arrhythmias.
Perhaps the simplest model is the cardiac cell mono-
layer, a thin layer of tissue grown in culture dishes
from embryonic or neonatal cardiac cells. Cardiac cells
from very young animals have the capacity to form
gap junctional connections with neighbouring cells in
culture. After a few days in culture, embryonic cardiac
cells are capable of supporting propagating waves of
excitation over long distances. Cardiac monolayers were
popular 30 years ago as model systems of two-dimensional
conduction. More recently, the availability of potential
mapping techniques have renewed interest in cultured
monolayers, as they allow controlled environments for
studying conduction on microscopic (Rohr et al. 1997) and
macroscopic (Bub et al. 1998; Entcheva et al. 2000) scales.
Monolayer cultures are capable of supporting re-entrant
activity in the form of spiral waves, which allow them to
be used as simple models of arrhythmogenesis.
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Spiral waves in cardiac tissue

Re-entrant waves of excitation in spatially extended
systems such as the heart ventricle either travel around
an unexcitable obstacle such as a scar or, in homogeneous
substrates, form a characteristic spatiotemporal pattern
called a spiral wave. Spiral waves (also called vortices and
rotors) form naturally when a wavefront travels around
a pivot point repeatedly re-exciting the substrate. Spiral
waves are a general property of excitable media, and have
been observed in the Belousov–Zhabotinsky (BZ) reaction
(Keener & Tyson, 1986), intact (Davidenko et al. 1992)
and cultured cardiac tissue (Bub et al. 1998), as well as
retinal and neural (Shibata & Bures, 1972; Gorelova &
Bures, 1983) preparations. Initiating a spiral wave involves
generation of a wavefront with a free end, which can curve
inward to re-excite tissue forming a wave with a spiral
geometry. Once initiated, a spiral can either persist, break
up into multiple wavelets, or die out. Spiral wave breakup
is a complex phenomenon that has been dealt with in
detail by several researchers (see Fenton et al. 2002 for an
in-depth review), and is associated with ventricular and
atrial fibrillation. Spiral wave termination occurs when
the spiral wave tip travels and collides with an unexcitable
boundary (Pertsov & Ermakova, 1988; Fast & Efimov,
1991). Spiral waves have been observed in atria (Jalife,
2003), and ventricles, where they typically manifest as a
three-dimensional correlate of spirals called scroll waves
(Efimov et al. 1999).

Remarkably, cardiac monolayers can generate a range
of rhythms similar to those observed in the clinic (Fig. 2).
Cardiac monolayers display periodic target waves, where
activity initiates at a central pacemaking site resulting
in an unbroken wavefront propagating throughout the
tissue. Target waves are analogous to a regular sinus
rhythm in the healthy heart. Cardiac monolayers also
support re-entrant activity, in the form of spiral waves,
which allows them to be used as models for tachy-
arrhythmias in the intact heart. Under certain conditions,
monolayers also display multiple wavelet re-entry, which
could act as a model for fibrillation, or bursting activity
driven by the spontaneous onset and offset of re-entrant
waves, which generates rhythms similar to paroxysmal
tachycardias. These surprising functional similarities exist
despite major differences between cell cultures and whole
tissue. Cardiac monolayers are derived from neonatal or
embryonic tissues, which have a very different phenotype
(lower upstroke velocities and increased pacemaking
currents) than adult myocardium. Monolayers also lack
any three-dimensional structure, which precludes them
from displaying the more complex re-entrant phenomena
seen in thick tissues, such as scroll waves. Finally, cardiac
monolayers lack neural (and other in vivo) inputs,
which limits their usefulness in modelling arrhythmias
with systemic components such as those associated with
ischemia and hypertension.

Imaging methods

Imaging wave activity at macroscopic scales is typically
accomplished by loading the monolayer with an
exogenous probe, and recording wave propagation with
a fast, sensitive camera. The first spiral waves in cardiac
monolayers were recorded using calcium-sensitive dyes, a
macroscope constructed using two 35 mm camera lenses,
and a sensitive binned CCD (charge-coupled device)
running at video frame rates (Bub et al. 1998). Another
early system utilized a novel contact fluorescence imaging
approach which combined photodiodes and fibre optics
placed in a packed hexagonal pattern under the mono-
layer to measure voltage transients in neonatal rat cultures
(Entcheva et al. 2000).Calcium fluorescence was also
measured using a standard confocal system to assess
calcium dynamics in reperfusion injury in cultured cell
networks with a geometrically defined ischaemic zone
(Arutunyan et al. 2001). Later, a novel macroscopic phase
contrast method which takes advantage of local motion
transients to track wave propagation was developed
(Hwang et al. 2005), which advantageously does not
require dyes or particularly sensitive detectors.

Camera technology has developed significantly over
the last decade, allowing for improvements in both
imaging speed and resolution. The first high resolution
(>1 megapixel) maps of calcium and voltage trans-
ients were captured using an intensified CMOS
(complementary metal–oxide–semiconductor) system
running at 200 frames s–1 (Entcheva & Bien, 2006), which
allowed close to cellular resolution while maintaining
a large field of view. Our group currently uses a
5.5 megapixel, 100 frames s–1 sCMOS camera (Andor Neo
5.5) to record calcium and motion transients in monolayer
preparations. The camera’s high spatial resolution allows
us to achieve 10 µm pixel–1 resolution while still capturing
spiral waves that propagate over a 2 cm2 area.

Measuring the effects of structure

The simplest culturing technique involves plating
dissociated neonatal cardiac cells in a plastic, or
glass-bottom culture dish coated with a substrate that
is conducive to cell growth (poly-D-lysine, collagen, or
fibronectin). Cells organize themselves in an isotropic
fashion and do not display a preferred conduction
direction as is seen in intact tissue. Several groups
have used photolithographic techniques to impose
directionality on cell orientation. This technique was
pioneered by researchers investigating cardiac conduction
by optically mapping cultured cells at microscopic scales
(Rohr et al. 1991), and has more recently been used to
generate macroscopic patterns in 2D that can mimic
the structure of the intact ventricle (Badie & Bursac,
2009). Variations on this approach involve using micro-
lithographically generated stamps (Camelliti et al. 2006),
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and a relatively simple method where a collagen substrate
is mechanically brushed to impose directionality (Bursac
et al. 2002). More recently, 3D printing technologies have
been adapted to precisely place cardiac cells in 2D and 3D
patterns (Jakab et al. 2010). A very promising alternate
approach has recently been developed which used an
optically activated compound (AzoTAB) to suppress
excitability. This method can impose patterns of block
in a dynamic fashion on otherwise homogeneous tissue
(Magome & Agladze, 2010).

Observing neurons and myocytes in co-cultures

Co-cultures of cardiac and neural cells have been a popular
biological model for the last 30 years, partly due to
the observation that cardiac cells promote the survival
and growth of nerves in culture (Furshpan et al. 1976;
Baccaglini & Cooper, 1982). Hearts, like many organ
systems, release nerve growth factor (NGF). NGF has been
shown to acutely modulate synaptic transmission between
sympathetic neurons and cardiac myocytes (Lockhart
et al. 1997). Cardiac tissue also increase the release of
NGF in response to injury (Zhou et al. 2004), which
may contribute to the observed increase in frequency
of tachyarrhythmias in damaged tissue due to increased
innervation.

Myocyte–neuron co-cultures are typically investigated
at microscopic scales to investigate local interactions
of small clusters of cardiac cells and neurons. Elegant
ultra-structural and immunohistochemistry studies in
co-culture systems clarified the structure of the
cardiac–neuron junction. Neurons form specialized
junctions with cardiac cells, in a process that is mediated by

NGF (Lockhart et al. 2000). These specialized junctions are
enriched withβ1 receptors which drive an increase in myo-
cyte beat rate when the attached neurons are stimulated
by nicotine (Shcherbakova et al. 2007).

Our group has recently started investigating the role
of neural activation on the generation of abnormal
cardiac rhythms in culture. We predominantly image
activity at macroscopic scales as we are interested in the
effects of abnormal neural activity from neurons from
hypertensive animals on propagating wavefront stability.
These experiments are challenging as it is difficult to
simultaneously measure neural activity and cardiac wave
propagation. Neurons are sparsely plated on dense cardiac
monolayers, and, due to their low concentration and
relatively small calcium transients, fluorescent signals
from dye-loaded neurons are difficult to distinguish from
cardiac-derived transients. We are currently exploring
a variety of different techniques pioneered by other
research groups, ranging from maintaining neurons
and myocytes in separate but connected compartments
(Takeuchi et al. 2011), to virally transfecting neurons with
calcium-sensitive markers (Looger & Griesbeck, 2012) and
imaging cardiac motion with a second camera using a
macroscopic phase contrast approach (Hwang et al. 2005).

Macroscopic myocyte neuron co-cultures can
potentially address fundamental questions that are
ill-posed in intact tissues or in vivo systems (Fig. 3).
For example, we can vary the number and spatial
organization of neurons on a monolayer to determine
if there is critical density of neurons needed to generate
macroscopic changes in wave propagation (Fig. 3A),
or whether neurons are more effective modulators of
cardiac activity if they are organized in clusters or spatially
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Figure 2. Wave dynamics in cardiac monolayers
Monolayers can display a wide range of rhythms which are similar to those seen in intact hearts. See (Bub et al.
1998, 2002) for experimental details.
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Figure 3. Proposed cardiac–neuron
co-culture experiments
The centre monolayer is compared to
dishes A–E. A and B, testing the effects of
different neuron density and distribution;
C–E, cross-plating experiments can isolate
the effects of different tissues on
macroscopic wave dynamics (blue:
wild-type neurons, green: diseased
neurons; red: wild-type myocytes; yellow:
diseased myocytes).

dispersed (Fig. 3B). We can also investigate how diseased
myocytes and neurons from spontaneously hypertensive
animals (e.g. the SHR rat) compare to wild-type cultures
(Fig. 3C), and whether the observed cardiac phenotype
is determined by diseased neurons (Fig. 3D) or diseased
myocytes (Fig. 3E) by cross-plating healthy and diseased
tissue. Finally, as is the case in myocyte monocultures,
each cell in the dish is experimentally accessible, which
will allow direct correlation between regional neural
activity and the generation of macroscopic spiral waves.

Looking ahead

A key experimental challenge in this system will be
to develop ways of determining how events at the
neuron–cardiac junction affect cardiac wavefront stability
at macroscopic scales, and relating these to in vivo
behaviours. One bottleneck is the lack of ultra-high speed,
high resolution cameras capable of resolving microscopic
and macroscopic events simultaneously, although we anti-
cipate that the rapid pace of new sensor development
(Brady et al. 2012; Bub et al. 2013) will inevitably over-
come this limitation. Capturing events at different spatial
resolutions is also challenging for current commercially
available optical systems, as the numerical aperture of

objectives capable of imaging a large field of view
limits their resolving power at microscopic scales. Here,
we anticipate that the development of novel optical
modalities, in the form of specialized objectives with high
numerical aperture and wide field of view, or contact
fluorescence imaging using a CMOS sensor (Greenbaum
et al. 2012; Saini, 2012), perhaps in combination with
super-resolution techniques (Gustafsson, 2005), will allow
true multiscale imaging at biologically relevant space
scales. Finally, we stress that any experimental finding
from the monolayer co-culture preparation should be
validated in intact tissue. In addition to having a simplified
geometry, monolayer preparations are generated from
cells harvested from neonatal animals, which will have
a different phenotype from the adult. Several groups
are currently exploring new methods to measure cellular
dynamics in the intact heart and vasculature (Botcherby
et al. 2013; Aguirre et al. 2014; Freeman et al. 2014), which
we intend to apply to the study of neural cardiac inter-
actions in vivo.
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