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Abstract

Inflammatory and infectious lung diseases commonly involve bronchial airway structures and 

morphology, and these abnormalities are often analyzed non-invasively through high resolution 

computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great 

importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a 

complete 3-D airway tree structure can be quite challenging. The airway tree structure has 

spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or 

tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as 

compared with other tasks. For computerized methods, a fundamental challenge in airway tree 

segmentation is the highly variable intensity levels in the lumen area, which often causes a 

segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft 

boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway 

walls and nearby structures such as vessels. In this paper, we propose a computational framework 

to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the 

lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 

3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We 

evaluate the performance of our proposed methods in comparison with mostly used algorithms 

using human chest CT images. Our results demonstrate that, on publicly available data sets and 

using standard evaluation criteria, the proposed airway segmentation method is accurate and 

efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms 

identified the inner and outer airway surfaces more accurately than the most widely applied 

methods, namely full width at half maximum and phase congruency.
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1. Introduction

Airways are the air-conducting structures (bronchi and bronchioles) bringing air into and out 

of the lungs from sites of gas exchange (alveoli). These airways comprise a complex and 

highly variable set of bifurcating structures having a treelike configuration in the lungs. 

Airways are pathologically involved in various lung diseases. As examples, bronchiectasis is 

the dilation of airways (enlarged lumen), often resulting from chronic infection (Bagci et al. 

(2012a)), obstruction, and inflammation. Airway wall thickening can be associated with 

airway narrowing, such as asthma and bronchitis. Tumors on airway walls can also form 

obstructions (Hansell et al. (2008)).

CT imaging provides in-vivo anatomical information of lung structures in a non-invasive 

manner, which enables a quantitative investigation of airway pathologies. In conventional 

clinical settings, assessment of the airways is performed on CT slices at limited locations. 

Due to the inherent complexity of airway structures and the resolution limitations of CT, 

manually tracing and analyzing airways is an extremely challenging task, taking more than 

seven hours of intensive work per image (Sonka et al. (1996)). Moreover, manual analysis 

suffers from large variability and low reproducibility especially for higher order branches. A 

precise method for segmentation of airways and an accurate estimation of airway walls may 

facilitate better quantification of airway pathologies, further enhancing the understanding of 

the mechanisms of disease progression.

Prior work

Many airway lumen segmentation approaches have been proposed and subsequently 

investigated in the literature, including rule-based (Sonka et al. (1996)), morphology-based 

(Aykac et al. (2003)), classification-based (Lo et al. (2010)), etc. Among these methods, 

region growing (RG) is a widely used technique for identification of the airways. However, 

a simple intensity based RG strategy usually leaks into lung parenchyma often through 

blurred/broken boundaries at small airways. RG can be considered reliable when analyzing 

large airway branches, including trachea and principal bronchi, however, the incorporation 

of higher level information is needed to identify smaller airways without leakage. Many 
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studies have taken this approach recently. Alternatively, gray-scale morphological 

reconstruction (Aykac et al. (2003)) has been shown to be effective for accurately 

identifying candidate airways on 2-D CT slices, but apart from being limited to 2-D cross 

sections, it does not yield high sensitivity when the airway is not perpendicular to the slice 

plane. Another approach for a better airway identification strategy is based on the 

enhancement of the tubular structures (i.e., vesselness filter) (Frangi et al. (1998)). Although 

this process can further help identify small airway locations, it also yields unavoidable false 

positives over the lung area. Most of the previous methods made use of single enhancement 

only due to the challenge of combining the strength of different enhancement strategies. A 

detailed review on those methods with single enhancement as well as other computerized 

methods for identification and analysis of airways can be found in (Pu et al. (2012)). 

Although comparison of the available methods in image segmentation literature is a 

challenging and subjective issue, recent attempts for direct comparison of several methods 

using the same image sets and reference standards make the direct comparison possible. 

Regarding airway extraction from CT scans, in particular, EXACT'09 (Lo et al. (2012)) 

airway extraction challenge provides an objective platform for comparing airway extraction 

algorithms using a common dataset and performance evaluation method. In our study, we 

also use EXACT'09 challenge data for comparing our method with others.

Accurate measurement of airway wall dimensions has remained a challenge in particular 

because the outer wall characterization is often compromised by surrounding parenchyma 

and vessels. There have been many attempts in the literature to accurately measure airway 

structures and walls, we only explain the two most widely applied techniques herein, full 

width at half maximum (FWHM) (Amirav et al. (1993)) and phase congruency (Estepar et 

al. (2006)). FWHM defines the wall boundary at the location where the intensity is half the 

peak value. However, as shown in (Reinhardt et al. (1997)), the measurement can be biased 

due to partial volume effect and CT reconstruction algorithm. Furthermore, with the 

presence of adjacent vessels, the FWHM criterion may leak to surrounding structures. 

Algorithms have been proposed to improve the performance of FWHM, such as modeling 

the point spread function (Reinhardt et al. (1997)) and applying elliptical correction (Saba et 

al. (2003)). Phase congruency (Estepar et al. (2006)), on the other hand, was conceived as a 

model-free alternative with edge locations identified by maximal local phase coherency. 

This method is shown to be robust; however, it is computationally intensive and accuracy 

for detection of small airways is limited by resolution. Recently, an increasing number of 

algorithms have begun to focus on 3-D methods that are potentially more efficient and 

perform better in complex branching areas. For instance, graph-based methods (Liu et al. 

(2013); Petersen et al. (2011)) make use of new voxel re-sampling techniques to extract non-

intersecting columns that are suitable for airway wall geometry. A 3-D active surface 

evolution approach (Ortner et al. (2011); Gu et al. (2013)) is utilized to initialize a 3-D 

deformable model inside the airway, which further evolves under predefined external and 

internal forces automatically to reach the wall location. To assess the performance of the 

wall segmentation methods, phantoms with known diameters were often used. However, 

such phantoms usually fail to simulate the appearance of airways in a realistic manner with 

complex surroundings of blood vessels and lung parenchyma. Alternatively, as a common 

practice for segmentation evaluation, the performance of the wall segmentation methods can 
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be assessed with regard to the manual references and compared with the basic FWHM 

method. In this paper, not only we used publicly available EXACT'09 challenge data but we 

also used reference standards which were manually obtained from expert radiologists for 

evaluating our methods.

Fig. 1 illustrates the flowchart of our proposed scheme. First, we segment the lumen area 

(Fig. 1B) of the airway from CT scans (Fig. 1A) using a novel multiscale hybrid approach 

based on fuzzy connectedness (FC) (Udupa and Samarasekera (1996)) image segmentation. 

The proposed method designs the FC machinery with a predefined fuzzy affinity relationship. 

This relationship is very versatile and convenient for combining multiple strategies to 

restrict the segmentation procedure to only airway regions and achieves high sensitivity with 

lower leakage. Once airway lumen is segmented, we extract the tree skeleton from the 

binary image using a thinning algorithm (Ibanez et al. (2005)) and refine the resulting 

skeleton using a graph-based dynamic programming method (Fig. 1C). Next, we apply two 

methods for airway wall estimation: a 3-D method based on constrained relative fuzzy 

connectedness (RFC) (Saha and Udupa (2001)) that is more efficient and better handles 

branching geometry, and a 2-D method based on constrained random walk (RW) that suits 

better with current clinical practice. For RFC, a 3-D seeding scheme that defines three 

surfaces: (i) inside lumen, (ii) within wall, and (iii) outside wall, is first applied for 

constraining 3-D RFC computation (Fig. 1D1). Then RFC is performed using the three seed 

sets to determine the airway wall region (Fig. 1E1). For RW, 2-D orthogonal samples are 

first generated along every branch of the airway skeleton (Fig. 1D2). On the 2-D orthogonal 

images (Fig. 1E2), FWHM is first performed to roughly identify the range of the lumen, the 

airway wall, and the parenchyma (Fig. 1F2); an ellipse fitting process is then added to 

improve estimation (Fig. 1G2). Seeds (Fig. 1H2) for the lumen, airway wall, and 

parenchyma are determined automatically to initiate random walk segmentation (Fig. 1I2).

Preliminary versions of the proposed methods were presented at MICCAI 2013 (Xu et al. 

(2013a)) and ISBI 2013 (Xu et al. (2013b)). To summarize our contributions, we have 

developed a framework for accurate, robust, and fast airway quantification which includes 

wall thickness estimation as well as airway tree extraction (lumen). For airway lumen 

segmentation, we combined the two enhancement methods, i.e., gray-scale morphological 

reconstruction and multiscale vesselness, for their effective intensity and object scale 

modeling under the FC segmentation framework. We showed that FC is a remarkably 

suitable platform for combining strengths of such techniques, as also its effectiveness is 

verified through the experimental results. For airway wall segmentation, we provided a 

spatially constrained RW solution for pseudo 3-D analysis, and a RFC method in 3-D 

analysis, that successfully avoided leakages into neighboring structures. In the next section, 

we present our proposed framework in detail.

2. Methods

2.1. Airway Lumen Segmentation

We design a novel fuzzy affinity relationship to tailor the FC segmentation (Udupa and 

Samarasekera (1996)) to airway regions by using multiple strategies in order to achieve high 

sensitivity and low leakage. Fig. 2 illustrates the flowchart representation of the proposed 
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method of airway lumen segmentation. First, a seed is identified in the trachea automatically 

by 2-D Hough transform, then, two tubular structure enahncement techniques are performed 

on the CT images simultaneously: a gray-scale morphological reconstruction (Aykac et al. 

(2003)) operation, and a vesselness (Frangi et al. (1998)) computation. The two enhanced 

images are further passed together with the seed to the FC computation of the airway lumen. 

Our motivation for this combination within the FC framework is to help identify the airway 

structures and provide continuity of the lumen boundary.

2.1.1. Gray-scale Morphological Reconstruction—In pulmonary CT images, the 

airway can be regarded as the local minima of intensity in a 2-D slice I that can be enhanced 

by applying gray-scale morphological reconstruction. Airways of different diameters are 

handled using a range of morphological structuring elements (SE) by successive dilation on 

the basis of SE as

(1)

where B0 is the smallest four neighbourhood binary SE, Bn is the n times dilation result of 

B0, and ⊕ is the dilation operator.

A “marker image” (Aykac et al. (2003)) is then constructed from the original image slice I 

and SE Bn by a gray-scale closing operation • as

(2)

where ⊖ is the erosion operator. Further, a recursive process is performed on  as 

 until no changes occur within an iteration which results in the final 

gray-scale reconstructed image  for SE Bn.

In , the local minima smaller than Bn are filled in with a value proportional to the 

difference between max and min values within the neighborhood Bn. Therefore, the 

difference image  identifies potential airway locations and the process is 

completed by combining maximum responses from different SEs.

2.1.2. Multi-Scale Vesselness Enhancement—Vessel enhancement algorithms are 

often employed to improve vascular structure identification and delineation. As shown 

(Frangi et al. (1998)), analyzing the second-order information (Hessian) of a Gaussian 

convolved image provides local information of the structure. Specifically, eigenvalue 

decomposition is performed over the Hessian matrix and the resulting ordered eigenvalues, 

i.e.,(|λ1|≤|λ2|≤|λ3|), are examined. For voxels within vessels in particular, it is expected that 

λ1 is small, while the other two are large and of equal sign that indicates whether the vessel 

is brighter or darker than background. Explicitly, the vesselness can be formulated as
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(3)

for a bright vessel on dark background, and RA = |λ2|/|λ3|, RB = |λ1|/|λ2λ3| and 

. The vesselness measure above is calculated at different scales (σ), and the 

maximum response is achieved at a scale that matches the size of the vessel. Therefore, by 

using a multi-scale approach which covers a range of vessel widths and finding the 

maximum value V = max(Vσ), σmin ≤ σ ≤ σmax, we get the vesselness measure as well as the 

approximate local vascular structure scale for each voxel in the image.

2.1.3. Affinity Relations and Hybrid Modeling of FC—Our motivation to incorporate 

vesselness filtering (Frangi et al. (1998)) and gray-scale morphological reconstruction 

(Aykac et al. (2003)) within the FC framework was to help identify the airway structures 

and provide information for keeping the continuity of the airway boundary. See Fig. 3 for an 

example image of airway enhancement. Note that a simple intensity based affinity relation 

may cause leakage due to blurred and soft boundaries (Fig. 3A); gray-scale morphological 

reconstruction enhances the airway lumen, but due to its 2-D nature, it is inhomogeneous 

along 3-D structure (Fig. 3B), and vesselness computation results in false positives over the 

image (Fig. 3C). Herein, we combine complementary strengths of these measures within the 

FC framework as FC has the ability to combine different features within the same 

formulation. Next, we explain this formulation briefly.

In the FC framework, a fuzzy topological construct characterizes how voxels of an image 

hang together to form an object through a predefined function called affinity (Saha and 

Udupa (2001)). Assuming V ⊂ ℤ3 denotes a 3-D cubic grid representing the image space, 

where each element of V is called a voxel, a topology on an image is given in terms of an 

adjacency relation (μα) such that the adjacency relation is a binary relation on the image and 

it determines which pairs of voxels are close enough to be considered connected: μα : V × V 

→ {0,1}. Theoretically, if p and q are α-adjacent to each other, then μα(p, q) = 1, ‘0’ 

otherwise. In practice, we set α = 26 for adjacency in 3-D analysis. While affinity is 

intended to be a local relation, a global fuzzy relation called fuzzy connectedness is induced 

on the image domain by the affinity functions. This is done by considering all possible paths 

between any two voxels p and q in the image domain, and assigning the strength of fuzzy 

connectedness to each path. The level of the fuzzy connectedness between any two voxels p 

and q is considered to be the maximum of the strengths of all paths between p and q.

An affinity relation κ is the most fundamental measure of local hanging togetherness of 

nearby voxels. For a path π, which is a sequence of voxels 〈p1, p2, …, pl〉 with every two 

successive voxels being adjacent, given fuzzy affinity function μκ(pi, pi+1), the strength of the 

path is defined as the minimum affinity along the path:

(4)
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Then, the strength of connectedness μ (p, q) between any two voxels p and q is the strength 

of the strongest path between them as

(5)

where (p, q) denotes the set of all paths between p and q. Therefore, a fuzzy connected 

object  in an image can be defined for a predetermined set of seeds S. Since the level of FC 

between any two voxels p and q is considered to be the maximum of the strengths of all 

paths between them, for multiple seeds, the fuzzy object membership function for  or the 

strength of connectedness of  is defined as follows:

(6)

An efficient computational solution is presented (Udupa and Samarasekera (1996)) for 

computing μ (p), given κ and S and an image.

Effectiveness of the FC algorithm depends on the choice of the affinity function. The most 

prominent affinities used so far are a combination of: (i) adjacency-based μα, (ii) 

homogeneity-based μψ, and (iii) object feature-based μϕ such that fuzzy affinity is defined as

(7)

where μψ(p, q) captures the homogeneity between p and q, with a higher value for pairs with 

similar intensity. For object feature-based affinity, μϕ(p, q) defines the hanging-togetherness 

of p and q in the target object based on the nearness of their feature values to the expected 

feature distribution of the target object. The affinity function can be formulated differently 

depending on the specific objective. Besides the common adjacency term, one can choose to 

use homogeneity, or object feature, or both. When using both, the square root is taken to 

ensure the same value range with other settings. The general form of μψ(p, q) and μϕ(p, q) 

are

(8)

(9)

where σψ and σϕ are two different standard deviation parameters used for homogeneity and 

object feature distribution, m is the mean object feature value, and f denotes image intensity 

function: f : V → ℒ ⊂ ℤ. For intensity, m can be obtained directly from the standard HU 

value for different tissue/subject types, such as -1000 for air. More precisely and for the two 
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enhancements, m can be estimated using user-defined ROI for target object. Regarding the 

influence of seed locations and amount, FC is known for its robustness under different seed 

parameters compared to other seed based segmentation algorithms.

For the algorithm discussed here, three features are available to describe a given voxel x: 

intensity I(x), gray-scale morphological reconstructed result D(x), and vesselness 

measurement V(x) such that F(x) = (I(x), D(x), V(x)). Moreover, the local scale information, 

ls(x), provided by the multi-scale vesselness computation, gives additional control over the 

design of the affinity function since sole intensity information is not highly reliable for small 

airway identification; the other two features yield support. Therefore, affinities , 

and  corresponding to I(x), D(x) and V(x) can be combined through the local scale 

measure as:

(10)

where lsmax is the threshold for determining large airways, for which intensity is reliable, 

and k is a weighing parameter, k ∈ [0, 1]. For our experiment, we have used the widely 

accepted 2 mm as the threshold for small airways. Since intensity plays a less important role 

for finer structures, k may be formulated as k = ls/lsmax. In other words,  is a piecewise 

function which controls selection of both large and small airways.

Briefly, in order to obtain a binary segmentation of the lumen with the presented affinities, 

we employ the following steps. First, one or more seeds at trachea are identified with Hough 

transform. Second, pairwise FC of all other voxels with regard to the seeds are computed 

following Eqs. 4, 5, and 6, where affinity is formulated as in Eq. 7 with combined 

information as in Eq. 10. Each component in Eq. 10 is calculated from Eqs. 8 and 9. Third, 

the resulting FC map describes the strength of the connection between every voxel to the 

seeds, so a binary segmentation can be extracted by thresholding the FC map.

2.2. Centerline Extraction and Orthogonal Resampling

Centerline extraction of the lumen is a necessary step for airway wall identification and 

description of 3-D airway geometry. The tree skeleton is extracted from the segmented 

lumen using a binary thinning algorithm (Ibanez et al. (2005)) (Fig. 4A). To generate a 

systematic description of the airway tree, we divide the 3-D skeleton into individual branch 

segments at every branching point. Since the tree produced by the thinning algorithm often 

contains small false branches corresponding to local morphological variation, rather than 

real branching (Fig. 4B), a graph-based dynamic programming method is employed to 

optimally prune the resulting tree by removing the small branches (Fig. 4C), which is similar 

to the optimization used in literature (Xu et al. (2012)). Assuming each branch segment is 

represented as a node in the graph, its maximum length L to the leaf nodes is found by 

dynamic programming. If L and/or the ratio with its brother node, L/Lbro, is below a preset 

threshold, then the node and its children are removed from the tree. Finally, smoothing is 

Xu et al. Page 8

Med Image Anal. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



performed on each segment to avoid sharp changes in local tangent orientation along the 

skeleton. In practice, we have used L = 5 and L/Lbro = 0.1 for airway tree applications and 

observed satisfying results. The original CT image is then resampled into 2-D images over a 

small domain in the orthogonal planes (Fig. 4D and F). Note that resampling is done on the 

plane perpendicular to the local tangent vectors (Fig. 4E and F).

2.3. Spatially Constrained RFC for 3-D Airway Wall Estimation

Absolute FC segmentation is based on computing the FC strength between a set of seed 

points and all other voxels within the image and set a proper threshold to the resulting FC 

image. On the other hand, RFC is based on several seed sets Si, i = 1, 2, …, k. FC strength is 

first computed at every voxel for each of the seed sets individually, and then the voxel is 

labeled as belonging the seed set with maximum FC value. In this way, the thresholding step 

is avoided. Specifically for the task of airway wall estimation, due to similar intensities of 

airway wall and nearby structures such as blood vessels, sparse seeding will result in 

fragmented segmentation and leakages. Therefore, a spatially constrained RFC method is 

developed for airway wall estimation. Similar to the 3-D active surface evolution approach 

(Ortner et al. (2011); Gu et al. (2013)), three surfaces are first identified using the already 

segmented lumen region: inside the lumen, within the airway walls, and outside the outer 

wall. The surface inside the lumen is defined as the surface one voxel inside the segmented 

lumen region which is estimated using morphological erosion. With the extracted centerline, 

FWHM is first used to roughly identify the extent of surrounding airway wall at every 

skeleton point. Such estimation is further filtered and smoothed to get rid of noise for 

extracting the surface within the airway walls. The outer surface is subsequently defined by 

morphological dilation of the airway wall surfaces. Next, FC strength is computed using the 

three seed sets and the airway walls are identified based on RFC theorem. See Fig. 5 for an 

example of the surfaces obtained from seeding and the final segmentation results.

2.4. Spatially Constrained Markov Random Walk for 2-D Airway Wall Estimation

Routine clinical assessment of airway walls is based on 2-D examination of airways at 

limited locations. Furthermore, there have been controversies on the feasibility of using 

pseudo 3-D (slice-by-slice, where each slice is 2-D) and 3-D methods in the literature 

regarding airway wall analysis. To address these issues, alternative to the fully 3-D RFC 

based method, we develop a novel fully automatic pseudo 3-D (i.e., slice-by-slice) method 

for quantifying airway walls based on random walk (RW) image segmentation. The RW 

algorithm has been a widely used graph-based image segmentation method (Grady (2006)). 

In RW, the image is considered a graph (G), which is represented as a pair, G = (V, E), with 

nodes v ∈ V and edges e ∈ E ⊆ V × V. Conventionally, a node vi is said to be a neighbor of 

another node, vj, if they are connected by an edge eij in G, and each edge is weighted by wij. 

Basically, these weights denote the likelihood that a random walk will cross edges (Bagci et 

al. (2012b, 2013d)). Although RW usually avoids the noisy or fragmented segmentation, it 

has been recently shown (Cheng and Zhang (2011)) that this property does not always hold. 

Similarly, in airway wall surface segmentation, fragmented segmentation can likely occur 

due to similar intensity profiles of the airway walls and the nearby structures; therefore, one 

needs to be sure to place an adequate number of seeds in suitable places. To avoid the 

“connectedness” problem and provide an accurate estimation of inner and outer wall 
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surfaces, in this study we create a computationally efficient random walk estimation method 

by automatically identifying foreground and background seeds that spatially constrain 

random walkers (Xu et al. (2013a)). The algorithm uses FWHM and ellipse fitting methods 

to roughly identify the foreground and background seed locations. FWHM is first applied to 

locate the double edges for airway wall, then ellipse fitting is used to smooth the result and 

compensate for missing information caused by adjacent vessel. After these two steps, the 

approximate airway inner and outer wall surfaces  and , as well as a estimation of 

overall airway wall thickness dwall, can be roughly determined. For RW seeding, foreground 

seeds corresponding to airway wall are distributed halfway between  and ; while 

background seeds corresponding to lumen (inside airway) and paranchyma/vessel (outside 

airway wall) are located on surfaces  inside  and  outside  respectively. Scale 

parameters n1 and n2 are used to define the location of two surfaces, such that the distance 

between  and  is d1 = n1 · dwall, and  and  is d2 = n2 · dwall.

Furthermore, foreground and background seeds are connected within each group so that they 

form 2-D convex bodies in the vicinity of outer and inner walls; therefore, hits-and-runs of 

random walks are restricted to the no “connectedness” issue when it converges to outer and 

inner surface locations. Other than the automatically localized background and foreground 

seeds and their spatial alignment within the two ellipses (Fig. 6B), the rest of the 

combinatorial Drichlet problem was solved, as indicated (Grady (2006)). Note that although 

airway tree as a 3-D object is obviously not convex, the airway can be approximated as 

circles at local cross-sections. Hence, we used connected inner and outer seeds. Also, since 

each segmentation is performed within a small neighborhood around a centerline point, and 

every time the seed point are allocated independently, the seeds will not “conflicting” with 

each other. Thus the bifurcation is not a problem for the proposed method.

In conventional RW segmentation, the aim is to classify a large number of unlabeled voxels 

with a limited number of labeled voxels; however, herein, we classify a relatively small 

number of unlabeled voxels, with a large number of labeled voxels distributed over two 

convex surfaces (Fig. 6A, B, and C). Our proposed framework allows random walkers to 

exploit the airway wall structures within two convex surfaces (  and ) in a robust and 

computationally efficient way (See Fig. 6D). Distribution of seed sets and its connection to 

the soft constraint will be given in Section 3.

3. Experiments and Results

3.1. Data

In the context of segmentation, the “gold standard” is usually not available (Bagci et al. 

(2013b)). Instead, manual delineation is often used as the reference standard. However, for 

both airway lumen and wall segmentation, especially in the presence of pulmonary diseases, 

it is extremely labor intensive since not only does it take many hours to segment a single 

lung CT scan, but it is also necessary to have a large and diverse dataset that covers images 

under various conditions. Here, we used the data set from the “EXACT'09 airway lumen 

segmentation challenge” (Lo et al. (2012)), including CT studies from 20 subjects. Lumen 

segmentation was performed with the proposed method, and the resulting binary 
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segmentations were submitted to the organizers who sent the quantitative evaluations back. 

Unfortunately, for airway wall segmentation, there is no such open evaluation platform. 

Therefore, manual segmentations were used as references in validation. For this purpose, we 

selected 300 images that contained airways of different sizes under different imaging and 

anatomical conditions from the orthogonal resampled 2-D images generated from the 

EXACT'09 data set. All 2-D resampled images were first roughly grouped to large, medium, 

and small according to their size. Then, within each group, 100 samples were randomly 

selected for the test data set. Segmentations of these images were produced by two 

independent experts (i.e., Observer 1 and 2) as surrogates of the ground truth. The 2-D 

resampled images were rescaled to 0-255 range using window level at -450 HU with width 

1500 HU as suggested in (Okazawa et al. (1996)) to “window” the airway anatomy for 

clinical purpose. In the following sections, all experimental results reported are based on the 

entire EXACT dataset for lumen segmentation, and all 300 2-D samples for wall 

segmentation.

3.2. Evaluation of Lumen Segmentation

To evaluate the performance of lumen segmentation, we submitted the binary results by the 

proposed method to the EXACT'09 organizers, and received the detailed quantitative 

measurements. In the following, we provided two qualitative examples, together with the 

overall quantitative results. More details, including 3-D rendering and evaluation 

measurements of each individual case, were listed in the Appendix Section.

Fig. 7 shows qualitative evaluation of our proposed method compared to two of the state-of-

the-art methods. Here, we made our best effort to choose the same rendering scheme and 3-

D viewing angles as the results provided by EXACT'09 for qualitative observation, although 

a minor misalignment may still be unavoidable. For comparison purposes, we selected the 

best method in the sense of highest tree length detection rate under the restriction of low 

false positive rate (FPR) (< 1%) which was suggested by the DIKU (Lo et al. (2009)) group 

who hosted the challenge. Also, the result given by the UAVisionLab (Pinho et al. (2009)) 

group was used as another reference since the quantitative difference between the 

UAVisionLab and our method is comparable to the difference between our method and the 

DIKU method. In the sense of algorithm complexity, UAVisionLab designed their method 

based on basic RG with a leakage control mechanism, while DIKU made use of vessel-

airway relationship to formulate a more advanced voxel classification approach. The 

UAVisionLab method (A) detected tree length of 26.1% at an FPR of 1.14%; the DIKU 

group (B) detected tree length of 68.7% at an FPR less than 0.01%; and our result (C) 

achieved detected tree length of 48.6% and FPR of 0.19%. From the statistics, we noticed 

that the difference in detected tree length was about 20% with the difference between FPRs 

about 1 order of magnitude for both (a)-(c) and (b)-(c). However, as it visually appears, the 

difference between (b)-(c) is more subtle than that of (a)-(c). Given the fact that there is 

currently no consensus on the clinical contribution of airway mophormetry over disease 

investigation, both visual and quantitative evaluations reveal partial information regarding 

the segmentation performance. The ultimate evaluation should include considerations of 

airway pathology and its clinical significance.
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For a more in-depth evaluation, Table 1 summarizes the statistics of the results, as compared 

with the two reference methods with overall performance and specific case of CASE22 as 

shown in Fig. 7. Statistics of each indivudual cases are listed in the Appendix Section, and 

detailed descriptions of individual evaluation parameters are available in EXACT'09 (Lo et 

al. (2012)). It also worth mentioning that the submitted results were generated using the 

same parameters and no parameter-tuning was applied. To further illustrate the capability of 

the proposed method, we have optimized the parameter for CASE36, which yields the 

lowest detection rate of 27.9% initially with respect to the other cases. In Fig. 8, (A) shows 

the submitted result without parameter tuning, (B) presents the result with parameter tuning, 

and (C) shows a reference result from ARTEMIS-TMSP (Fetita et al. (2009)), which has the 

highest detected tree length. As can be observed, after parameter tuning, the proposed 

method captures similar amount of, if not more, details as compared with the reference 

method, which achieves a detection rate of 62.6%.

Our proposed method takes approximately 20 minutes for each test image. In the presented 

approach, the time for computationally involved gray-scale morphological reconstruction is 

decreased by using a multi-scale approach. In addition, our method does not require any 

training process, which can be time consuming considering the need for precise manual 

segmentations. The computational efficiency can be further improved by code optimization 

and multithreaded/parallel computation. Visually, we found subtle differences while 

comparing the top ranked methods, including ours. Indeed, our method exhibited a much 

higher efficiency (20 minutes) than the top ranked method (90 minutes) in terms of the 

computational burden.

3.3. Evaluation of Airway Wall Surface Estimation

To evaluate the performance of airway wall segmentation against manual references from 

300 2-D samples, Dice similarity coefficients (DSCs) and Hausdorff distances (HDs) were 

calculated and accompanied by inter-observer agreement rate as a convention. Fig. 9 

provides 4 examples from the test data set, with corresponding two manually drawn 

boundaries (red and green) and estimations by the proposed 2-D RW method with n1 = n2 = 

1 (cyan) and 3-D RFC method (yellow). With respect to the two reference drawings by the 

experts, DSCs were found to be 73.1% and 81.3% with HDs of 1.77 mm and 1.62 mm for 

the RW method; 74.7% and 81.8% with HDs of 1.86 mm and 1.79 mm for the RFC method; 

and inter-observer agreement was found to be 77.6% and 1.74 mm. Based on the 

segmentation result, we extracted the distribution of diameter, contrast, signal-to-noise-ratio 

(SNR), and strong boundary ratio for the 300 images as listed in Table 2. For diameter, 

small airways are defined as airways with diameter < 2mm, which is commonly accepted, 

medium airways are separated to two groups: medium low as 2 – 2.5mm defined in (Burgel 

(2011)) and medium high 2.5 – 5mm defined in (Hashimoto et al. (2005)), and large airways 

are airways with diameter > 5mm. Contrast is defined as the ratio between mean intensity 

within lumen area and that within wall. SNR is computed as the ratio between the mean and 

the standard deviation of the wall intensity. Furthermore, to check the percentage of the 

weakly defined wall boundary caused by adjacent vessel, we first dilate the segmented 

airway wall by three pixels, and within the dilated area, the percentage of the dark pixels is 

computed given that lung parenchyma is dark and vessel is bright and of similar intensity as 
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airway wall. As shown, the test set covers different cases that can be encountered in the 

initial data.

In addition to region-based evaluation of airway wall surface estimations, we also compared 

the shape-based accuracy of the estimations using isoperimetric inequality (IPI) measures. 

Airways are inherently a circular structure, thus local segmentation appearance is expected 

to favor circular shape rather than spiculated, which provides information for segmentation 

quality or localized abnormality. Hence, we used IPI as a complementary measure to DSC. 

IPI is defined as |4πAi – (ℒi)2|, i = 1, 2, for inner (i = 1) and outer (i = 2) surface estimation, 

respectively, where Ai denotes the area enclosed by the boundary Si, and ℒi represents the 

boundary length of the corresponding Ai (for a perfect circle, IPI=0; larger values indicate 

deviation from circularity). As a complementary measure to DSC, IPI is a geometric 

inequality that measures how a closed boundary deviates from a perfect circle, given its 

enclosed area and the circumference. IPI may also have a role in the CAD systems for 

quantification of airway thickening or enlargement, once the IPI range for the normal 

anatomy is defined. In Fig. 10, estimated inner and outer boundaries of the airway walls 

were compared to surrogate truths, provided by Observer 1 and Observer 2, through Bland-

Altman plots in columns 1 and 2, respectively. As can be seen, high correlations were 

obtained when we compared our proposed method to observer evaluations. The third column 

in the figure indicates the inter-observer agreement for inner and outer wall boundary 

localization based on IPI measurement (the rate was found to be 75.27%). In the last row, 

estimated wall areas for all selected slices were compared to surrogate truths, and resulting 

values were plotted in ascending order. Note that the airway wall areas estimated by the 

proposed method are highly correlated with observers' evaluations (correlations values of 

adjusted R2 = 0.924 and R2 = 0.931 were obtained respectively).

3.4. Comparison to Widely Applied Methods

We compared our proposed method with the FWHM and phase congruency methods. The 

quantitative results are shown in Table 3. As initialization, FWHM method yields DSCs of 

57.5% and 64.5% with HDs of 3.56 mm and 3.35 mm, with respect to the surrogate truths; 

and ellipse fitting promotes the result to 58.6% and 65.2% with HDs of 2.44 mm and 2.25 

mm. Phase congruency has better performance at DSCs of 63.3% and 70.4% with HDs of 

2.26 mm and 2.03 mm. Inter-observer agreement was 77.6% and 1.74 mm. Fig. 11 shows 

the wall estimation for an airway (A) for different methods. As shown, FWHM method (E 

and F) creates false edges, phase congruency (G and H) leaks to neighboring structures due 

to intensity variation within the walls, while our proposed method of RFC (B) and RW (C 

and D) successfully avoided leakage and false positives.

3.5. Spatially Constrained RW Method's Sensitivity Analysis with respect to the Seeds

Because FWHM and ellipse fitting methods were used to roughly identify the foreground 

and background seed locations, it was in our interest to find the sensitivity of the spatially 

constrained RW method, with respect to changes in the scale parameters n1 and n2, which 

we used to define the new location of the convex surfaces by multiplying the estimated wall 

thickness with scale parameters n1 and n2. The robustness of the proposed method, with 

regard to seed selection, can be evaluated using different values for n1 and n2.
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All experimental results were performed on the entire dataset. As stated in the previous 

section, we have used n1 = n2 = 1 for our test. Such parameter is a default setting and 

intuitive (one thickness inside and one thickness outside), hence the selection is not tuned 

for specific data. Here, during our seed sensitivity test, we have found the “best” results for 

our dataset when n2 = 0.3. This can be can be considered as parameter tuning for the 

candidate dataset. One explaination is that anatomical structures outside the airway walls are 

complex, so closer to the wall boundary is preferred for the outer seeds. On the other hand, 

the lumen has a high contrast against neighboring structures, so the inner seeds can be 

placed further from wall boundary. According to our findings, in the following, we present 

the results at n2 ≥ 0.3 for test under varying inner seeds (on ), and n1 ≥ 1.5 for test under 

varying outer seeds (on ).

DSCs were computed for each case, and the result is shown in Fig. 12. As expected, 

changing the location of inner seeds does not significantly influence the segmentation result 

(Fig. 12A); while placing the outer background seeds away from the airway wall can 

decrease the DSC of segmentation (Fig. 12B) since adjacent structures can be falsely 

included. However, such change is not as dramatic as leakage into neighboring structures. 

The segmentation result is still constrained within a reasonable margin, when n2 is large, as 

shown in (Fig. 12C-F).

3.6. Soft Constraints in Random Walks

In this section, we analyze how random walks can be constrained to converge to correct 

boundaries if spatial constraints are not strict. Analysis of softening spatial constraints and 

its relation to random walk probabilities in a steady state can show the advantages of using 

strict spatial constraints in airway wall surface estimations. Consider a set of nodes ℱ ⊂ V 

labeled as foreground, a set of nodes S1 ⊂ V labeled as background (on inner surface), and a 

set of nodes S2 ⊂ V labeled as background (on outer surface) such that ℱ ∩ S1 = ∅, ℱ ∩ S2 = 

∅. For any v ∈ ℱ, P(v) = 1, and for any v ∈ S1 or v ∈ S2, P(v) = 0. For any of the remaining 

nodes v ∈ V\(ℱ∪S1∪S2), P(v) = Σeij∈EwijP(vj). Conventionally, nodes with probability 

values greater than 0.5 (hard constraint) are classified as foreground. Now, assuming a node 

is imposed a soft constraint instead of a hard constraint, the difference between a probability 

of a node and 0.5 is within a small prescribed range [−ε, ε]. Then, |P(v) − 0.5| ≤ ε for v ∈ V \ 

(ℱ ∪ S1 ∪ S2). By imposing soft constraints, the RW can be considered as a minimization 

problem,

(11)

such that |P(v)−0.5| ≤ ε for v ∈ V\(ℱ∪S1∪S2), and P(v) = 0 for v ∈ S1 or v ∈ S2, and λ 

controls the weight of the nodes with soft constraints. Detailed solution of this quadratic 

problem is outside the scope of this paper. However, by varying the ε value in the same 

segmentation settings, one can analyze the effect of the spatial constraints on the RW. Fig. 

13 shows DSC values of the proposed method with respect to the different threshold values 

for the RW (i.e., soft constraints). As can be seen from Fig. 13A, large changes in ε do not 

affect the performance of the proposed segmentation algorithm if spatial constraints are 
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provided (n1 = 1.5, n2 = 0.3). If the outer surface S2 is relaxed (n1 = 1.5, n2 = 1.5), then ε ≤ 

0.1 (i.e., P(v) down to 0.4 threshold value) yields reasonably good DSC values (Fig. 13B). 

Note that relaxing S1 does not affect the segmentation results due to high contrast difference 

between lumen and airway inner wall, as mentioned in the previous subsection. These 

findings indicate that the spatially constrained RW is a stable and robust method for finding 

boundaries of inner and outer surfaces, and sensitivity of the boundary localization is high 

even when spatial constraints are not strict.

4. Discussion and Conclusion

One question that arises is which of the 2-D (pseudo-3D) and 3-D techniques better suits the 

task of airway wall estimation. Although 3-D implementation performs better in branching 

areas and is more efficient in generating the 3-D tree structure, routine clinical analysis of 

airways often requires a pseudo 3-D implementation to measure airway dimensions in-plane 

and may be in selected image slices only. We found no statistically significant difference in 

segmentation results of both methods (p=0.32 and p=0.42 for RFC and RW based methods, 

respectively); however, 3-D RFC is faster compared to the RW based method.

It may be possible to use the phase congruency method to define inner and outer surfaces 

instead of FWHM method, for identifying background and foreground seeds. Comparison of 

FWHM and phase congruency methods in the literature reveals that phase congruency may 

identify inner and outer surfaces of airway walls better, hence, seeding locations may be 

more precise; however, an accurate comparison of these methods, within the spatially 

constrained RW method, and the computational burden analysis, are left as an extension of 

this study.

In the evaluation step, we used EXACT'09 data sets to compare our results with the state-of-

the-art methods. Although our method is likely to be suitable for analyzing all images from 

the EXACT'09 challenge, we will extend our evaluations with the data sets of different 

airway diseases with high and low resolution CT scans as a feasibility study for our ongoing 

clinical research.

One of the difficulties in proposing a general segmentation approach for airway and airway 

walls is reproducibility of the research due to unavailability of gold standard results. 

Although phantom studies could provide some insights about the robustness of the methods, 

natural variability of the human anatomy is not reflected in phantom designs. Regarding this 

issue, a very recent work of Kohlberger et al. (Kohlberger et al. (2012)) showed a generic 

learning approach based on a novel space of segmentation features, which can be trained to 

predict the overlap error and dice coefficient of arbitrary organ segmentation without 

knowing “the ground truth delineation”. Arguably, it may be possible in the near future to 

evaluate image segmentation algorithms without having a reference truth (Bagci et al. 

(2013a,c)), thus robustness and reproducibility of the airway and airway wall segmentation 

methods.

There may be other alternatives for airway wall segmentation. Two of them we intend to 

investigate are Iterative RFC (IRFC), and synergistically combined IRFC and Graph Cut 

(GC). Given accurate seed placement in appropriate background components, IRFC is 
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known to perform better than RFC in accuracy and speed. Recently IRFC and GC have been 

applied alternately have been shown to effectively combine the speed and robustness 

properties of IRFC with the boundary smoothness characteristics of GC to yield better 

segmentations (Ciesielski et al. (2013)).

In conclusion, we designed and developed novel algorithms to accurately segment lung 

airways and measure airway wall thickness as a means to map lung anatomy and identify 

areas of disease, such as cancer, infection, and immune disease. Our approach was based on 

the fuzzy connectedness theory for precise segmentation of the airway lumen, and a spatially 

constrained Markov random walk and relative fuzzy connectedness methods to estimate the 

airway wall surfaces. For lumen segmentation, the proposed method combines vesselness 

and gray-scale morphological reconstruction with FC facilitating robust and reliable region 

growth along thin airway structures. By incorporating multiple features to identify airway 

tree at different levels of scales, the algorithm adapts and governs the fuzzy segmentation 

process and captures airways under different pathological and imaging conditions more 

robustly in the presence of noise and other artifacts. The proposed methods are fully 

automated with automatic seed identification algorithms and the performance of the methods 

has been qualitatively and quantitatively evaluated on human pulmonary CT images from 

diverse subjects. Optimization techniques have been employed to extract the skeletons of 

airways and then an automatic seeding procedure based on FWHM and ellipse fitting was 

designed in order to spatially constrain Markov random walk. In the meantime, three 

surfaces for airway wall estimation were first roughly estimated, and they were used as seed 

sets for relative fuzzy connectedness computation. Both 2-D and 3-D methods performed 

similarly with high accuracy. Results demonstrated that our airway analysis platform gave a 

better identification of the inner and outer airway surfaces than the widely applied methods.

5. Appendix

Table 4 lists the quantitative results we received from the EXACT'09 organizer for twenty 

cases in the test set. Note that for CASE26, due to an uploading error, a huge mount of false 

positive of 119.59% is reported. Hence, we identified it as an error of calculation from the 

organizer's side and excluded it from the final result. For reference, Fig. 14 illustrates the 

binary airway segmentation of CASE26 from the proposed method and reference DIKU 

method. It can be observed that the two methods have relatively similar performance (even 

more detection rate in airway tree), and DIKU method have 50% tree length detected and 

0.0% false positive rate. Furthermore, for completeness of the paper, all the 20cases' 

segmentation results are presented in Fig. 15.
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Highlights

• An accurate and efficient computational framework for airway quantification.

• A novel hybrid approach for precise segmentation of the lumen.

• Two novel methods both in 2-D and 3-D to estimate the airway walls.

• Better identification of airway surfaces than the widely applied methods.
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Figure 1. Flowchart of the airway lumen segmentation and wall estimation algorithms with (1) 3-
D relative fuzzy connectedness and (2) 2-D random walk
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Figure 2. Flowchart of the airway lumen segmentation algorithm
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Figure 3. 
Airway lumen enhancement (A) original image, (B) gray-scale morphological 

reconstruction result, and (C) vesselness computation result.
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Figure 4. 
(A) Segmented lumen (green) and its centerline (red). (B) Redundant structures over 

centerlines are seen prior to pruning-thinning process. (C) Thinning removes the redundant 

structures and each branch is labeled. (D) Orthogonal plane at a skeleton point. (E) Slice 

plane that may not be perpendicular to local tangent vector. (F) Orthogonal resampling.
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Figure 5. 
First row: Airway walls with inside lumen (green), within wall (red), and outside the outer 

wall (blue) seeds. Second row: Resulting RFC segmentation with lumen (green) and walls 

(red).
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Figure 6. 
(A) Airway wall with background (yellow) and foreground (green) seeds, and its zoomed 

version (B). (C) Background seeds form inner and outer surfaces as constraints for RW. (D) 

Resulting RW segmentation.
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Figure 7. 
3-D Segmentation results on image CASE22 of EXACT'09 dataset Lo et al. (2012). (A) 

Result produced by UAVisionLab with detected tree length 26.1% and false positive rate 

1.14%. (B)Result produced by DIKU with detected tree length 68.7% and false positive rate 

less than 0.01%. (C) Result produced by our hybrid FC method with detected tree length 

48.6% and false positive rate 0.19%. The red part in (a) shows the leakage.
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Figure 8. 
3-D Segmentation results on image CASE36 of EXACT'09 dataset Lo et al. (2012). (A) 

Result submitted to organizer without parameter tuning with detected tree length 27.9%. (B) 

Result produced with parameter tuning. (C) Reference result by ARTEMIS-TMSP with 

detected tree length 62.6%.
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Figure 9. 
Airway wall estimation result for airways of different sizes and under different anatomical 

conditions. (A) Original image, (B, C) two manual segmentation results, and results from the 

proposed 2-D RW method (D) and 3-D RFC method (E), the last column illustrates the 

fused results (F).
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Figure 10. 
First four rows show Bland-Altman plots for IPIinner and IPIouter measurements across 

observers and the proposed methods. The last two rows demonstrate the agreement curve of 

airway wall area measurements by the proposed methods and the two expert observers.
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Figure 11. 
(A) Original image; (B) binary segmentation for RFC method; (C) probability map for RW 

method; (D) binary segmentation for RW method; (E) edge locations for FWHM method; 

(F) binary segmentation for FWHM method; (G) edge strength map for phase congruency 

method; (H) binary segmentation for phase congruency method.
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Figure 12. 
(A) Dice similarity coefficient with changing inner seeds; (B) Dice similarity coefficient 

with changing outer seeds; (C, E) seed locations with two different sets of outer seeds for a 

specific slice; (D, F) corresponding segmentation result for the two seed locations.
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Figure 13. 
(A) When spatially constrained RW was used, soft constraints did not change the 

segmentation results considerably even for large ε change (n1 = 1.5, n2 = 0.3). (B) When 

outer surface is relaxed (n1 = 1.5, n2 = 1.5), segmentation DSC started to change 

considerably for ε ≥ 0.1. Marked points are from the corresponding values in Fig. 12.
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Figure 14. 
Airway segmentation for CASE26 by proposed method and reference result from DIKU.
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Figure 15. 
Segmentation results for the twenty cases in the test set.
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