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Abstract

Abdominal segmentation on clinically acquired computed tomography (CT) has been a 

challenging problem given the inter-subject variance of human abdomens and complex 3-D 

relationships among organs. Multi-atlas segmentation (MAS) provides a potentially robust 

solution by leveraging label atlases via image registration and statistical fusion. We posit that the 

efficiency of atlas selection requires further exploration in the context of substantial registration 

errors. The selective and iterative method for performance level estimation (SIMPLE) method is a 

MAS technique integrating atlas selection and label fusion that has proven effective for prostate 

radiotherapy planning. Herein, we revisit atlas selection and fusion techniques for segmenting 12 

abdominal structures using clinically acquired CT. Using a re-derived SIMPLE algorithm, we 

show that performance on multi-organ classification can be improved by accounting for 

exogenous information through Bayesian priors (so called context learning). These innovations are 

integrated with the joint label fusion (JLF) approach to reduce the impact of correlated errors 

among selected atlases for each organ, and a graph cut technique is used to regularize the 

combined segmentation. In a study of 100 subjects, the proposed method outperformed other 

comparable MAS approaches, including majority vote, SIMPLE, JLF, and the Wolz locally 

weighted vote technique. The proposed technique provides consistent improvement over state-of-

the-art approaches (median improvement of 7.0% and 16.2% in DSC over JLF and Wolz, 

respectively) and moves toward efficient segmentation of large-scale clinically acquired CT data 

for biomarker screening, surgical navigation, and data mining.
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1. Introduction

The human abdomen is an essential, yet complex body space. Computed tomography (CT) 

scans are routinely obtained for the diagnosis and prognosis of abdomen-related disease. 

Automated segmentation of abdominal anatomy may improve patient care by decreasing or 

eliminating the subjectivity inherent in traditional qualitative assessment. In large-scale 

clinical studies, efficient segmentation of multiple abdominal organs can also be used for 

biomarker screening, surgical navigation, and data mining.

Atlas-based segmentation provides a general-purpose approach to segment target images by 

transferring information from canonical atlases via registration. When adapting to abdomen, 

the variable abdominal anatomy between individuals (e.g., weight, stature, age, disease 

status) and within individuals (e.g., pose, respiratory cycle, clothing) can lead to substantial 

registration errors (Figures 1, 2). Previous abdominal segmentation approaches have used 

single probabilistic atlases constructed by co-registering atlases to characterize the spatial 

variations of abdominal organs (Park et al., 2003; Shimizu et al., 2007); statistical shape 

models (Okada et al., 2013; Okada et al., 2008) and / or graph theories (Bagci et al., 2012; 

Linguraru et al., 2012) have been integrated to refine the segmentation using probabilistic 

atlases. Multi-atlas segmentation (MAS), on the other hand, is a technique that has been 

proven effective and robust in neuroimaging by registering multiple atlases to the target 

image separately, and combining voxel-wise observations among the registered labels 

through label fusion (Sabuncu et al., 2010). Recently, Wolz et al. applied MAS to the 

abdomen using locally weighted subject-specific atlas (Wolz et al., 2013); yet the 

segmentation accuracies were inconsistent. We posit that the efficiency of atlas selection for 

abdominal MAS requires further exploration in the context of substantial registration errors, 

especially on clinically acquired CT.

The selective and iterative method for performance level estimation (Langerak et al., 2010) 

(SIMPLE) algorithm raised effective atlas selection criteria based on the Dice similarity 

coefficient (Dice, 1945) overlap with intermediate voting-based fusion result, and addressed 

extensive variation in prostate anatomy to reduce the impact of outlier atlases. In (Xu et al., 

2014), we generalized a SIMPLE theoretical framework to account for exogenous 

information through Bayesian priors – referred to as context learning; the newly presented 

model selected atlases more effectively for segmenting spleens in metastatic liver cancer 
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patients. A further integration with joint label fusion (JLF) (Wang et al., 2012) addressed the 

label determination by reducing the correlated errors among the selected atlases, and yielded 

a median DSC of 0.93 for spleen segmentation.

Herein, we propose an efficient approach for segmenting 12 abdominal organs of interest 

(Figure 1) in 75 metastatic liver cancer patients and 25 ventral hernia patients on clinically 

acquired CT. Based on the re-derived SIMPLE framework (Xu et al., 2014), we construct 

context priors, select atlases, and fuse estimated segmentation using JLF for each organ 

individually, and combine the fusion estimates of all organs into a regularized multi-organ 

segmentation using graph cut (Boykov et al., 2001) (Figure 3). The segmentation 

performances are validated with other MAS approaches, including majority vote (MV), 

SIMPLE, JLF, and the Wolz approach. This work is an extension of previous theoretical (Xu 

et al., 2014) and empirical (Xu et al., 2015) conference papers and presents new analyses of 

algorithm performance and parameter sensitivity.

2. Theory

We re-formulate the SIMPLE algorithm from the perspective of Expectation-Maximization 

(EM) while focusing on the atlas selection step. In this principled likelihood model, the 

Bayesian prior learning from context features (e.g., intensity, gradient) is considered as 

exogenous information to regularize the atlas selection.

2.1 Statistical SIMPLE Model

Consider a collection of R registered atlases with label decisions, D ∈ LN×R, where N is the 

number of voxels in each registered atlas, and L = {0,1,..., L – 1} represents the label sets. 

Let c ∈ SR, where S = {0,1} indicates the atlas selection decision, i.e., 0 – ignored, and 1 – 

selected. Let i be the index of voxels, and j of registered atlases. We propose a non-linear 

rater model, , that considers the two atlas selection decisions. Let the ignored 

atlases be no better than random chance, and the selected atlases be slightly inaccurate with 

error factors ε ∈ ER×1, where . Thus

(1)

where each element θjns′s represents the probability that the registered atlas j observes label s

′ given the true label is s and the atlas selection decision is n with an error factor εj if 

selected, – i.e., θjns′s ≡ f(Dij = s′|Ti = s, cj = n, εj).

Following (Warfield et al., 2004), let , where  represents the probability 

that the true label associated with voxel i is label s at the kth iteration. Using Bayesian 

expansion and conditional inter-atlas independence, the E-step can be derived as

(2)
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where f(Ti = s) is a voxel-wise a priori distribution of the underlying segmentation. Note 

that the selected atlases contribute to W in a similar way as globally weighted vote given the 

symmetric form of θj1s′s as in the original SIMPLE.

In the M-step, the estimation of the parameters is obtained by maximizing the expected 

value of the conditional log likelihood function found in Eq. 2. For the error factor,

(3)

Consider the binary segmentation for simplicity, let , 

, , , and MT = MTP + MTN, 

MF = MFP + MFN. After taking partial derivative of Lεj,

(4)

Then for the atlas selection decision

(5)

Given the intermediate truth estimate ,  can be maximized by evaluating each 0/1 

atlas selection separately. Note the selecting/ignoring behavior in Eq. 5 is parameterized 

with the error factor εj, and thus affected by the four summed values of True Positive (TP), 

False Positive (FP), False Negative (FN), and True Negative (TN) as in Eq. 4. Typical 

practice for a fusion approach might use the prior probability, f(Ti = s), to weight by 

expected volume of structure. With outlier atlases, one could reasonably expect a much 

larger region of confusion (i.e., non “consensus” (Asman and Landman, 2011)) than true 

anatomical volume. Hence, an informed prior would greatly deemphasize the TN and yield a 

metric similar to DSC. Therefore, we argue that SIMPLE is legitimately viewed as a 

statistical fusion algorithm that is approximately optimal for the non-linear rater model 

proposed in Eq. 1.

2.2 Context Learning

Different classes of tissues in CT images can be characterized with multi-dimensional 

Gaussian mixture models using intensity and spatial “context” features. On a voxel-wise 

basis, let  represent a d dimensional feature vector, m ∈ M indicate the tissue 

membership, where M = {1, ... , M} is the set of possible tissues, and typically, a superset of 

the label types, i.e., . The probability of the observed features given the tissue type is 

t can be represented with the mixture of NG Gaussian distributions,
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(6)

where , , and  are the unknown mixture probability, 

mean, and covariance matrix to estimate for each Gaussian mixture component k of each 

tissue type t by the EM algorithm following (Van Leemput et al., 1999). This context model 

can be trained from datasets with known tissue separations.

The tissue likelihoods on an unknown dataset can be inferred by Bayesian expansion and 

can use a flat tissue membership probability from extracted feature vectors.

(7)

Consider a desired label s as one tissue type t, and thus f(Ti = s) ≡ f(m = t|v), the Bayesian 

prior learning from context features serves to regularize the intermediate fusion estimate in 

Eq. 3, and hence the atlas selection.

3. Methods and Results

3.1 Data

Under Institutional Review Board (IRB) supervision, the first-session of abdomen CT scans 

of 75 metastatic liver cancer patients were randomly selected from an ongoing colorectal 

cancer chemotherapy trial, and an additional 25 retrospective scans were acquired clinically 

from post-operative patients with suspected ventral hernias. The 100 scans were captured 

during portal venous contrast phase with variable volume sizes (512 × 512 × 33 ~ 512 × 512 

× 158) and field of views (approx. 300 × 300 × 250 mm3 ~ 500 × 500 × 700 mm3). The in-

plane resolution varies from 0.54 × 0.54 mm2 to 0.98 × 0.98 mm2, while the slice thickness 

ranges from 1.5 mm to 7.0 mm. Twelve abdominal organs were manually labeled by two 

experienced undergraduate students, and verified by a radiologist on a volumetric basis 

using the MIPAV software (NIH, Bethesda, MD (McAuliffe et al., 2001)). All images and 

labels were cropped along the cranio-caudal axis with a tight border without excluding liver, 

spleen, and kidneys before any processing (following (Wolz et al., 2013)).

3.2 General Implementation

We used 10 subjects to train context models for 15 tissue types, including twelve manually 

traced organs, and three automatically retrieved tissues (i.e., muscle, fat, and other) using 

intensity clustering and excluding the traced organ regions. Six context features were 

extracted, including intensity, gradient, and local variance, and three spatial coordinates with 

respect to a single landmark, which was loosely identified as the mid-frontal point of the 

lung at the plane with the largest cross-sectional lung area (see rendering in Figure 8). We 

specified the number of components of Gaussian mixture model, NG = 3. For each organ, the 

foreground and background likelihoods were learned from the context models based on the 

context features on target images, and used as a two-fold spatial prior to regularize the 
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organ-wise SIMPLE atlas selection. We constrained the number of selected atlases as no 

less than five and no larger than ten.

When using JLF on the selected atlases for each organ, we specified the local search radii (in 

voxel) as 3 × 3 × 3, the local patch radii (in voxel) as 2 × 2 × 2, and set the intensity 

difference mapping parameter, and the regularization term as 2 and 0.1, respectively (i.e., 

default parameters).

Following (Song et al., 2006; Wolz et al., 2013), we regularized the final segmentation with 

graph cut (GC). The GC problem is solved by maximizing the following MRF-based energy 

function

(8)

where i and i′ are voxel indices, d835dc5d represents the labeling of the final segmentation 

for image . The data term Di(pi) characterize the probability of voxel i assigned to the label 

pi; we define it as a combination of the probabilistic fusion estimate from JLF with the 

intensity likelihoods using 1-D context learning. The smoothness term Vi,i′ (pi, pi′) penalizes 

the discontinuities between the voxel pair {i, i′} in the specified neighborhood system ; 

we define it as a combination of the intensity appearance with local boundary information. 

d835df06 is a coefficient that weights the data term over the smoothness term; we set it as 

3.3. Note that we only applied GC smoothing to large organs (i.e., spleen, kidneys, liver, 

stomach), and kept the JLF results for the remaining organ structures.

For the direct JLF approach, the same parameters were used as above, except that it was 

conducted for all organs simultaneously. For the Wolz approach, we kept 30 atlases for the 

global atlas selection, adjusted the exponential decay for the organ level weighting to 

support 10 atlases, followed (Wolz et al., 2013) for voxel-wise weighting by non-local 

means, and used the same GC scheme as applied to our proposed method.

Note that we used the JLF (Wang et al., 2012) method in the Advanced Normalization Tools 

(ANTs) (Avants et al., 2009), all other algorithms, i.e., MV (Rohlfing et al., 2004), SIMPLE 

(Langerak et al., 2010), the Wolz approach (Wolz et al., 2013), and GC (Boykov et al., 

2001; Song et al., 2006), were implemented based on the corresponding literature, and run 

on a 64-bit 12-core Ubuntu Linux workstation with 48G RAM.

3.3 Motivating Simulation

3.3.1 Experimental Setup—A simulation on 2-D CT slices was constructed to 

demonstrate and motivate the benefits of SIMPLE context learning for atlas selection and 

label fusion (see Figure 4). Forty CT scans were randomly selected from the 90 subjects not 

used for context learning. A representative slice with the presences of all three organs, i.e., 

spleen, left kidney, and liver, was extracted from each scan, and considered as a target 

image. A hundred simulated observations were estimated by applying a random 

transformation model to each target slice, and considered as the atlases with different 

degrees of registration errors for segmenting the target.
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The simulation model involved an affine followed by a non-rigid transformation. The affine 

transformation consisted of a rotational component as well as two translational and two 

scaling components, with the effect of each component drawn from a zero-mean Gaussian 

distribution with standard deviations of 2 degrees for the rotational component, 5 mm for the 

translational components and 0.2 mm for the scaling components. The non-rigid 

transformation used a deformation field created by sextic Chebyshev polynomials. The 

Chebyshev coefficients for each grid location were randomly generated from a standard 

normal distribution, on the top of which, two additional factors to control the deformation 

effect on each dimension were drawn from a zero-mean Gaussian distribution with standard 

deviations of 3 mm. Voxel-wise Gaussian random noise (with a standard deviation of 100 

Hounsfield units) was added to the simulated intensity images.

Six MAS methods, i.e., MV, SIMPLE, JLF, CLSIMPLE, CLSIMPLEJLF, and the Wolz 

approach were applied to 40 target slices using different numbers of atlases (from 15 to 100, 

with a step size of 5), and then evaluated based on the DSC values of spleen, left kidney, and 

liver. Note that (1) CLSIMPLE used MV, while CLSIMPLEJLF used JLF for label fusion 

after atlas selection; (2) We did not append GC to smooth the results of CLSIMPLEJLF and 

the Wolz approach since no surface distance error was assessed in this simulation. (3) The 

Wolz approach here used the simulated atlases for all three stages of subject-specific atlas 

construction given no other intermediate registered atlases.

3.3.2 Results—Under the tests using various numbers of atlases, CLSIMPLE, 

CLSIMPLEJLF, and the Wolz approach demonstrate consistently and substantially more 

accurate segmentations than MV, SIMPLE, and JLF. CLSIMPLEJLF and the Wolz 

approach yield similar accuracies when using larger than 70 atlases (p-value < 0.05, paired t-

test), while CLSIMPLEJLF performs better with less atlases available.

Using 40 atlases, the spread of DSC values demonstrate significant improvement by 

incorporating context learning. CLSIMPLE achieves a median DSC improvement of 0.26 

and 0.15 over MV and SIMPLE, respectively, while CLSIMPLEJLF outperforms JLF by 

0.19. CLSIMPLEJLF also provides the least range of DSC values, and thus indicates its 

robustness to the outliers. A representative fusion result represents that CLSIMPLEJLF 

accurately captures the shape, location, and orientation of the spleen, left kidney, and liver.

3.4 Volumetric Multi-Organ Multi-Atlas Segmentation

3.4.1 Experimental Setup—Ten of the 100 subjects were randomly selected as training 

datasets for context learning (these ten subjects happen to be all within the 75 liver cancer 

datasets), thus the segmentations were validated on the remaining 90 subjects. From the 

same cohort, forty subjects were randomly selected (independent from the ten selections for 

context learning) as the atlases for validating five MAS approaches, including MV, 

SIMPLE, JLF, the Wolz approach, and our proposed method (CLSIMPLEJLFGC), on the 

segmentation of twelve abdominal organs against the manual labels using DSC, mean 

surface distance (MSD), and Hausdorff distance (HD).

The five approaches shared a common multi-stage registration procedure for each of the 90 

target images (excluding the 10 context learning), where all atlases (except the target if it 
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was selected in the set of atlases) were aligned to the target in the order of rigid, affine and a 

multi-level non-rigid registration using free-form deformations with B-spline control point 

spacings of 20, 10, and 5mm (Rueckert et al., 1999). In summary, (1) the 10 context learning 

datasets were never used as targets (but they were allowed to be atlases), and (2) an atlas 

image was never used as its own target. Randomization of selecting context learning 

datasets and atlas images was performed to maximize the available data subject to these 

constraints.

3.4.2 Results—Compared to the other MAS approaches, the proposed method presents 

consistently improved segmentation in DSC on 11 of 12 organs of interest (Figure 5, Table 

1). Based on the mean DSC of each organ, a median improvement of 7.0% and 16.2% were 

achieved over JLF and Wolz, respectively. The segmentations of spleen, gallbladder, 

esophagus, and aorta using the proposed method significantly outperformed those using the 

other approaches.

The serpentine labels of portal vein and splenic vein are barely captured by registration (0.06 

in DSC by median), thus the intermediate voting-based fusion estimates had a good chance 

of missing the structure entirely (zero median in DSC for MV and SIMPLE). A MV fusion 

(instead of JLF) of the selected atlases by SIMPLE context learning identified this structure 

better (0.25 in DSC by median). While with limited atlases of catastrophic registration 

errors, our proposed method was outperformed by JLF with all available atlases.

On the other hand, in the context of reasonably substantial registration errors for other 

organs, our proposed method yields segmentation with better performances in not only 

accuracies, but also efficiencies. With much fewer atlases (while more target-alike than 

average) included for label fusion, our method (1.5 hours, 10G RAM) relieved massive 

computational time and memory required by JLF (22 hours, 30G RAM) and Wolz approach 

(30 hours, 10G RAM), and thus provides more efficient abdominal segmentations. As found 

in our previous study (Xu et al., 2014), the MV fusion of the registered atlases with the top 

five DSC achieves a median DSC of 0.9 for spleen. Therefore, we considered the global 

non-linear selection of the atlases as a necessary procedure in addition to the locally 

weighted label determination for MAS in abdomen.

With a closer look, our proposed method yielded the segmentation with at least 0.89 in DSC 

and less than 3.3 mm in MSD for the major organs of interest, i.e., spleen, kidneys, and 

liver. For other structures, the proposed method also provided successful identification over 

half of the subjects, even those that empirically considered difficult to capture, e.g., adrenal 

glands (Tables 2, 3). Qualitatively, the segmentation on a subject with median accuracy 

captures the organs from the perspective of both 3-D rendering and 2-D coronal slices 

(Figure 6). As a side note, applying GC for the five large organs (i.e., spleen, kidneys, liver, 

stomach) reduces the HD by 1.99 mm (p < 0.001, paired t-test), with similar the DSC values 

(Δ = –0.0038, p < 0.01, paired t-test).

In a retrospective analysis, CLSIMPLE demonstrates effective atlas selection for spleen 

along iterations in terms of the mean DSC of the selected atlases and their MV fusion 

estimate (Figure 7). Comparing to the original SIMPLE on an example with median 
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accuracy, CLSIMPLE keeps adjusting the atlas selection with learned context on the target 

image as opposed to yielding progressively biased intermediate fusion estimate if only the 

registered labels were used (Figure 8).

In a further test on the parameter sensitivity of the proposed method, ten subjects were 

randomly selected from the 90 subjects used for validation. The impact of using different 

values of three parameters, i.e., (1) number of atlases minimally allowed in CLSIMPLE, (2) 

patch radius in JLF, and (3) search radius in JLF, on the overall performances of the 

proposed method is shown in Figure 9. Comparing to the parameters values chosen for the 

validation of 90 subjects, potential improvement were observed with more atlases (9 atlases, 

Δ = 0.0231, p < 0.05, paired left-tail Wilcoxon signed rank test), and larger patch radius 

(3×3×3 voxels, Δ = 0.0143, p < 0.005, paired left-tail Wilcoxon signed rank test).

4. Discussion

The proposed method provides a fully automated approach to segment twelve abdominal 

organs on clinically acquired CT. The SIMPLE context learning reduces the impact of the 

vastly problematic registrations with appropriate atlas selection considering exogenous 

contexts in addition to intermediate fusion estimate, and thus enables more efficient 

abdominal segmentations. We note that proposed generative model naturally leads to an 

iterative atlas selection, which differs from the STEPS approach (Jorge Cardoso et al., 2013) 

that first locally ranks atlases, and uses the top local atlases for statistical fusion.

MAS has been widely used for segmenting brain structures; commonly accepted optimal 

number of the included atlases is approximately 10 to 15. While the registration errors for 

brains are well constrained within the cranial vault, the registrations for abdomens, on the 

other hand, have much more chances to fail in terms of both global alignment and internal 

correspondence. Thus an atlas selection procedure along with more included atlas images 

becomes essential to MAS for abdominal organs, where the effectiveness of atlas selection 

determines the segmentation robustness. It can be also expected that this atlas selection 

procedure can be beneficial for brain segmentation among subjects with substantial aging 

and pathological variations. The Wolz approach selects/weights atlases based on the 

similarity between the target and atlases in a hierarchical manner, which turns out to be 

more effective for the homogeneous datasets in the simulation than it is for the clinically 

acquired datasets. We posit that the inconsistent performances of the Wolz approach lie in 

the non-robust efficacy of similarity measure as discussed in the original SIMPLE literature 

(Langerak et al., 2010). Using the SIMPLE context learning framework, our proposed 

method yields consistently good performances in both datasets.

Some specific approaches for single organ segmentation, e.g., liver (Heimann et al., 2009) 

and pancreas (Shimizu et al., 2010), can provide higher performances, while our efforts in 

this study focus on the development of a generic approach for multiple organ segmentation. 

In addition, provided with adequate number (>20) of labeled atlases, we expect that our 

proposed method can be adapted to other thoracic (e.g., lungs), abdominal (e.g., psoas 

muscles), and pelvic (e.g., prostate) organs on CT, where the organs to segment have (1) 

consistent intensity-based and spatial appearance, (2) high contrast to the surrounding 
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tissues, and (3) reasonable amount of overlap between the registered atlases and the target. 

Much caution should be taken when these three conditions are not satisfied. For example, 

intensity normalization would be required for applications on MR images, texture-based 

features can be included when structures with similar intensities but distinguishable textures 

are close to each other, pre-localization would be necessary for tiny, thin, and/or irregular 

structures so that registrations errors can be constrained within the region of interest. Our 

future work will focus on the cases above to further improve the segmentation 

performances, and enhance the generalization of the method.

The estimated segmentations could be used in large-scale trials to provide abdominal 

surgical navigation, organ-wise biomarker derivation, or volumetric screening. The method 

also enables explorative studies on the correlation the structural organ metrics with surgical/

physiological conditions. We note that some organs (e.g., gallbladder, portal and splenic 

vein, adrenal glands) have low DSC and/or high MSD values despite the proposed method 

presents better segmentation over other tested MAS methods; their practice use can be 

limited. To our best knowledge, fully-automatic segmentation of these structures are 

essentially atlas-based (Gass et al., 2014; Shimizu et al., 2007). Although no ideal result has 

been accomplished so far, atlas-to-target registration remains the most effective approach to 

roughly capture these structures. Thus we present the segmentation performance for all 

twelve organs as a benchmark for further development. Other types of segmentation 

approaches, e.g., geodesic active contours (Caselles et al., 1997), graph cut (Boykov et al., 

2001), and statistical shape models (Heimann and Meinzer, 2009), are sensitive to the 

surrounding environment; they are often incorporated with the atlas-based framework to 

provide complementary information and refine the results (Linguraru et al., 2012; Okada et 

al., 2013; Shimizu et al., 2007). Some semi-automatic approaches (Kéchichian et al., 2013) 

demonstrate the potential for fundamentally better results with the requirement of manual 

organ identification. MAS approach performs well on automatically identifying/localizing 

these organs, and thus can be used as an initialization for those semi-automatic methods, and 

make the whole process free from manual intervention.
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Highlights

• Represent the SIMPLE atlas selection criteria with principled likelihood models.

• Augment the SIMPLE framework with exogenous information learned from 

image context.

• Integrate SIMPLE context learning with joint label fusion and graph cut.

• Efficiently segment 12 abdominal organs on clinical CT of liver cancer patients.
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Figure 1. 
Twelve organs of interest (left) and registration examples of variable qualities for one target 

image (right). Note that the “good”, “bad”, and “ugly” registration examples were selected 

regarding the organ-wise correspondence after the atlas labels were propagated to the target 

image.
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Figure 2. 
Organ-wise examples of variations after non-rigid registrations. For each panel, the target 

manual segmentation is on the left, the 30 registered labels are semi-transparently overlaid 

on the right.
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Figure 3. 
Flowchart of the proposed method. Given registered atlases with variable qualities, atlas 

selection and statistical fusion are considered as two necessary steps to obtain a reasonable 

fusion estimate of the target segmentation. The SIMPLE algorithm implicitly combines 

these two steps to fusion selected atlases; however, more information can be incorporated to 

improve the atlas segmentation, and a more advanced fusion technique can be used after the 

atlases are selected. We propose to (1) extract a probabilistic prior of the target segmentation 

by context learning to regularize the atlas selection in SIMPLE for each organ, (2) use Joint 

Label Fusion to obtain the probabi listic fusion estimate while characterizing the correlated 

errors among the selected organ-specific atlases, and render the final segmentation for all 

organs via graph cut.
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Figure 4. 
(top left) Target slices and the associated manual labels. (middle left) Simulated 

observations drawn from an individual target slice with a randomly generated transformation 

model. (top right) The mean DSC (over 40 target slices and three organs) values evaluated 

for six label fusion approaches using different numbers (from 15 to 100) of atlases. (bottom 

right) Organ-wise DSC performances for the fusion results using 40 simulated atlases. 

(bottom left) Fusion estimates using 40 simulated atlases overlaid on a representative target 

slice, and annotated with the mean DSC value over the organs.
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Figure 5. 
Boxplot comparison among five tested methods for 12 organs.
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Figure 6. 
Qualitative segmentation results on a subject with median DSC. On the left, the 3-D organ 

labels are rendered for the true segmentation, and the proposed segmentation. On the right, 

the truth (red) and the proposed segmentation (green) for each organ of interest are 

demonstrated on a representative coronal slice.
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Figure 7. 
Demonstration of the effectiveness of CLSIMPLE atlas selection for spleen segmentation on 

90 subjects along number of iterations (A) number of selected atlases remaining along 

iterations. (B) mean DSC value of the selected atlases along iterations. Note the solid green 

line in (B) indicates the mean DSC of the majority vote fusion estimate using the selected 

atlases across all subjects.
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Figure 8. 
(upper pane): The ground truth surface rendering and the probability volume rendering of 

different methods for spleen segmentation. Note that the transparencies of volume rendering 

were adjusted for visualization. CL indicates the posterior probability of spleen when 

applying the trained context learning model to the target. The green arrow points at the 

landmark used for deriving spatial context. (lower pane): Progressive results of SIMPLE and 

CLSIMPLE along iterations. Note that both methods reach the convergence within 8 

iterations in this case.
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Figure 9. 
Illustration of parameters sensitivity of the proposed method. The overall DSC values 

(including all twelve organs on ten subjects) are evaluated on different values of (A) number 

of atlases minimally allowed in CLSIMPLE; (B) patch radius in JLF; and (3) search radius 

in JLF. Note when testing on one parameter, the other two keep as the values the gray 

backgrounds; these values are also used for the segmentation of 90 subjects.
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Table 1

Quantitative evaluation for five tested methods using dice similarity coefficient (mean ± std.).

MV SIMPLE JLF Wolz Proposed

Spleen 0.63 ± 0.24 0.73 ± 0.22 0.84 ± 0.15 0.83 ± 0.10
0.90 ± 0.08

**

R. Kidney 0.47 ± 0.26 0.65 ± 0.27 0.79 ± 0.19 0.70 ± 0.24 0.81 ± 0.20

L. Kidney 0.46 ± 0.27 0.74 ± 0.25 0.81 ± 0.17 0.72 ± 0.21 0.84 ± 0.20

Gallbladder 0.01 ± 0.04 0.00 ± 0.03 0.09 ± 0.15 0.19 ± 0.21
0.27 ± 0.26

*

Esophagus 0.07 ± 0.11 0.20 ± 0.25 0.37 ± 0.21 0.18 ± 0.19
0.43 ± 0.18

*

Liver 0.79 ± 0.20 0.84 ± 0.18 0.89 ± 0.11 0.88 ± 0.09 0.91 ± 0.09

Stomach 0.34 ± 0.18 0.46 ± 0.19 0.51 ± 0.17 0.41 ± 0.19 0.55 ± 0.18

Aorta 0.34 ± 0.22 0.64 ± 0.22 0.72 ± 0.13 0.67 ± 0.18
0.77 ± 0.13

*

IVC 0.33 ± 0.18 0.50 ± 0.21 0.57 ± 0.15 0.58 ± 0.15 0.62 ± 0.19

PV & SV 0.05 ± 0.10 0.05 ± 0.15
0.52 ± 0.20

** 0.16 ± 0.16 0.45 ± 0.21

Pancreas 0.11 ± 0.13 0.27 ± 0.25 0.40 ± 0.19 0.40 ± 0.19 0.45 ± 0.21

A. Glands 0.00 ± 0.01 0.00 ± 0.03 0.34 ± 0.20 0.05 ± 0.08 0.36 ± 0.19

*
indicates that the DSC value was significantly higher than the second best DSC across the methods for the organ segmentation as determined by a 

right-tail paired t-test with p<0.05.

**
indicates a p<0.01.
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Table 2

Quantitative evaluation for five tested methods using mean surface distance (mean ± std.) in mm.

MV SIMPLE JLF Wolz Proposed

Spleen 6.44± 4.30 4.42± 3.55 4.38± 7.44 3.06± 2.21
1.75± 1.71

**

R. Kidney 7.81± 6.73 5.22± 5.85 4.81± 10.38 4.80± 5.66
2.99± 3.92

**

L. Kidney 6.55± 4.63 2.92± 2.95 5.38± 11.12 3.85± 3.01
2.00± 2.80

**

Gallbladder 12.88± 8.29
N/A

† 21.84± 29.35
11.89± 10.53

** 14.36± 20.34

Esophagus 7.59± 3.20 3.73± 1.73 7.61± 15.26 6.76± 3.70 4.16± 2.05

Liver 7.42± 9.21 5.03± 6.02 4.69± 7.01 4.86± 5.48
3.22± 4.43

*

Stomach 16.06± 6.61 10.96± 5.18
8.75± 6.92

* 16.91± 8.15 10.26± 6.36

Aorta 10.18± 7.43 4.26± 3.53 5.89± 12.83 4.68± 3.74
3.02± 2.27

**

IVC 7.92± 5.35 4.32± 1.82 6.36± 13.77 4.41± 2.38
3.75± 1.84

**

PV & SV 20.00± 5.54 6.37± 3.18 7.24± 11.61 17.46± 7.54
5.92± 5.08

**

Pancreas 16.08± 8.81 6.51± 3.96 8.24± 12.52 7.82± 4.75
5.47± 3.51

**

A. Glands 19.88± 6.43
N/A

† 7.75± 15.12 13.30± 8.71
4.06± 3.56

*

†
N/A was assigned when the segmentations were empty, and the MSD could not be computed for over 75 subjects (at least 15 subjects were not 

empty);

*
indicates that the MSD value was significantly lower than the second lowest MSD across the methods for the organ segmentation as determined 

by a left-tail paired t-test with p<0.05.

**
indicates a p<0.01.
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Table 3

Quantitative metrics of the proposed segmentation method.

Metrics Dice Similarity Coefficient Surface Distance (mm)

Organs Median [Min, Max] Sym. HD

Spleen 0.93 [0.54, 0.97] 17.27 ± 8.42

R. Kidney 0.89 [0.00, 0.96] 19.47 ± 11.37

L. Kidney 0.90 [0.00, 0.97] 16.13 ± 8.05

Gallbladder 0.25 [0.00, 0.84] 34.57 ± 22.87

Esophagus 0.43 [0.00, 0.75] 17.97 ± 5.46

Liver 0.93 [0.24, 0.97] 34.46 ± 15.03

Stomach 0.57 [0.00, 0.87] 49.48 ± 18.91

Aorta 0.80 [0.00, 0.90] 23.23 ± 10.98

IVC 0.67 [0.00, 0.87] 19.89 ± 5.60

PV & SV 0.48 [0.00, 0.83] 38.37 ± 17.18

Pancreas 0.49 [0.00, 0.77] 31.34 ± 8.92

A. Glands 0.39 [0.00, 0.72] 20.68 ± 8.68
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