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Abstract

Objective—Our goal is to create an ontology that will allow data integration and reasoning with 

subject data to classify subjects, and based on this classification, to infer new knowledge on 

autism spectrum disorder (ASD) and related neurodevelopmental disorders (NDD). We take a first 

step toward this goal by extending an existing autism ontology to allow automatic inference of 

ASD phenotypes and Diagnostic & Statistical Manual of Mental Disorders (DSM) criteria based 

on subjects’ Autism Diagnostic Interview-Revised (ADI-R) assessment data.

Materials and Methods—Knowledge regarding diagnostic instruments, ASD phenotypes and 

risk factors was added to augment an existing autism ontology via Ontology Web Language class 

definitions and semantic web rules. We developed a custom Protégé plugin for enumerating 

combinatorial OWL axioms to support the many-to-many relations of ADI-R items to diagnostic 

categories in the DSM. We utilized a reasoner to infer whether 2642 subjects, whose data was 

obtained from the Simons Foundation Autism Research Initiative, meet DSM-IV-TR (DSM-IV) 

and DSM-5 diagnostic criteria based on their ADI-R data.

Results—We extended the ontology by adding 443 classes and 632 rules that represent 

phenotypes, along with their synonyms, environmental risk factors, and frequency of 

comorbidities. Applying the rules on the data set showed that the method produced accurate 

results: the true positive and true negative rates for inferring autistic disorder diagnosis according 

to DSM-IV criteria were 1 and 0.065, repectively; the true positive rate for inferring ASD based 

on DSM-5 criteria was 0.94.

Discussion—The ontology allows automatic inference of subjects’ disease phenotypes and 

diagnosis with high accuracy.
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Conclusion—The ontology may benefit future studies by serving as a knowledge base for ASD. 

In addition, by adding knowledge of related NDDs, commonalities and differences in 

manifestations and risk factors could be automatically inferred, contributing to the understanding 

of ASD pathophysiology.
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1. INTRODUCTION

Understanding the disease processes of complex neurodevelopmental disorders (NDDs), 

such as Autism Spectrum Disorder (ASD) [1, 2], has been a focus of research for many 

years. An ability to organize and semantically integrate subject data concerning phenotypic 

manifestations as well as genetic and environmental risk factors among cohorts of ASD 

subjects [3, 4] could yield important new knowledge regarding commonalities and 

differences that characterize subtypes of ASD, and also help elucidate the processes 

underlying the development of the disorder, whose mechanisms are still unknown. In the 

long run, comparing manifestations, comorbidities, and risk factors among subjects with 

related psychiatric disorders (e.g., ASD, depression, bipolar disorder, and schizophrenia) 

could uncover additional clues regarding the mechanisms of action of ASD and its subtypes. 

In addition, monitoring the incidence of ASD phenotypes, its subtypes, and the burden of 

associated comorbidities [5, 6] – along the lines of similar efforts with other diseases, such 

as diabetes [7] – could help public health efforts to estimate the toll of the disorder on the 

healthcare system, as well as to evaluate the impact of care on its prevention, progression, 

and treatment. The presented ontology provides the ability to automatically infer such 

phenotypes from autism diagnostic instrument data.

When properly designed for such tasks, ontologies aid data integration for cohort-level 

analysis, as well as reasoning at a single-subject level for the purpose of guiding treatment. 

They can help standardize data and knowledge about complex diseases and their discourse, 

and support reasoning tasks for studying them, as has been demonstrated for other 
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neurogenerative disorders (e.g., Alzheimer’s and Parkinson’s [8]). Potential relevant data 

sources for such ontologies include formal databases (e.g., for ASD, the Simons Foundation 

Autism Research Initiative [SFARI], http://sfari.org/, and the National Database for Autism 

Research [NDAR] http://ndar.nih.gov/), data from subjects’ social networks (e.g., 

PatientsLikeMe, www.patientslikeme.com), data extracted from hospital and clinic 

electronic health records [9], and the scientific literature.

Our long-term goal is to elucidate the mechanisms of action of ASD and its subtypes in 

order that practitioners might better guide and direct patients’ treatment. The ontology 

presented here takes a step toward this goal by enabling formal representation and 

integration of important data and knowledge about ASD and related NDDs. In the present 

study, we focus on supporting automatic inference of subjects’ ASD manifestations 

(phenotypes) and diagnosis based on autism assessment data. The diagnostic criteria 

formally defined in our ontology are taken from the accepted standard as defined by the 4th 

[10] and 5th editions [11] of the DSM. We have integrated data from SFARI concerning 

autism assessment results from the Autism Diagnostic Interview–Revised [12, 13].

1.1. RELATED WORK

ASD is a NDD. It was initially described as a disorder comprising repetitive behavior and 

deficiencies in social interaction and communication capabilities [14, 15].

1.1.1. ASD classification and diagnosis—The DSM [11, 16] is considered the 

standard classification of mental disorders in the USA [17]. The DSM references 

corresponding codes from the World Health Organization International Classification of 

Diseases (ICD, of which the most recent version is the 10th revision, or ICD-10). For each 

disorder listed, the DSM presents a set of diagnostic criteria which specifies what symptoms 

must be present and what other conditions must hold for the disorder to be diagnosed. The 

DSM-IV [10] listed four separate categories of autism spectrum disorder: autistic disorder, 

childhood disintegrative disorder, pervasive developmental disorder-not otherwise specified 

(PDD-NOS), and Asperger Syndrome (Asperger’s) [10, 19]. The most recent version of the 

DSM, the 5th edition (DSM-5) [11], treats ASD as a single diagnostic category that may 

differ in severity and associated features. The DSM-5 also reduced the number of core 

domains underlying ASD from three domains in the DSM-IV (impaired social interaction, 

impaired social communication, and restricted behavior patterns) to two, by combining 

impaired social interaction and communication into a single core deficit [18].

DSM criteria are hierarchical, such that criteria at different levels reflect phenotypes at 

differing levels of granularity. The DSM-IV criteria for autistic disorder consist of three 

levels (see http://iancommunity.org/cs/autism/dsm_iv_criteria). The lowest-level (L3) 

criteria are single specific phenotypes or Boolean combinations of specific phenotypes (e.g., 

DSM-IV criterion A1(d): “lack of social or emotional reciprocity”). We later refer to L3 

criteria as “basic phenotypes”. The mid-level (L2) criteria represent the category to which 

the L3 phenotypes belong. For ASD, Level 2 includes three categories, each manifested by 

specific L3 phenotypes (e.g., the phenotype A1(d) mentioned above belongs to category A1, 

“qualitative impairment in social interaction”). Finally, the upper-level (L1) criteria 
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represent broad standards that incorporate the lower levels as well as diagnostic criteria not 

captured by the L2 and L3 phenotypes. ASD has three L1 criteria, where the first (criterion 

A) relates to the L2 and L3 phenotypes, the second (B) relates to the subject’s past history 

(age of symptom onset), and the third (C) serves to exclude alternative diagnoses. With 

respect to the first upper-level criterion (A), this is defined by a count of the lower-level 

criteria met: the subject must meet at least six L3 criteria, with at least two from A1 and at 

least one each from A2 and A3, to meet the upper-level criterion. All three L1 criteria must 

be met to obtain a diagnosis of autistic disorder.

For its 5th edition, the DSM simplified the criteria for ASD. The DSM-5 criteria are still 

hierarchical, but they consist of two levels instead of three. The upper level (L1) contains 

five criteria which must be met to satisfy an ASD diagnosis. The first two criteria (A and B) 

include a lower hierarchical level, here referred to as L2. The lower-level (L2) criteria 

(phenotypes) are specific deficits or Boolean combinations of specific deficits (which we 

later refer to as “basic phenotypes”). The remaining three upper-level (L1) criteria (C, D & 

E) capture, again, aspects of the disorder not reflected in specific phenotypes – the subject’s 

developmental history (C) and effects of symptoms on functioning (D) – while ruling out 

alternative diagnoses (E). For example, DSM-5 ASD criterion C states that “Symptoms must 

be present in the early developmental period (but may not become fully manifest until social 

demands exceed limited capacities, or may be masked by learned strategies in later life)”.

The most widely-used instruments for diagnosing ASD are the Autism Diagnostic 

Interview–Revised (ADI-R) [12, 13] and the Autism Diagnostic Observation Schedule 

(ADOS) [21, 22]. The ADI-R is a structured interview conducted with the subject’s parent 

or caregiver. It consists of 93 items covering the subject’s full developmental history, 

divided into seven domains: early development (7 items), acquisition and loss of language/

other skills (20), language and communication functioning (21), social development and 

play (17), interests and behaviors (13), general behaviors (14), and any other current 

concerns (1). Items are scored using an algorithm provided with the instrument [12]. The 

ADOS is an observation instrument based on a series of structured and semi-structured tasks 

involving social interaction between the examiner and the subject. The examiner observes 

the subject’s behavior and uses an algorithm to score behaviors in pre-defined categories, 

including social reciprocity (the ability to respond to another’s actions), restricted and 

repetitive behaviors, and communication, as well as behavior difficulties not specific to 

ASD. The ADOS was originally developed to accompany the ADI-R. Both instruments are 

based on DSM-IV criteria [12, 21] and offer the capability of quantifying severity within 

certain domains. This approach to measuring social deficits reduces the likelihood that an 

individual will receive an ASD diagnosis based on severe deficits in only one or two 

domains. Hence, these instruments are closer, conceptually, to the DSM-IV criteria than to 

those of the DSM-5 [21]. While the ADI-R score alone is usually sufficient for correctly 

diagnosing ASD [22], the combination of both instruments is deemed the gold standard for 

diagnosis [25, 26].

Previous studies have suggested that ASD might be diagnosed using methods designed to 

measure activity within the brain, such as electroencephalography (EEG) [25] and magnetic 

resonance imaging (MRI) [26]. Eldridge et al. suggested that statistical analysis of EEG 
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recordings for neural sensory reactivity is a potential approach to the automatic 

classification of ASD [25]. They report that their method accurately identified ASD in 79% 

of cases. Zhou et al. employed graph theory and machine learning analysis of MRI data to 

characterize and predict ASD with 70% accuracy [26]. The authors found this method more 

suitable for providing biomarkers for prognosis or monitoring disease progression than for 

diagnosis. Both methods have relatively low diagnostic accuracy rates and so cannot 

substitute for the ADI-R.

1.1.2. Ontologies for ASD—Tu et al. [27] created an ASD ontology that follows the 

principles of ontology development established by the Open Biomedical Ontologies 

Foundry (www.obofoundry.org) and that conforms to the Basic Formal Ontology (BFO) 

[28]. BFO is an upper-level ontology designed to support information retrieval, analysis and 

integration. It promotes a realism-based approach to ontology modeling, which holds that 

classes in an ontology are universal categories of objects that represent things and processes 

in reality. Tu et al.’s ontology supports the annotation and integration of scientific data for 

the purpose of enabling user queries and inferences about ASD-related phenotypes from the 

NDAR repository. This ontology holds 34 classes representing phenotypes and four classes 

representing ASD diagnostic instruments (the ADI-R [12], two modules from the ADOS 

[19], [20], and the Vineland Survey Interview [29]). Additionally, the ontology includes a 

set of 15 SWRL rules [30] which allow the inference of certain phenotypes for a given 

patient based on data from the represented ASD diagnostic instruments. Unlike our 

ontology, this ontology does not include DSM criteria, and so it does not support diagnosis 

of ASD and inference of ASD phenotypes.

Another ASD-related ontology, created by McCray et al. [31], is an ASD-phenotype 

ontology developed for the purpose of assessing and comparing the characteristics of ASD 

diagnostic instruments, calculating diagnostic instrument coverage for the purpose of 

yielding more accurate diagnosis, and querying data sources based on the ontology terms 

rather than individual diagnostic instrument terms. The authors grouped questions with 

similar content from over 24 ASD diagnostic instruments to create a hierarchy of derived 

phenotypes along with their mapping (codes) to standard ontologies. This work relates to 

our work as it involves the creation of a new ASD-related phenotypic hierarchy. However, 

McCray et al. do not include DSM-IV or DSM-5 criteria phenotypes in their hierarchy, and 

their ontology does not support reasoning over DSM criteria. We have integrated McCray’s 

phenotypic hierarchy into our ontology to yield a more complete phenotypic hierarchy of 

ASD and to map the phenotypes to standard vocabulary codes.

Additional ontologies related to ASD have been developed to support other use-cases, such 

as automated ontology construction by performing text-mining [32, 33] or ontology-based 

information retrieval [34, 35]. The aforementioned ontologies differ from the work 

described in this paper as they were created in an automatic process to support their ultimate 

goal of text-mining or information retrieval. The ontology described in this paper was 

created manually, and it focuses on automatic diagnosis and inference of disease phenotypes 

and risk factor categories.
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1.1.3. Studies analyzing risk factors, comorbidities, and overlap in 
manifestations between ASD and other NDDs—Our work is distinguished by its 

emphasis on using ontologies for explicit, declarative representation of the domain elements 

and relationships. Most previous work on inference over risk factors, comorbidities, and 

phenotypes has used probabilistic methods. For example, Rzhetsky et al. [36] used statistical 

models applied to Electronic Health Record (EHR) data to infer genetic overlap between 

complex disorders, including autism, bipolar disorder, and schizophrenia. Kohane et al. [5] 

identified the conditional probability of comorbidities related to ASD using ICD-9 codes 

from EHR data. Similarly, Peacock et al. [6] queried medical multi-state databases to detect 

co-occurring conditions among ASD subject records. Finally, Lyalina et al. [37] used 

Fisher’s Exact Test to find enriched associations between all pairs of enriched phenotypes 

(comorbid diagnoses and symptoms) for autism, bipolar disorder, and schizophrenia.

2. MATERIALS AND METHODS

This section describes the data sources and methods used for the construction and validation 

of the presented ontology. This ontology extends Tu’s [27] ontology by adding an ability to 

infer ASD phenotypes based on DSM criteria. In addition, it integrates McCray’s 

phenotypic hierarchy [31] into the BFO hierarchy used in our ontology.

2.1. Data sources

Data were obtained for 2642 subjects who completed the ADI-R questionnaire and each had 

a CPEA1-dx value, which combines the clinicians’ best estimate with the diagnostic 

instruments’ score. According the CPEA-dx value, 2394 subjects had autistic disorder, 196 

had ASD and 52 had Asperger’s. The data were obtained from SFARI, a scientific research 

program within the Simons Foundation (http://www.simonsfoundation.org) that aims to 

increase scientific understanding of autism spectrum disorders and improve their diagnosis 

and treatment. SFARI granted access to the data after we obtained ethics approval for this 

research from the University of Haifa. The obtained data included complete ADI-R item-

level scores for all subjects.

Information regarding frequencies and prevalence of ASD-related phenotypes and 

comorbidities [5,31,37], along with information regarding risk factors, were obtained from 

the literature (the latter by co-author SCB) [38–44]. Additionally, relevant synonyms 

corresponding to concepts within the ontology were obtained from the Unified Medical 

Language System (UMLS), and all standard codes for terms (phenotypes and diseases) 

included in the ontology were obtained from the ontology by McCray et al. [31].

2.2. Ontology development

There already exists an ontology for autism [27], represented in the Web Ontology 

Language (OWL) formalism [45, 46]. However, this ontology does not support reasoning 

over the DSM criteria. In this study, we have augmented that ontology with DSM OWL 

class definitions, with basic phenotype classes corresponding to ADI-R items, and with a 

1Collaborative Programs of Excellence in Autism (CPEA) – a research network operated by the National Institutes of Health (now 
superseded by the Autism Centers of Excellence)
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complete set of Semantic Web Rule Language (SWRL) rules [27] to infer ASD phenotypes. 

We chose to represent the DSM criteria explicitly as OWL class definitions rather than use a 

machine learning algorithm to infer ASD diagnoses because we wanted to generate an 

explicit knowledge representation that could be comprehended by humans, and that could be 

used not only to classify patients as having ASD or not, but to infer partial phenotypes 

according to DSM criteria.

We used the Protégé ontology editor (http://protege.stanford.edu) to develop and extend the 

ontology developed by Tu et al. [27] to allow inference of DSM autism-related criteria 

(phenotypes) based on ADI-R data. The ontology is available at BioPortal for Protégé 

version 4.3 (http://bioportal.bioontology.org/ontologies/ADAR/). Specifically, we added the 

following:

1. Diagnostic instrument-based basic phenotypes corresponding to all ADI-R items. 

To ensure compatibility with current standards, we arranged these in a hierarchy 

corresponding to that created by McCray et al. [31] and adopted their controlled 

vocabulary codes;

2. SWRL rules deducing these basic phenotypes from coded ADI-R results;

3. OWL classes containing definitions of diagnostic criteria for autistic disorder 

according to the DSM-IV [10] and for ASD according to the DSM-5 [11]. These 

formal definitions relate to the basic phenotypes and were created based on expert 

mapping [9] of the DSM-IV and DSM-5 diagnostic criteria to their corresponding 

questions (items) in the ADI-R [12]. Using OWL to represent the DSM criteria in 

terms of ADI-R items, rather than simply using the ADI-R algorithm [12] to 

diagnose autistic disorder or ASD based on ADI-R results, allows us to utilize 

OWL’s already existing capabilities of Description Logic (DL) [47] for the 

following:

a. Using SWRL rules to deduce phenotypic manifestations from ADI-R data. 

This allows us to display the complete set of ADI-R-based basic phenotypes 

manifested by a given subject;

b. Inferring which specific DSM criteria a given subject meets, and the 

proportion of all subjects who meet any given diagnostic criterion. This is 

done by executing reasoners [45] to infer which subject instances meet OWL 

class restrictions;

c. Comparing DSM criteria between different versions (in this case DSM 

versions IV and 5). For example, we could automatically infer whether there 

are subjects who, based on their ADI-R data, meet the DSM-IV autistic 

disorder diagnostic criteria but not the DSM-5 ASD criteria. Enabling such 

automatic inference could help researchers understand the underlying 

phenotypes that are most affected by this shift between diagnostic criteria;

d. Drawing conclusions about particular correlations concerning ADI-R and 

DSM. The shift between DSM editions (in this case, IV and 5) might yield 

differences in how different ASD phenotypes are considered.
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To support future data and knowledge integration tasks, we also defined the class structure 

based on the literature and populated it with instances concerning:

1. Synonyms of the concepts stored in the ontology, so as to allow links to data 

sources using different vocabularies;

2. Comorbidities of autism and their related prevalence as well as conditional 

probabilities (frequencies) [5, 37, 6]; and

3. Environmental risk factors for ASD [38–44].

Analysis of comorbidities and environmental risk factors for ASD as compared to other 

NDDs could help expose potential trends and improve our understanding of the mechanisms 

underlying ASD.

Figure 1 shows a class diagram depicting the main classes in the ontology.

2.2.1. Supporting DSM definitions and related ASD phenotypes using OWL

2.2.1.1 Basic phenotype representation: Autism-related basic phenotypes are arranged in 

hierarchies as a sub-tree whose root class is ASD_related_phenotype, which is a subclass of 

BFO’s disposition class. This is consistent with the original autism ontology of Tu et al., 

which we have extended. According to BFO, a disposition is a realizable_entity that causes 

a specific process or transformation in the object in which it inheres, under specific 

circumstances and in conjunction with the laws of nature (e.g., the disposition of a patient 

with a weakened immune system to contract disease). This representation is different from 

that used in the Ontology for General Medical Science (OGMS) [48], where a Phenotype is 

defined as a combination of one or more Bodily Features (Bodily Component, Bodily 

Quality, or Bodily Process) of an Organism determined by the interaction of its genetic 

make-up and environment. This definition is somewhat limiting as it ties phenotypes to the 

body of an organism, in contrast to the autism ontology of McCray [31] (which we have 

adopted), where the autism-related phenotypes are personal traits or aspects of social 

competence. True, the OGMS has in some respects a broader scope than our ontology, as it 

allows representation of phenotypes that are processes (occurrent) and material objects 

(independent continuant), and not only dependent continuants such as quality or disposition. 

However, this broad scope is not necessary for the autism phenotypes associated with ADI-

R.

A basic phenotype can be considered a leaf in the autistic phenotype tree. For example, the 

path from the ASD_related_phenotype class to the ImaginativePlay_NotAvailable phenotype 

consists of the following path: ASD_Related_Phenotype → Personal_Traits → 

Cognitive_Ability → Abstract_Thinking → Imagination → Imaginative_Play → 

ImaginativePlay_NotAvailable. The path is shown in Figure 2.

Note that some of the classes above are shown in bold. These classes and their controlled 

vocabulary codes are taken from McCray’s ASD phenotypic hierarchy [31]. We expanded 

McCray’s hierarchy further by adding classes for each ADI-R item that is included in the 

ADI-R to DSM mapping by Huerta [9] (e.g., Imaginative_Play, Figure 2-(2)), along with 

subclasses which represent each possible response to that ADI-R item (e.g., 
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ImaginativePlay_NotAvailable) Additionally, a Vocabulary Term instance was added to 

each subclass as an annotation, when available.

2.2.1.2 DSM criteria hierarchy: As in the DSM, the representations of diagnostic criteria 

in our ontology are hierarchical, corresponding to different levels of abstraction of DSM-IV 

autistic-disorder phenotypes and DSM-5 ASD phenotypes. We represented all DSM criteria 

as OWL classes arranged in a hierarchy stemming from the 

Human_with_DSM_Diagnostic_Criterion class (Figure 3).

The Human class has a property called has_most_abnormal_finding (see Figure 1) that 

relates each Human individual to the basic phenotypes he exhibits. These basic phenotypes 

populate this property of the Human individual using an inference made by SWRL rules 

based on data from the ADI-R items, as explained in Section 2.2.1.3. Then, based on the 

OWL axioms that define the Human_with_DSM_Diagnostic_Criterion classes (Section 

2.2.1.4), individuals are classified by a Reasoner according to the DSM criteria that hold for 

each individual based on his abnormal findings (basic phenotypes corresponding to ADI-R 

items).

The original narrative DSM hierarchy includes is-a and part-of relationships, which we 

captured in the Human_with_DSM_Diagnostic_Criterion hierarchy (Figure 3):

1. IS-A relationships were defined between DSM-IV’s mid-level (DSM-IV L2) and 

lower-level (DSM-IV L3) criteria. The same structure was implemented for 

DSM-5’s upper-level (DSM-5 L1) and lower-level (DSM-5 L2) criteria, which 

relate to DSM-5 criteria A and B. This type of hierarchical relationship states that 

each of the lower-level criteria extend more abstract criteria. For example, DSM-IV 

mid-level diagnostic criterion A1 relates to “qualitative impairment in social 

interaction.” DSM-IV lower-level criterion A1(b) is “failure to develop peer 

relationships appropriate to developmental level,” which is a specific impairment in 

social interaction.

2. In order to meet DSM-IV mid-level (L2) criterion A1, a subject has to meet at least 

two lower-level (L3) criteria from (A1(a) – A1(d)). Similarly, in order to meet 

DSM-5 upper-level (L1) criterion B, a subject has to meet at least two lower-level 

(L2) criteria from (B(1) – B(4)). Therefore, these lower-level criteria are not 

specializations of their respective mid- or upper- level criteria DSM-IV A1 or 

DSM-5 B. Instead, we defined a Part-Of relationship between them. This type of 

hierarchical relationship states that several lower-level criteria are the parts which 

create the higher-level criteria.

We did not use the part-of relation for grouping other L3 criteria because their L2 criteria 

require only one L3 criterion to hold. Hence, these L3 criteria have an is-a relationship to L2 

criteria classes. While this is a non-uniform organization, it is correct and corresponds well 

to the textual representation of the narrative DSM criteria, facilitating comprehension by 

domain experts.
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2.2.1.3 Populating Human instances with basic phenotypes: For each subject who has 

completed an ADI-R assessment, we create a corresponding Human instance. In order to 

populate these Human instances with their relevant basic phenotypes, we utilize SWRL 

rules. A SWRL rule is created for each possible answer to each relevant ADI-R item. The 

SWRL rules add basic phenotypes to already existing Human instances by mapping each 

possible answer of the ADI-R (named ADI-2003 in Tu’s ontology) instance to the 

corresponding basic phenotype in the ontology. The execution of all SWRL rules results in 

one or more Human instances populated by all their relevant basic phenotypes (Figure 4).

All SWRL rules consist of two parts: a criterion component (labels A–D of Figure 4) and an 

action component (section (E) of Figure 4). The criterion component is defined as follows:

A. Retrieve the subject identifying key from the ADI-2003 instance;

B. Retrieve the coded ADI-R answer value from the relevant property representing 

that ADI-R item in the ADI-2003 instance;

C. Check whether the ADI-R answer value in the property equals the value required 

by the specific SWRL rule;

D. Identify the Human instance intended to be populated according to the subject 

coded key taken from the ADI-2003 instance (label D and the first part of label E of 

Figure 4).

The action component defines the target Human instance property to which the basic 

phenotype will be added by specifying the relevant property (has_general_finding, 

has_most_abnormal_finding, has_current_finding, has_ever_finding, and all possible 

temporal sections corresponding to those of the ADI-R), the Human instance to which it will 

be added, and the basic phenotype itself, as shown in label E of Figure 4.

Several diagnostic concepts have temporal connotations. According to the mapping by 

Huerta, the meaning of some ADI-R items (and hence their mapping to basic phenotypes) 

differs for three age groups: patients <4 years old, 4–10 years old, and >10 years. A simple 

representation of time was adopted where the property has_general_finding can hold the age 

category (e.g., Human_with_DSM-IV_definition_A_1_a has_general_finding has 

SubjectAge_Under_4_Years). In addition, some mappings relate to the most abnormal 

findings manifested at age 4–5 years. This is represented by the property 

has_most_abnormal_finding of Human (Figure 1).

2.2.1.4. Defining DSM diagnostic criteria that refer to basic phenotypes: We based our 

mapping of the DSM criteria to basic phenotypes corresponding to ADI-R items on Huerta 

et al. [9]. Huerta et al. aimed to evaluate DSM-5 criteria for ASD among children with a 

DSM-IV diagnosis of pervasive developmental disorder (PDD) using ADI-R and ADOS 

results to compare DSM-5 and DSM-IV diagnostic criteria. This work yielded a mapping of 

ADI-R and ADOS items to their corresponding criteria in the two versions.

Huerta’s mapping specifies the relevant ADI-R items for each DSM lower-level (DSM-IV 

L3 and DSM-5 L2) diagnostic criterion (Figure 5). The described ADI-R items are 

translated into logical OWL expressions (section (2) of Figure 5 and Figure 6) referring to 
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basic phenotypes, according to the narrative DSM definition. For example, the class 

Human_with_DSM-IV_definition_A_2_a (Figure 6) provides the definition for a lower-level 

(L3) DSM criterion (phenotype) which involves a Boolean combination of basic phenotypes 

referring to ADI-R items 30 (overall level of language), 43 (nodding), 44 (head shaking), 45 

(conventional/instrumental gestures), and 50 (direct gaze).

OWL classes corresponding to DSM diagnostic criteria L1–L3 are defined as necessary and 

sufficient OWL class restrictions. The lower level (L3) combines basic phenotypes with 

logical operators, while the upper level (L1) and middle level (L2) refer to the lower-level 

(L1) criteria.

The L1 criteria of DSM-IV involve counting the number of L3 criteria from specific L2 

criteria. For example, as described above, the DSM-IV Level-1 criterion A states that the 

subject must meet at least six L3 criteria from A1, A2, and A3, with at least two from A1 

and one each from A2 and A3. This requires the support of k-of-N counting. Since OWL 

reasoners cannot perform k-of-N counting, we developed a Protégé plugin (section (3) of 

Figure 5) that produces appropriate class restrictions for different k-of-N combinations. The 

plugin utilizes the Protégé API to access relevant OWL classes in order to insert enumerated 

combinations of k-of-N classes as necessary and sufficient axioms into these classes. We 

used our developed plugin to add the relevant class restrictions to the represented L2 and L1 

DSM criteria.

The plugin utilizes the capabilities already present in description logics reasoners in order to 

infer which subject instances meet DSM criteria. This method makes the ontology more 

maintainable and general, and does not necessitate development of reasoning capabilities. 

The Protégé plugin that we have developed can be reused for other OWL ontologies, since it 

is not specific to ASD. The plugin enables the enumeration of a set of axioms that captures 

the combination of k of N classes based on a selection of the number k and the N superclass, 

retrieved from the user, which will then be added to the definition of the relevant OWL 

class.

2.2.1.5 A summary of the inference method of ASD-related phenotypes from SFARI 
data: Figure 7 describes the execution flow of the methods used for inferring ASD-related 

phenotypes from SFARI data, using the following steps:

1. The subject records in the SFARI dataset were obtained as a comma-separated file. 

Our Plugin for the Protégé ontology editor converted all data from the SFARI 

comma-separated file into appropriate OWL individuals of the ADI-2003 class 

from Tu’s original ontology, representing the ADI-R assessment results for each 

subject. During this conversion, a corresponding individual of the Human class was 

created for each ADI-2003 assessment_result, initially with no phenotypes;

2. SWRL rules were executed to infer the relevant basic phenotypes for the Human 

individual based on their relevant ADI-R score values (Figure 4);

3. DSM criteria were represented using the classes Human_With_DSM-

IV_Diagnostic_Criteria and Human_With_DSM-5_Diagnostic_Criteria (DSM 

criteria class hierarchy) corresponding to the hierarchy of both DSM-IV and 
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DSM-5, along with relevant definitions (OWL class restrictions) corresponding to 

logical combinations of the relevant basic phenotypes. Additionally, the Protégé k-

of-N plugin was used to enumerate restrictions for the middle (L2) and upper-level 

(L1) classes.

4. We utilized the capabilities of the Pellet OWL reasoner (http://

www.clarkparsia.com/pellet/), software able to infer logical consequences from a 

set of asserted facts or axioms, to deduce which subject instances fulfill which 

DSM criteria (OWL class restrictions). These results were tabulated by the plugin.

2.2.2 Representing autism related concepts and their synonyms—Each 

vocabulary concept is represented as an individual of the VocabularyTerm class, which 

holds pointers to the preferred concept and to its synonyms (see Figure 8). The preferred 

concept and its synonyms are represented as individuals of a class called Concept, which 

includes the concept’s preferred name along with its controlled vocabulary code and the 

preferred vocabulary name.

Vocabulary Term and Frequencies (see below). Individuals were added as annotation 

properties to their corresponding phenotypes. Using annotation properties allows us to 

populate classes with knowledge that describes them, rather than knowledge which defines 

them. This way, we can both define the rules for qualifying as a member of a certain class, 

and describe the class itself.

2.2.3. Populating the ontology with knowledge regarding comorbidities and 
risk factors—In addition to the basic phenotype hierarchy and the DSM definitions 

hierarchy, we included in the ontology information about the frequency of comorbidities and 

risk factors for ASD. The Autism High Level Visualizer individual (Figure 9) displays the 

added knowledge about autism comorbidities and risk factors.

Two types of frequencies were represented in the ontology:

1. Conditional probability frequencies. These describe the probability of having a 

certain comorbidity (e.g., epilepsy) given an autism diagnosis P(co | autism), and 

the probability of being diagnosed with autism given a diagnosis of a certain autism 

comorbidity P(autism | co). Figure 10 shows an example of a conditional 

probability individual;

2. The prevalence of a certain condition in a given population – for example, the 

percentage of subjects diagnosed with autism out of all subjects in a given medical 

institution [15].

All data related to probabilities were gathered from the literature [5, 37] and inserted into the 

relevant instances of the frequency classes. Note that all concepts in the ontology, including 

the comorbidity Autoimmune_Disease and Autism, are part of the ontology. (Figure 8 

presents the autism concept along with its UMLS code and synonyms.)

Environmental risk factors for ASD are represented in the ontology using the Risk_Factor 

class (see Figure 11). This class represents: (1) The exposure which is believed to have 
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influenced the manifestation of the disorder; (2) the time period of the exposure (e.g., during 

pregnancy, delivery); (3) the subject who was exposed (i.e., mother or child); (4) the 

exposure class (type), whose possible values are subclasses of BFO’s process class (Disease 

or Syndrome, Natural Process or Phenomenon NOS, or Injury or Poisoning, Obstetric 

Complications); and (5) related citations.

2.4. Validation

In order to validate our representation of both DSM-IV criteria for autistic disorder and 

DSM-5 criteria for ASD, we used subject data from the SFARI dataset. The dataset holds 

coded data for 2642 subjects, including responses for all items in the ADI-R. All subjects in 

the dataset were diagnosed with autism, ASD, or Asperger’s by expert clinicians. Each 

subject’s final diagnosis is given by the SFARI CPEA_dx variable. This variable provides a 

diagnostic classification based primarily upon (1) the ADI-R, (2) the ADOS, and (3) the 

Clinician’s Best Estimate diagnosis (classification of Asperger’s also takes into 

consideration other values, as specified below). To receive a diagnosis of “autism” in the 

CPEA dx variable, the ADI-R classification must be Autism, the ADOS classification must 

be Autism or ASD, and the Clinician’s Best Estimate diagnosis must be Autism, ASD, or 

Asperger’s. To receive a diagnosis of “Asperger’s,” an individual must not meet criteria for 

Autism as specified above, and must meet the following: (1) Chronological Age ≥60 

months; (2) Verbal IQ ≥80; (3) Age of First Words ≤24 months; (4) Age of First Phrases 

≤33 months; (5) ADI-R classification is NOT Autism; (6) ADI-R RRB Total ≥2; (7) ADI-R 

Social Total ≥10; (8) ADOS classification is autism or ASD OR ADOS Social-

Communication Total ≥4; and, (9) the Clinician’s Best Estimate diagnosis must be autism, 

ASD, or Asperger’s. To receive a diagnosis of “ASD,” the individual must not meet the 

above criteria for autism or Asperger’s, the ADI-R classification must be ASD [24], the 

ADOS classification must be ASD, and the Clinician’s Best Estimate diagnosis must be 

autism, ASD, or Asperger’s. If none of the above criteria are satisfied, the diagnosis of 

“NonSpectrum” is assigned.

All data were processed and automatically inserted into the ontology by creating a new 

instance of the ADI-2003 class containing all data for each subject. Following this, we 

executed all SWRL rules, creating instances of the Human class for each subject from the 

dataset, and used the Pellet reasoner to infer which diagnostic criteria were met by each 

subject. We then tabulated the results using our Protégé plugin.

For each subject we compared the top-level DSM diagnosis inferred by the reasoner to the 

CPEA_dx variable, which served as our gold standard. For DSM-IV, the inferred top-level 

diagnosis could be “autistic disorder” or “not autistic disorder”, while the CPEA_dx variable 

could have the values “autistic disorder”, “ASD” or “Asperger’s”. Subjects who were 

inferred by the reasoner as having “autistic disorder” and who had a diagnosis of “autistic 

disorder” according to the gold standard were considered as true positives. Subjects who 

were inferred by the reasoner as NOT having “autistic disorder” and who had a diagnosis of 

“ASD” or “Asperger’s” according to the gold standard were considered as true negatives. 

Subjects who were inferred by the reasoner as having “autistic disorder” but who had a 

diagnosis of “ASD” or “Asperger’s” according to the gold standard were considered as false 
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positives. Similarly, subjects who were inferred by the reasoner as NOT having “autistic 

disorder” but who had a diagnosis of “autistic disorder” according to the gold standard were 

considered as false negatives.

For DSM-5, the top-level diagnosis could be “ASD” or “not ASD”, while all possible values 

of the CPEA_dx variable were considered “ASD” according to the new diagnostic criteria 

introduced in the DSM-5. Subjects who were inferred by the reasoner as having “ASD” 

were considered as true positives. Subjects who were inferred by the reasoner as NOT 

having “ASD” were considered as false negatives. We did not have negative examples in the 

data set, and so true negatives and false positives could not be calculated.

All cases of false positive and false negative inferences were thoroughly examined by the 

medical experts to elucidate why some subjects did not meet the ASD diagnosis that was 

inferred by the reasoner. These findings are explained in the Discussion section below.

2.5. Analysis of the spectrum of DSM-IV and DSM-5 criteria met by subjects

As an initial characterization of the spectrum of DSM sub-criteria exhibited by subjects, we 

calculated the percentage of subject records that were inferred as satisfying each of the 

DSM-IV criteria/sub-criteria and the DSM-5 criteria/sub-criteria, and plotted these 

percentages. From such plots we can learn if there are criteria that are present in almost all 

subjects, some that are very rare, and some that are exhibited at intermediate level.

3. RESULTS

We created 632 SWRL rules deducing 632 basic phenotypes from ADI-R data (about 5–7 

SWRL rules for each of the 93 ADI-R items). All basic phenotypes are represented in a 

hierarchy of phenotypes along with their controlled vocabulary codes taken from McCray et 

al. [31]. The extended ontology holds 36 classes representing DSM diagnostic criteria as 

restrictions defining specific Human subclasses (21 subclasses for DSM-IV and 15 for 

DSM-5, corresponding to lower-level (L3), middle-level (L2), and upper-level (L1) DSM 

criteria). DSM-IV Criterion C is not included in our mapping. Likewise, DSM-5 criteria C, 

D and E were not included in our mapping (see Discussion section). Additionally, we added 

13 disease (comorbidity) classes, 35 frequencies (24 conditional probabilities and 9 

prevalence instances), 110 concepts, 35 vocabulary terms (preferred concepts along with 

their synonyms), 44 environmental risk factors, and 170 classes representing the phenotypic 

hierarchy that were retrieved from [31].

As explained in Section 2.1, 2394 of the 2642 SFARI subjects (90.61%) are expected to 

have a diagnosis of “autistic disorder” according to the DSM-IV criteria, and all are 

expected to have a diagnosis of ASD according to the DSM-5 criteria (since there were no 

examples of subjects not having ASD according to the DSM-5 criteria in the database). 

Following our validation procedure, the results in Table 1 and Table 2 show that for the 

DSM-IV criteria, the true positive rate was 1 and the true negative rate was 0.0645. For the 

DSM-5 criteria, the true positive rate was 0.94.
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As reported in Table 1, 232 records were falsely inferred as having autistic disorder, with the 

SFARI CPEA dx variable classifying 183 of these with ASD and 49 with Asperger’s. This 

represents a low true negative rate of 0.065.

For the DSM-5 diagnostic criteria, of all 2642 subject records with a DSM-5-based ASD 

diagnosis, which include DSM-IV’s autistic disorder, ASD and Asperger’s subjects, 157 

records were falsely inferred as not having ASD (false negatives).

Figure 12 and Figure 13 show the percentage of records inferred for each of the DSM-IV 

criteria/sub-criteria and the DSM-5 criteria/sub-criteria, respectively.

4. DISCUSSION

The existing ontologies representing the domain of ASD [27, 31, 32, 39, 41 focus on the 

displayed phenotypes and in some cases refer to their diagnostic instruments [27, 31], but do 

not relate to DSM criteria. In this study we have shown that it is possible to infer, with a few 

notable exceptions, the set of DSM-IV and DSM-5 ASD phenotypes (criteria) that subjects 

exhibit by using raw ADI-R data. To the best of our knowledge, there is no automatic tool 

that can relate specific DSM criteria to specific patients based on ADI-R data.

4.1. Inference of ASD-related phenotypes and its importance

Our ontology enables inference of the sub-criteria of DSM, corresponding to phenotypes 

related to ASD. Figures 12 and 13 present the initial characterization of the spectrum of 

DSM sub-criteria exhibited by subjects in the present research. As shown in the figures, a 

high percentage of subjects met the L2 criteria in both DSM-IV (mid-level criteria) and 

DSM-5 (criterion A and criterion B). Figure 12 clearly shows that almost none of the 

subjects met DSM-IV criterion A2(a). In other words, almost no subjects in the SFARI 

dataset had delays in spoken language, and those who did were able to communicate using 

alternative methods. Since this criterion is usually met by those with lower mental ages, it 

would be interesting to examine in future work the relationship between different criteria 

and mental age. In addition, a relatively low percentage of subjects met DSM-IV criterion 

A2(d), which assesses the existence of social play (65.4%), and DSM-IV criterion A3(c), 

which deals with stereotyped and repetitive motor mannerisms (64.4%). The results for 

DSM-5 (Figure 12) reveal a different picture. It seems that all DSM-5 criteria included in 

the ontology’s DSM-5 criteria representation were met by most subjects.

In future research, subjects could be clustered according to their manifestation of this set of 

basic phenotypes, partitioning ASD into sub-groups. An even more interesting analysis 

could match subjects’ reported risk factors with these and other ASD-related phenotypes, 

including comorbidities. It is possible that different risk factor exposures and genetic factors 

manifested during neonatal development could cause different, yet overlapping, phenotypes. 

This, in turn, implies that studying the relationships between risk factors and manifestations 

of ASD subgroups could point to different mechanisms of disorder development. Previous 

studies have detected sub-groups of ASD [49] which differ in their manifestations [50] and 

in genetic [51] and environmental risk factors [38–44]. The ontology presented here enables 

examination of phenotypes and environmental risk factors. Future work could extend the 
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represented hierarchy for risk factors to also include genetic risk factors. With subject data 

that includes risk factor information along with manifestations of ASD (phenotypes), future 

studies might use the information contained in our ontology to find correlations between 

genetic and non-genetic risk factors, subject’s geographical area (locality), and 

manifestations of ASD phenotypes in an attempt to reveal more clues regarding the 

disorder’s mechanisms of action, as well as its relationship to risk factors and locality.

4.2. Inferring autistic disorder and ASD diagnosis

Automatic inference of a subject’s disease phenotypes based on that subject’s ADI-R data 

could enable automatic diagnosis of autistic disorder according to DSM-IV criteria and ASD 

according to DSM-5 criteria. Future work should consider adding severity to the ontology 

by defining the proper classes and restrictions, thus allowing more accurate inference of the 

subject’s state and the needed treatment, prognosis, and costs, based not only on the 

diagnosis per se but also on the severity of the displayed phenotypes.

An important feature of our ontology is its ability to support inference of autistic disorder 

and ASD-related diagnosis according to DSM criteria, based on the ADI-R interview. We 

evaluated this feature using the SFARI dataset, and specifically, by comparing the 

ontology’s DSM-based inference to the SFARI CPEA dx variable. We used this variable as 

our gold standard as it draws from three sources: the ADI-R, the ADOS, and expert opinion. 

We did not expect that the automatic inference based on the DSM-IV or the DSM-5 

diagnostic criteria (as reflected in responses to the ADI-R) would fully agree with the 

diagnosis provided by the SFARI CPEA dx variable because the ADI-R algorithm which 

underlies the CPEA dx variable sums up individual items across the social, communication, 

and restricted and repetitive behavior domains. In other words, ADI-R criteria for these 

domains (as incorporated in the CPEA dx) were met if the sum of items reached a given 

threshold. In contrast, our ontology followed the rules given in the DSM-IV or DSM-5, 

whereby scores are keyed to number of sub-domains met (e.g., at least two of four social 

sub-domains).

Looking at the results of our validation, we found that the DSM-IV diagnostic inference had 

a true positive rate of 1 but a true negative rate of only 0.065. Subjects who were inferred by 

the reasoner as having autistic disorder but who had a diagnosis of ASD or Asperger’s 

according to the CPEA dx variable were considered as false positives. The DSM-5 ASD 

diagnostic inference had a true positive rate of 0.94 (the DSM-5 true negative rate could not 

be computed due to a lack of negative examples, hence even the two true positive rates are 

not comparable because there is a tradeoff between true positive rate and true negative rate). 

Our clinical expert coauthors (EHC, SCB and SJG) carefully examined the data, and after a 

thorough consultation, we concluded that subjects who were false positives may have met 

DSM-IV “autistic disorder” criteria without meeting the ADI-R algorithm criteria for 

autism. That is, in order to meet ADI-R algorithm criteria for autism an individual must 

meet or exceed a cutoff score in each domain area (social interactions, communication, and 

restricted or repetitive behavior), as well as onset criteria; failure to meet the cutoff in any 

area precludes meeting the ADI-R algorithm criteria for autism. Thus, it is possible for 

patients to satisfy enough ADI-R algorithm sub-domain items to warrant a DSM-IV autism 
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diagnosis without actually meeting ADI-R algorithm domain criteria for autism. Therefore, 

false inference of ASD or Asperger’s as autistic disorder is expected. Risi et al. [24] 

suggested modifications to the ADI-R algorithm in order to capture those individuals who 

otherwise would fall within a broader autism phenotype (ASD or Asperger’s).

The high rate of false negative DSM-5 inferences, as compared to DSM-IV inferences, can 

be explained by the differences between how the classification is calculated in the CPEA dx 

variable vs. the DSM-5. The number of subjects who were inferred as having ASD 

according to the DSM-5 was higher than the number of patients having autistic disorder 

under the DSM-IV criteria. These results are aligned with previous research which shows an 

increase in ASD prevalence when using DSM-5 instead of DSM-IV criteria [20, 51], since 

the DSM-5 relates to a single category of ASD while the DSM-IV relates to several 

diagnoses, where we have focused on autistic disorder. The reported true positive rate for 

DSM-5 conforms with previous research which showed that 93% of subjects diagnosed 

according to the CPEA dx variable met DSM-5 criteria [52].

4.3. Integration of different types of subject data

In this research, we used SFARI data related to results of ADI-R assessments. However, our 

ontology includes additional knowledge, such as synonyms for ASD-related basic 

phenotypes, comorbidities, and environmental risk factors, which may aid in integrating data 

from other resources. The importance of risk factors for identification of ASD-related 

subtypes which may shed light on disease mechanisms was discussed above.

Representing phenotypes along with their controlled vocabulary concepts and synonyms 

could support natural language processing (NLP) of text-based subject records (such as 

hospital EHRs or online medical forums such as PatientsLikeMe 

(www.patientslikeme.com)) in order to extract relevant phenotypes. However, this is not a 

trivial task. DSM concepts, being complex and abstract, can be expressed in many ways in 

natural language, and cannot be captured by single terms. For example, consider DSM-IV 

diagnostic criterion A2(a): “Delay in, or total lack of, the development of spoken lanaguage 

(not accompanied by an attempt to compensate through alternative modes of communication 

such as gesture or mime).” This criterion contains a number of composed terms, including 

“development of spoken language” and “alternative modes of communication,” each of 

which is open to a large number of variations in free text.

The schema of the proposed ontology, with its standardized hierarchy that builds upon the 

BFO and that includes the phenotypic hierarchy of McCray et al. [31] and standard 

vocabulary codes, means it can be extended in the future to hold knowledge regarding other 

related NDDs such as schizophrenia. Based on such knowledge, the ontology could be used 

in a variety of studies comparing ASD and other NDDs. For instance, in a study unrelated to 

ASD, Tu et al. [53] utilized OWL’s reasoning mechanism to compare eligibility criteria for 

different clinical trials. Likewise, we propose to compare diagnostic criteria of different 

diagnostic instruments in order to identify overlaps and other relationships between ASD 

and other NDDs.
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4.4. Use of the k-of-N plugin in other ontologies

As discussed in the previous sections, since OWL does not support counting of type k-of-N 

and since DSM diagnostic criteria are hierarchical and involve counting, we developed a 

new Protégé plugin which implements this capability by enumerating the k-of-N 

combination as OWL class restrictions. This plugin can be used for other OWL ontologies 

which require this kind of counting, and which may use large k and N values. Currently, the 

developed plugin enables k-of-N enumeration of up to three levels of hierarchy. However, it 

can still be used with hierarchical schemas of more than three levels when performed in 

different executions (of up to three levels each time).

4.5. Limitations

Not all DSM-IV and DSM-5 criteria were implemented in the ontology. After thorough 

consultation with our clinical expert co-authors, we decided not to implement the following 

diagnostic criteria:

1. DSM-IV’s upper-level (L1) criterion C, namely, “The disturbance is not better 

accounted for by Rett’s Disorder or Childhood Disintegrative Disorder.” This 

criterion relates to relatively rare conditions and is not supported by any explicit 

diagnostic instrument other than professional clinical judgment.

2. DSM-5’s criterion C, namely, “Symptoms must be present in the early 

developmental period (but may not become fully manifest until social demands 

exceed limited capacities, or may be masked by learned strategies in later life).” 

This condition is incorporated in the ADI-R questionnaire. Hence, by definition, 

DSM-5’s criterion C holds for subjects to whom the ADI-R was administered, and 

therefore does not need to be represented in the ontology.

3. DSM-5’s criterion D, namely, “Symptoms cause clinically significant impairment 

in social, occupational, or other important areas of current functioning.” This 

criterion is implicit in the way we use the ADI-R items in our mapping. Following 

Huerta et al. [9], we only used item scores which relate to actual impairments 

displayed by the subject.

4. DSM-5’s criterion E, namely, “These disturbances are not better explained by 

intellectual disability (intellectual developmental disorder) or global developmental 

delay. Intellectual disability and autism spectrum disorder frequently co-occur; to 

make comorbid diagnoses of autism spectrum disorder and intellectual disability, 

social communication should be below that expected for general developmental 

level.” This criterion is not directly supported by any explicit diagnostic instrument 

other than clinical judgment.

Our ontology is a first step toward the goal of data integration from varied sources, as 

explained above. Currently, the ontology is incomplete and requires the addition of many 

concepts and synonyms to support integration of such data sources. This task can be 

facilitated by distributing the procedure for adding new concepts in the ontology using tools 

such as Web Protégé (protégé.stanford.edu).
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Our ontology was developed by hand, and suffers from issues of scalability common to all 

manually developed ontologies. Future work could combine our ontology with other 

ontologies and with automatic ontology extension mechanisms that were developed for 

autism or that could be applied in this domain. For example, the text-mining approach for 

discovering implicit knowledge in biomedical literature suggested by Petric et al. [33] could 

be used to populate the ontology with rare terms from the ASD domain, and the RajoLink 

literature-mining method [32] could be used to identify relationships between biomedical 

concepts in separate and disconnected sets of articles. Other NLP approaches could be used 

to extend existing concepts in the ontology with synonyms [54]. In addition, the semantic-

based text-mining approach by Hassanpour et al. [34] could be used to facilitate knowledge 

acquisition of rule-based definitions of ASD phenotypes from textual sources. These NLP 

methods might also be guided by the existing structure of our ontology, and could be used to 

extract detailed information such as the locality of subjects who participated in studies from 

which conditional probabilities were drawn. It is true that text-mining algorithms are not as 

effective when driven by ontologies that have complex structures. This was the case in Tu et 

al. [53], which used an ontology known as ERGO annotation to drive an NLP algorithm that 

parsed clinical trial eligibility criteria and created OWL class definitions (axioms) from the 

parsed text. Nevetheless, once the regularity of the input data source is understood, part of 

this data-entry process can be automated. For example, SWRL-rule creation for ADI-R 

items could be automated to enable constant update of ADI-R diagnostic instruments.

Another approach for automatically discovering information that could be added to the 

ontology uses methods that are not ontology-based. For example, Kohane et al. [5], Lyalina 

et al. [37], and Peacock et al. [6] developed methods for querying health-care databases for 

symptoms and comorbidities, while Rzhetsky et al. [36] used statistical models from which 

genetic overlaps between complex phenotypes of NDDs such as autism, bipolar disorder, 

and schizophrenia could be inferred.

Apart from the limitations related to completeness and scalability, the ontology’s correctness 

for supporting inference based on ADI-R data has been evaluated with a data set that 

contains few negative examples. In the data set based on DSM-IV criteria, only 9.39% of the 

subjects did not have autistic disorder but had other forms of autism spectrum disorder. In 

the data set based on DSM-5 criteria there were no available negative examples, since in the 

DSM-5, all forms of ASD are collapsed into a single category. Note that data sets with 

negative examples are rare because usually only individuals with suspected autism complete 

the ADI-R questionnaire. Though it would have been interesting to compare the 

performance over the patients of DSM IV to DSM-5, because we do not have negative 

examples it is impossible to make this comparison as validated by our consulting statistician.

5. CONCLUSION

We have created an ontology which enables automatic inference, via ADI-R data, of DSM-

IV autistic disorder and DSM-5 ASD-related phenotypes and diagnostic criteria. As reported 

in this paper, we have also successfully validated the ontology by showing that it supports 

accurate inference of autistic disorder and ASD diagnosis based on ADI-R data using real 

subject data from SFARI. This work offers a number of contributions to research and 
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practice. First, from the research perspective, we carried out an initial characterization of the 

DSM sub-criteria defining ASD-related phenotypes met by different subjects with ASD. 

This analysis could be extended to clustering in order to characterize subtypes of ASD 

according to its common combined manifestations. Adding subject data relating to risk 

factors could reveal relationships between risk factors and manifestations, with implications 

for prognosis and treatment. Moreover, adding knowledge about related NDDs into the 

ontology would allow it to automatically infer commonalities and differences (in terms of 

manifestations and risk factors) between ASD and related NDDs, contributing to our 

understanding of ASD’s mechanisms of action. Finally, automatic inference of autistic 

disorder and ASD phenotypes from ADI-R data could serve a useful public health function 

by facilitating efforts to track the relationship between specific DSM criteria and treatment 

protocols, thus helping experts estimate future expected burdens on the healthcare system.
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Highlights

We augmented an autism ontology with SWRL rules to infer phenotypes from ADI-

R items

We represented DSM diagnostic criteria for Autism Spectrum Disorder in OWL

We developed a custom Protégé plugin for enumerating combinatorial OWL axioms

OWL Reasoner thus infers autism-related phenotypes from ADI-R questionnaire 

results

We evaluated the classification results with data from Simons Foundation
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Figure 1. 
Top-level class diagram of the autism ontology, showing key classes and relationships. Gray 

squares represent the classes that extend the ontology by Tu et al. White classes are taken 

from the BFO.
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Figure 2. 
Ontology population process overview – Basic phenotypes representation. (1) The top-level 

classes of the basic phenotype hierarchy were taken from McCray et al. (2) The 

Personal_Traits class from (1) was integrated as a child of the Autism_Phenotype 

(ASD_Related_Phenotype) class, which is a child of the BFO disposition class. The ADI-R 

items and their range of values (e.g., ImaginativePlay_NotAvailable) were integrated as 

children of the concepts in McCray’s hierarchy. (3) Vocabulary terms (where available) 

were added to the concepts in the hierarchy as annotations. (4) SWRL rules were then used 

to (5) associate with a human subject a basic phenotype from the hierarchy corresponding to 

an ADI-R item in this human’s ADI-R data.
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Figure 3. 
DSM-IV and DSM-5 class hierarchies
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Figure 4. Infering the “Head_Shaking_Never” basic phenotype of a Human from ADI-R data
(1) An individual of the ADI-R assessment result belonging to a patient whose subjectKey is 

11000. The item functional communication head shaking (funcon_chshake) has a value of 2. 

(2) A SWRL rule infers the “Head_Shaking_Never” phenotype for subjects who scored 2 

for item 44 in the ADI-R. (3) A specific individual of the Human class (in this example, the 

individual with ID 11000) with his set of inferred phenotypes, including the one inferred by 

this SWRL rule.
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Figure 5. 
Ontology population process overview – DSM diagnostic criteria representation as OWL 

class hierarchy. (1) To define a DSM criterion in OWL, we obtain from Huerta’s mapping a 

list of ADI-R items (see second row in the table shown in the figure). (2) The basic 

phenotypes corresponding to the ADI-R items are logically combined into an OWL class 

expression (see Figure 6). (3) For higher-level (L2, L1) criteria, the k-of-N Protégé plugin is 

used to create class expressions. (4) The resulting L1, L2, and L3 classes are arranged in a 

hierarchy. Note that the second part of the DSM criterion in Figure 6 (gesture or mime) was 

represented using additional ADI-R items related to gesture or mime as provided by the 

professional experts with whom we consulted.
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Figure 6. Combining basic subject phenotypes with logical operators
This example shows the OWL class definition corresponding to DSM-IV’s diagnostic 

criterion A2(a): “delay in, or total lack of, the development of spoken language (not 

accompanied by an attempt to compensate through alternative modes of communication 

such as gesture or mime)”. This is a union of five basic phenotypes related to the “most 

abnormal 4–5” (the most severe phenotype the subject exhibited at age 4–5) or the “current 

finding” (the phenotype that is currently exhibited). The phenotypes described here are 

related to the following ADI-R items: (1) overall level of language; (2) nodding; (3) head 

shaking; (4) conventional or instrumental gestures; (5) direct gaze.
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Figure 7. 
An overview of the inference of ASD-related phenotypes from SFARI data. Shapes in white 

show sources and software that were available to us; shapes in gray show our own 

development. (1) A Protégé plugin was used to generate ADI-R OWL individuals 

corresponding to ADI-R questionnaire results of patients from the SFARI data set. (2) Each 

ADI-R result item was translated via a SWRL rule which was executed by the SWRL engine 

to populate for each OWL Human individual a set of basic phenotypes corresponding to the 

ADI-R items for that patient. (3) Based on DSM criteria, OWL classes of 

Human_with_DSM_Diagnostic_Criterion were defined. Combinatorial class expressions 

were created automatically via a Protégé plugin for enumeration of combinatorial k-of-N 

expressions. (4) A reasoner was used to infer for each Human patient which DSM diagnostic 

criteria he meets based on his SWRL-inferred basic phenotypes.
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Figure 8. 
An Individual representing the concept Autism along with its synonyms Autistic Disorder, 

Childhood Autism and Infantile Autism. All concepts are instances of the Concept class. 

The synonyms in this figure are type-of Autism but are still considered as synonyms of the 

same concept.
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Figure 9. 
The Autism_High_Level_Visualizer class enables a high-level visualization of autism risk 

factors and comorbidities knowledge.
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Figure 10. 
Conditional Probability individual. The probability (1) that a subject will be diagnosed with 

autism (3) given that he was diagnosed with autoimmune disease (2) is 0.006. These data 

were gathered from healthcare systems in the Boston area (4) as reported by Kohane et al. 

(5). Possible types of healthcare systems are: hospital_outpatient, hospital_inpatient, 

community_clinic, private_clinic.
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Figure 11. 
An individual of the Risk Factor class. (1) Gestational diabetes is an environmental risk 

factor for autism, occurring (2) during pregnancy to (3) the mother of a child who develops 

ASD. The exposure is of class (4) obstetric complications and cited by Gardener (6).
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Figure 12. 
Percentage of subject records that fit the represented DSM-IV criteria
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Figure 13. 
Percentage of subject records that fit the represented DSM-5 criteria
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Table 1

Inference results for DSM-IV criteria

Inferred as having autistic disorder Inferred as not having autistic disorder

Had diagnosis of autistic disorder (2394) 2394 (true positive) 0 (false negative)

Had diagnosis of ASD (196) 183 (false positive) 13 (true negative)

Had diagnosis of Asperger’s (52) 49 (false positive) 3 (true negative)
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Table 2

Inference results for DSM-5 criteria

Inferred as having ASD Inferred as not having ASD

Had diagnosis of ASD (2642) 2485 (true positive) 157 (false negative)

J Biomed Inform. Author manuscript; available in PMC 2016 August 01.


