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Abstract

Automatic processing of magnetic resonance images is a vital part of neuroscience research. Yet 

even the best and most widely used medical image processing methods will not produce consistent 

results when their input images are acquired with different pulse sequences. Although intensity 

standardization and image synthesis methods have been introduced to address this problem, their 

performance remains dependent on knowledge and consistency of the pulse sequences used to 

acquire the images. In this paper, an image synthesis approach that first estimates the pulse 

sequence parameters of the subject image is presented. The estimated parameters are then used 

with a collection of atlas or training images to generate a new atlas image having the same contrast 

as the subject image. This additional image provides an ideal source from which to synthesize any 

other target pulse sequence image contained in the atlas. In particular, a nonlinear regression 

intensity mapping is trained from the new atlas image to the target atlas image and then applied to 

the subject image to yield the particular target pulse sequence within the atlas. Both intensity 

standardization and synthesis of missing tissue contrasts can be achieved using this framework. 

The approach was evaluated on both simulated and real data, and shown to be superior in both 

intensity standardization and synthesis to other established methods.
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1. Introduction

Magnetic resonance (MR) imaging (MRI) is the preferred diagnostic and research imaging 

modality for soft tissue contrast. It is a very versatile modality in part because MR pulse 

sequences allow for diverse manipulations of the nuclear magnetic spins, thus providing a 
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vast amount of complementary information in neuroimaging. For example, T1-weighted (T1-

w) images are typically preferred for tissue segmentation (Styner et al., 2000; Prastawa et 

al., 2004; Roy et al., 2012) and cortical reconstruction (Dale and Fischl, 1999; Han et al., 

2004; Shiee et al., 2014), whereas Double Spin Echo (DSE) and FLAIR (Fluid Attenuated 

Inversion Recovery) sequences are useful to delineate tissue abnormalities like white matter 

lesions (Shiee et al., 2010).

The versatility of MRI also poses a problem. Patient scanner time is finite and thus decisions 

are made about which subset of the many available pulse sequences to acquire. Another 

factor in this decision is the expense of scanning and the long scan time associated with 

various sequences, T2-weighted (T2-w) images for example. A confound in the acquired data 

is the inhomogeneous quality of the data due to the different imaging requirements of each 

sequence. For example, the DSE sequence is generally acquired at a much lower resolution 

than a T1-w magnetization prepared rapid gradient echo (MPRAGE) sequence because of 

the longer repetition time (TR). Sequences like FLAIR suffer from artifacts that are not 

present in other sequences (Stuckey et al., 2007), contributing to problems with their use in 

multimodal analysis. More fundamentally, the imaging data can be corrupted due to patient 

motion or inappropriate parameter settings. Our work is focused on improving the utility of 

multimodal data through image synthesis, either by restoring corrupt data or by 

standardizing the intensity of existing data.

By image synthesis we mean learning and applying an intensity transformation to MR 

images in order to produce images that perform better in various image processing tasks. 

The resultant synthetic images could belong to any pulse sequence we choose to synthesize. 

Image synthesis, in the broadest sense, is already used in nearly every image processing 

pipeline—for example in intensity inhomogeneity correction or intensity scaling. Intensity 

standardization transforms the intensities of a given subject image to a reference image, 

typically of the same (or similar) pulse sequence. It is a special case of image synthesis, in 

which the synthesized image is of the same (or similar) pulse sequence. Synthesized images 

are not meant to be used for diagnostic purposes or to replace scanning subjects. Rather, 

they are intended to facilitate image analysis for the extraction of clinical or scientific 

information.

Intensity standardization has long been an important problem for MR image processing, and 

many solutions have been proposed. Unlike x-ray computed tomography (CT), MRI does 

not have a consistent image intensity scale for different tissues. Though this does not pose a 

problem for diagnostic purposes, automatic image processing algorithms such as 

segmentation algorithms are known to be inconsistent as a result (Nyúl and Udupa, 1999). 

Since there is no consistent anatomical meaning to the numerical value of an intensity, it is 

difficult to directly compare MR data acquired at different sites and on different scanners. 

Even data acquired in the same machine for the same subject can differ in intensity 

characteristics. Intensity standardization using ideas of image synthesis can assist in 

consistent processing of such data (Roy et al., 2013a).

Image synthesis of an alternative modality has been shown to be useful in many image 

analysis tasks. Iglesias et al. (2013) showed that it is better to register a T2-w image to a 
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synthetic T2-w image created from a T1-w image, than to directly register a T2-w image to 

the T1-w image. A similar application to correct geometric distortion in diffusion tensor 

images using synthetic T2-w images was demonstrated by Roy et al. (2013a). In Jog et al. 

(2014a) it was shown that datasets with a missing FLAIR image could be augmented by 

creating a synthetic FLAIR image. Lesion segmentation using synthetic FLAIRs was shown 

to be equivalent to and more consistent than the lesion segmentation using real FLAIRs. The 

consistency was attributed to the fact that the synthetic FLAIRs were produced using a 

common set of atlas or training images. The lesion segmentation markedly improved when 

real FLAIR images with significant imaging artifacts were replaced with synthetic FLAIRs. 

In Jog et al. (2014b), a method to create super-resolution images using image synthesis ideas 

was presented. This significantly improved the image quality and resolution of inherent low 

resolution data acquired using the DSE or FLAIR pulse sequences.

Image synthesis in general has gained significant attention in the medical imaging 

community in the last seven years (Rousseau, 2008; Roy et al., 2010a,b; Rousseau, 2010; 

Roy et al., 2011; Roohi et al., 2012; Jog et al., 2013a; Rousseau and Studholme, 2013; 

Konukoglu et al., 2013; Burgos et al., 2013; Ye et al., 2013; Iglesias et al., 2013; Roy et al., 

2013a,b, 2014). A classical registration-based solution to this problem was presented in 

(Miller et al., 1993): Given a subject image b1 with contrast 1 and a pair of co-registered 

atlas images a1 and a2 of contrasts 1 and 2, respectively, a1 is registered to b1 using a 

deformable registration algorithm, and the transformation is then applied to a2 to produce 

the synthetic image b ̂
2 with contrast 2. The method demonstrated synthesis of positron 

emission tomography images from MR images. An extension of this approach, described by 

Burgos et al. (2013), uses multiple, aligned pairs of MR and CT images as atlases and 

performs multi-atlas deformable registration to the subject with intensity fusion to 

synthesize a subject CT image from a subject MR. This approach produces synthetic CT 

images from which the attenuation coefficients are learned and used for PET reconstruction. 

A more general, intensity transformation-based approach to image synthesis is described by 

Hertzmann et al. (2001), wherein an image transformation, which can be defined as an 

application of an image filter, was learned. Given training data the filtered image was 

synthesized from the unfiltered one by applying the learned transformation. This approach, 

known as image analogies, has seen use in MRI synthesis (Iglesias et al., 2013). More 

recently, the work by Roy et al. (2011, 2013a) handles image synthesis using a sparse 

reconstruction of a dictionary of atlas image patches.

While each of these methods produces a useful, synthetic image under different initial 

assumptions, they each have certain shortcomings. For instance, deformable registration 

may fail to yield an accurate registration throughout the whole brain. If the subject images 

show pathology in normal tissue regions and the atlas images do not, then registration is 

unable to recreate these differences. Methods based on intensity transformation like image 

analogies and the sparse reconstruction approach are dependent on the b1 image being 

correctly intensity standardized with the training data (atlas image a1). These methods also 

do not take into account the MR image formation process while synthesizing the new image. 

We would like to improve upon these approaches by using the atlas-based intensity 

transformation ideas while incorporating the MR image formation process.

Jog et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jog et al. (2013a) presented a patch-based regression approach using random forest 

regression for synthesizing MR images. The synthesis is modeled as a nonlinear regression 

in terms of a patch in a1 transforming to the corresponding central voxel in a2. This 

approach, though extremely fast, also requires the subject image to be intensity standardized 

to the atlas image prior to applying the learned regression and does not account for the MR 

physics of acquisition. In this paper, we have built upon this random forest regression by 

synthesizing a new subject image from the available subject image(s) and a set of atlas 

images. We create a preprocessing framework in which we synthesize images using 

knowledge of both the imaging physics and information in the atlas. Voxel intensity in MRI 

is primarily dependent on intrinsic nuclear magnetic resonance (NMR) parameters such as 

proton density (PD), transverse relaxation time (T2), longitudinal relaxation time (T1) and on 

pulse sequence parameters such as scanner gain (G0), repetition time (TR), echo times (TE), 

etc. Given an unseen subject image (and the pulse sequence) we estimate the pulse sequence 

parameters using information derived solely from the image intensities. We apply this pulse 

sequence with the estimated parameters to quantitative PD, T1, and T2 images in our atlas. 

Thus, a new atlas image with the same imaging characteristics as the subject image is 

synthesized. We then learn a nonlinear regression (Jog et al., 2013a) between this 

standardized atlas image and the desired, target atlas contrast. This learned regression can 

then be applied to the subject image, thereby synthesizing a subject image with the desired 

contrast.

The core idea of estimating tissue parameters was previously used in Fischl et al. (2004). 

However, that approach required the acquisition of very specific pulse sequences—a 

requirement that our approach does not share. We refer to our method as Pulse Sequence 

Information-based Contrast Learning On Neighborhood Ensembles (PSI-CLONE)—which 

we stylize as Ψ-CLONE. We describe our four-step algorithm to perform image synthesis in 

Section 2. Results on phantom data are in Section 3 and on real data in Section 4; these 

experiments include scanner intensity standardization and synthesis of T2-w images. In 

Section 5, we present additional synthesis applications: super-resolution and FLAIR 

synthesis. In Section 6, there is a discussion about the potential impact of this work and 

concluding remarks.

2. Method

Let  = {b1, b2, … , bm} be the given subject image set, imaged with pulse sequences Γ1, 

… , Γm. This set can contain images from different pulse sequences such as MPRAGE, 

spoiled gradient recalled (SPGR), and DSE. Let  = {a1, a2, … , an} be the atlas collection, 

with images of contrasts 1, 2, … , n, generated by pulse sequences Ψ1, … , Ψn, 

respectively. By pulse sequence we mean particular, named procedures like MPRAGE. By 

contrast we mean the tissue contrast produced by a pulse sequence, say a T1-weighted 

contrast or a T2-weighted contrast. For instance, the MPRAGE pulse sequence produces a 

T1-w contrast image. Since in most cases our data consists of specific pulse sequences 

producing specific contrasts, these terms can be used interchangeably.

The pulse sequence sets Γ1, … , Γm and Ψ1, … , Ψn need not intersect, which represents an 

important distinction between Ψ-CLONE and all other atlas-based image synthesis methods. 
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The atlas also contains quantitative PD, T1, and T2 maps, denoted aPD, aT1, and, aT2. Our 

goal is to synthesize the subject image b̂
r, r ∈ {1 … , n}, which is how the subject brain 

would look had it been imaged with pulse sequence Ψr used to acquire the atlas image ar. 

The steps of our algorithm are as follows: 1) Estimate the pulse sequence parameters used to 

acquire bi, i ∈ {1, … , m}; 2) With this estimate, generate abi the atlas image with the same 

contrast, i, as bi; 3) From the expanded atlas collection  ∪ {abi} we learn the nonlinear 

intensity transformation between contrast i and the target contrast image ar (of contrast r), 

using patch-based random forest regression; 4) The intensity transformation is then applied 

to bi, generating the subject image b̂
r, of the desired contrast. These steps are outlined 

graphically in Fig. 1 and detailed in the following sections.

2.1. Estimation of Subject Pulse Sequence Parameters

The intensity observed at voxel location x in bi is assumed to be a result of the underlying 

tissue parameters—proton density PD, longitudinal relaxation time T1, and transverse 

relaxation time T2—denoted by β(x) = [PD(x), T1(x), T2(x)]. The intensity is also a result of 

the pulse sequence used, Γi, and its imaging parameters denoted Θbi. Thus we denote the 

imaging equation as,

(1)

For the DSE pulse sequence, the equation is

(2)

where ΘDSE = {TR, TE1, TE2, GDSE} consists of repetition time TR, two echo times TE1 

and TE2 and scanner gain GDSE (Glover, 2004). For the T1-w SPGR sequence the imaging 

equation is

(3)

where ΘS = {TR, TE, θ, GS} consists of repetition time TR, echo time TE, and flip angle θ 

(Glover, 2004). The imaging equation for the MPRAGE sequence can be approximated 

from the mathematical formulation calculated by Deichmann et al. (2000) as

(4)

where ΘM = {TI, TD, τ, GM} consists of inversion time TI, delay time TD, and the slice 

imaging time τ (Deichmann et al., 2000). We assume that we know one of these parameters 
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from the image header and estimate the rest by fitting the imaging equation to average tissue 

intensities.

Given an input subject image, bi, we want to estimate a subset (such as scanner gain, flip 

angle, echo times) of pulse sequence parameters Θbi of Γbi. We make certain assumptions 

about the tissues being imaged thereby simplifying the system of equations we need to 

solve. As the human brain is dominated by three primary tissues, cerebrospinal fluid (CSF), 

gray matter (GM), and white matter (WM), we can use the known average values of β to 

solve for the imaging parameters. The mean values of β for CSF, GM, and WM denoted by 

β̄
C, β̄

G, and β̄
W, respectively have been reported previously for 1.5 T (Kwan et al., 1999) and 

3 T MRI (Wansapura et al., 1999). To identify the three tissue classes, we run a simple 

three-class fuzzy c-means (Bezdek, 1980) algorithm on the T1-w image (bS or bM), and 

choose voxels with high class memberships (≥0.8) to compute the mean intensities of CSF, 

GM, and WM in bi as b̄
iC, b̄

iG, and b̄
iW, respectively for i = 1, … , m.

We make the assumption that these mean intensities are a result of the mean tissue 

parameter values. This relationship is written as,

(5)

The only unknown is Θbi, which for DSE type pulse sequences is parametrized by four 

terms. Similarly, MPRAGE and SPGR pulse sequences (Deichmann et al., 2000; Glover, 

2004) have four parameters. Thus, we have three equations (Eqn. 5) and four unknowns, and 

we can solve this system of equations using Newton's method after assuming knowledge of 

one of the unknowns. For example, in the SPGR pulse sequence, we assume that the 

repetition time, TR is known from the image header and the unknowns that are often not 

well-calibrated in an MR scanner—e.g, flip angle and scanner gain—are estimated. For the 

given subject image set  = {b1, b2, … , bm}, we can thus estimate {Θb̂1, … , Θ̂
bm} for each 

of the subject images at the end of Step 1.

There are many factors that affect the accuracy of a pulse sequence equation, and more 

unknowns are likely to be actually involved than we may know about. To address this, we 

have simplified the problem by using theoretical equations or approximations of theoretical 

equations that describe the basic, functional relationship between the NMR parameters (PD, 

T1, T2) and the signal intensity. For instance, the signal intensity equation for the MPRAGE 

pulse sequence, given in Eqn. 4, is an approximation derived from a complex theoretical 

derivation of a simple MPRAGE sequence by Deichmann et al. (2000). In practice, the 

MPRAGE sequence implemented on the scanner has many additional parameters that are 

not accounted for by this derivation. Therefore, in most cases, our estimates of the pulse 

sequence parameters are not particularly close to the parameters recorded in the image 

headers. It turns out that this is not important for the problem at hand, since we do not need 

to know the exact imaging parameters of any given pulse sequence. Instead, we need to be 

able to generate a realistic synthetic image from our atlas that has the same intensity 

characteristics as the subject image using the estimated parameters and approximate pulse 
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sequence. Approximate imaging equations and their estimated parameters are sufficient for 

this purpose.

2.2. Synthesizing a New Atlas Image with Subject Pulse Sequence Estimates

Now we describe Step 2 of the process, as illustrated in Fig. 1. It is unlikely that our atlas 

would contain an image with the exact pulse sequence parameters Θbi estimated from bi, 

which is why we synthesize an atlas image with the same parameters. Using the estimated 

imaging parameters, Θb̂i, we apply the pulse sequence to the atlas β. The atlas  = {a1, a2, 

… , an} consists of a set of co-registered brain MR images of a single brain with different 

pulse sequences. It also consists of aPD, aT1, and aT2, the quantitative PD, T1, and T2 maps 

for the atlas. Thus, we can directly apply the subject pulse sequence, Γi, and its estimated 

Θ̂bi to synthesize a new atlas image abi. We thereby create an atlas image that looks as if the 

atlas brain was imaged with the pulse sequence Γi with parameters Θ̂bi. We need this 

intermediate step so that we can learn the intensity transformation between the subject pulse 

sequence Γi and the reference pulse sequence Ψr in a common image space, which is the 

atlas image space.

In practice, the atlas collection  may lack the quantitative PD, T1, and T2 maps—the 

relaxometry sequence data is generally not available for most clinical data. We can 

approximately estimate these maps from the images present in the atlas collection by solving 

for PD, T1, and T2 at each voxel. Since we are estimating three quantities in β(x) = [PD(x), 

T1(x), T2(x)], we require at least three atlas images, au, av, and aw. From the method 

described in Section 2.1, we can estimate Θ̂au, Θ̂
av, and Θâw. For each voxel x, we have 

three intensity values from three images, thus leading to three equations,

(6)

This system of simultaneous nonlinear equations can be solved by Newton's method for 

each voxel to provide us with an estimate β̂(x). The component parts of β̂(x) are [β̂
1(x), 

β̂
2(x), β̂

3(x)] that are our estimates of [PD(x), T1(x), T2(x)]. Thus, we add the images aβ̂1, 

aβ̂2, and aβ̂3 to our atlas to represent the PD, T1, and T2 quantitative maps, respectively. This 

calculation needs to be done only once, during the construction of a suitable atlas. A variant 

of this approach was used in Jog et al. (2013b) as a step in intensity standardization.

2.3. Learning and Applying Nonlinear Regression on Image Patches

Having synthesized the atlas image abi that has the pulse sequence characteristics of the 

subject image bi, we next learn the intensity transformation that will convert the intensities 

in abi to the corresponding intensities in the target atlas image ar. We depict this as Step 3 in 

Fig. 1. This is achieved through a nonlinear regression by considering the image patches of 

abi together with the corresponding central voxel intensities in ar. We extract p × q × r sized 

patches from abi, centered at the vth voxel—in our experiments p = q = r = 3. We stack the 

3D patch into a d × 1 = 27 × 1 vector and denote it by fv ∈ ℝd, which we refer to as a feature 

vector of the vth voxel. The corresponding intensity at the vth voxel of ar is denoted by yv 
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and acts as the dependent variable in our regression; we denote these training data pairs as 

〈fv, yv〉. We use patches as intensity features to learn this transformation. A small patch 

captures the local context at a voxel and ensures spatial smoothness. We could use other 

synthesis methods like MIMECS (Roy et al., 2013a) to learn this transformation, however 

we chose to use the random forest regression as it was shown to produce better quality 

synthetic images at an order of magnitude lower computation time (Jog et al., 2013a).

We use a bagged ensemble of regression trees to learn this nonlinear regression (Breiman, 

1996). This standalone regression ensemble for synthesis was previously explored in Jog et 

al. (2013a). A single regression tree learns a nonlinear regression by partitioning the d-

dimensional space. This is done by performing binary comparison splits at each node of the 

tree, based on a particular attribute value which is compared to a threshold. The tree is built 

by minimizing the least squares criterion during training. The growth of the tree is limited 

by fixing the maximum number of vectors allowed at each leaf, in our experiments this was 

limited to five data vectors. This stops a tree from becoming too deep and hence over-fitting 

the training data. A single regression tree is considered a weak learner and in general has 

higher error (Breiman, 1996), therefore we use a bagged ensemble of regression trees (30 in 

our experiments), which reduces errors by bootstrap aggregation (Breiman, 1996). To create 

a bootstrapped data set, a training sample is picked at random with replacement N times, 

where N is the size of the training data, ∼106 in our experiments.

Once the training is complete, the trained regression ensemble transforms intensities of abi 
to those of ar. This ensemble is used to synthesize the subject image b̂

r by extracting image 

patches from bi and applying the trained regression ensemble to each patch to synthesize the 

corresponding br̂ voxel intensities, which is the last step, Step 4 in Fig. 1.

Thus, starting with a subject image and a set of atlas images, we estimate the pulse sequence 

parameters of the subject image, create an additional atlas image by applying those 

parameters to the atlas quantitative images, learn an intensity transformation from the 

additional atlas image to the target atlas contrast image using random forest regression, and 

lastly apply the regression to the given subject image to create a synthetic image of the 

required contrast. In the following sections, we will describe validation experiments and 

applications of Ψ-CLONE in different image analysis contexts.

3. Computational Phantom Experiments

The goal of our method is to produce synthetic images that are useful substitutes for real 

images for image processing tasks. Thus, one aspect of algorithm performance evaluation 

consists of using image quality metrics to compare synthetic images with known ground 

truth images. The ground truth images are simulated with known pulse sequence parameters 

on brain voxels with known NMR parameters. We compare our synthetic images with these 

known simulated images to validate our method in a controlled experimental setting. In this 

section, we used the Brainweb image phantom for intensity standardization and synthesis of 

T2-w images from T1-w images.
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3.1. Brainweb SPGR: Estimating abi

In this validation experiment the atlas set  consisted of images from the Brainweb 

(Cocosco et al., 1997) phantom, consisting of:

a1: SPGR image (1.5 T, TR = 18 ms, α = 30°, TE = 10 ms) with 0% noise,

aT1: Quantitative T1 map derived from two different SPGR images, with two different 

flip angles (TR = 100 ms, TE = 15 ms, α1 = 15°, and α2 = 30°) using the dual flip angle 

method (Bottomley and Ouwerkerk, 1994),

aT2: Quantitative T2 map derived from a DSE sequence (TR = 6653 ms, TE1 = 30 ms, 

TE2 = 80 ms) by the two point method (Landman et al., 2011),

aPD: Quantitative PD map derived from the reference SPGR and the DSE images using 

the method described in Section 2.2.

The aim of this experiment is to validate Step 1 and Step 2 of Ψ-CLONE. We do this by 

taking several images as a potential subject image and carry out just the first two steps of Ψ-

CLONE which results in the image abi. Specifically the subject images were:

b1: SPGR image (1.5 T, TR = 18 ms, α = {15°, 30°, 45°, 60°, 75°, 90°}, TE = 10 ms) 

with 0% noise. (Parameters, excepting TR, not provided to the algorithm)

We note that the subject imaging parameters are shown for the sake of the reader and are not 

provided to the algorithm (except TR).

The first step of Ψ-CLONE estimates the imaging parameters from the subject image. As 

both the atlas and subject images come from the same phantom—they have the same 

phantom anatomy and NMR parameters—this allows us to validate Step 2, in which we 

create a synthetic atlas image using the pulse sequence parameters of the subject image. 

Since the anatomy of subject and atlas is the same in this special case, we can directly 

compare the synthetic atlas image with the subject image to validate if the pulse sequence 

parameters are producing an identical image. We would prefer to compare the estimated 

pulse sequence parameters with the known true parameters. Unfortunately, this comparison 

is not suitable for all parameters because we use theoretical equations or their 

approximations to estimate the pulse sequence parameters and the actual simulation or 

scanner implementation can be more complex with a larger number of parameters. As a 

small example, we carried out an experiment on the Brainweb phantom data to measure the 

error between the true parameters and the estimated parameters. We simulated different 

SPGR images by keeping the repetition time TR = 18 ms fixed, and varying the flip angle. 

We next estimated the imaging parameters of these images by the method described above. 

The estimated flip angles for these images and the true flip angles used to simulate these 

images are recorded in Table 1. As can be seen, these estimates are close to but not equal to 

the truth. This error increases in realistic settings.

Hence we focus on the images that these parameter estimates create when applied to the 

estimated PD, T1, and T2 values. We compute the root mean squared error (RMSE) and peak 

signal to noise ratio (PSNR) between the new atlas image (abi) and the subject image (bi), as 

shown in Table 2. Figure 2 shows the input b1 image and the estimated ab1, along with the 
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difference image for the case of α= 45° (third column of Table 2). The images are very 

similar to each other with small differences at tissue boundaries. The differences are only 

visible at the boundaries because, as the histogram in Fig. 4 shows, Brainweb phantom 

images with no noise typically have very homogenous intensity distribution in each of the 

tissue classes (WM, GM, CSF). Hence the error inside the tissues is very close to zero, but is 

slightly higher at the intermediate intensity voxels that are closer to the boundaries. We note 

that RMSE and PSNR are computed over the non-zero voxels in the image. RMSE is 

reported in terms of percentage error with respect to the maximum intensity in the image. 

The high PSNR values in Table 2 along with the visual result in Fig. 2 confirm that the 

theoretical pulse sequence equations and the underlying quantitative PD, T1, and T2 maps 

produce images that are close to the ground truth images, thus validating the first two steps 

of our algorithm.

3.2. Brainweb SPGR Intensity Standardization

The goal of this experiment is to standardize a Brainweb SPGR subject image to an atlas 

target SPGR image. Different subject SPGR images were simulated using different input 

pulse sequence parameters. Using the same Brainweb atlas collection described in Section 

3.1, we evaluated the results of Steps 3 and 4 of our method, the regression based image 

synthesis. Our subject images are:

b1: SPGR image (1.5 T, TR = 18 ms, α= {15°, 30°, 45°, 60°, 75°}, TE = 10 ms) with 

{0%, 3%} noise levels. (Parameters, excepting TR, not provided to the algorithm)

As the target atlas and subject images are both from the SPGR pulse sequence, this is a 

special case of synthesis, normally referred to as intensity standardization or normalization. 

We can compare the standardized subject image to the target atlas image directly as they 

have the same anatomy. We also compared the performance of our standardization with a 

landmark-based piecewise linear scaling method (UPL) (Nyúl et al., 2000), reporting PSNR 

for the input subject image in Table 3. UPL estimates the landmarks in the images for each 

of the three tissue classes (CSF, GM, & WM) and then uses a piecewise linear scaling 

between the target and subject histogram to normalize the images.

The histogram of a noise free Brainweb SPGR phantom is shown in Fig. 4. The histogram 

landmarks consist of very sharp peaks, indicating that a large number of voxels have very 

similar intensities. A piecewise linear transform can map exactly between two (subject and 

atlas) such histograms of noiseless Brainweb phantoms. This explains why the UPL method 

performs better than our method in the 0% noise case. However, with the introduction of 

noise our method outperforms UPL in four out of the five cases, as shown in Table 3.

3.3. Brainweb T2-w Synthesis

Ψ-CLONE was next used to synthesize a T2-w image from a subject SPGR image, using the 

Brainweb atlas collection described in Section 3.1 with the addition of:

a2: T2-w image from the second echo of a DSE (1.5 T, TR = 3000 ms, TE1 = 17 ms, 

TE2 = 80 ms) with 0% noise.

We use the following input subject Brainweb SPGR images:
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b1: SPGR image (1.5 T, TR = 18 ms, α= {15°, 30°, 45°, 60°}, TE = 10 ms) with {0%, 

1%, 3%, 5%} noise levels. (Parameters, excepting TR, not provided to the algorithm)

The UPL method is unable to synthesize a T2-w image from an SPGR, as it is primarily an 

intensity standardization approach; thus, for this experiment we compare Ψ-CLONE to 

MIMECS (Roy et al., 2011, 2013a). MIMECS is a state-of-the-art MR contrast synthesis 

approach that uses an example-based sparse reconstruction from image patches to perform 

intensity standardization and missing tissue contrast recovery. MIMECS, unlike Ψ-CLONE, 

is blind to the MR physics and solves the synthesis problem based on patch similarity 

between the subject and the atlases. As the atlas and the subject have the same phantom 

anatomy, an ideal synthesis would result in an image that is exactly equal to the atlas T2-w 

image. Thus, we evaluate the quality of synthesis by calculating the PSNR between the atlas 

image and the synthesized subject image. We also evaluate the quality of synthesis using the 

universal quality index (UQI) (Wang and Bovik, 2002), which is an image quality metric 

that models how the human visual system would perceive the similarity of two images. If 

the images are perceptually identical, their UQI is 1; otherwise it lies between 0 and 1.

The results for this experiment are shown in Table 4. The top half of the table shows results 

for changing noise levels with a fixed flip angle (30°) for the input SPGR, while the bottom 

half shows the results for changing flip angles with 0% noise in the input SPGR. For both 

metrics, Ψ-CLONE outperforms MIMECS. An example of an input SPGR used in this 

experiment, the true T2-w, image and the outputs of both MIMECS and Ψ-CLONE are 

shown in Fig. 5.

4. Real Data Experiments

In this section, we present intensity standardization and image synthesis experiments 

performed on real datasets.

4.1. Human Stability Data

A normal, healthy human subject was imaged at weekly intervals using the same scanner 

and pulse sequence for nine weeks. We demonstrate that image segmentation is more 

consistent on data which is intensity standardized using Ψ-CLONE. To do this we 

standardize each time point to an atlas consisting of:

a1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82 × 0.82 × 1.17 mm3 voxel 

size),

aT1: Quantitative T1 map computed as described in Section 2.2,

aT2: Quantitative T2 map derived as described in Section 2.2,

aPD: Quantitative PD map derived as described in Section 2.2,

and each of the nine subject images is:

b1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82 × 0.82 × 1.17 mm3 voxel 

size. (Parameters, excepting TR, not provided to the algorithm)
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We compare the segmentations of the images pre- and post-standardization using Ψ-

CLONE, based on segmentations generated by TOADS (Bazin and Pham, 2007). We 

specifically compare the relative tissue volumes (relative to the intra-cranial volume (ICV)), 

over the nine weeks. Ideally, a normal healthy subject should not present any changes in 

tissue volumes over such a short period of time.

Fig. 6 shows the relative WM volumes before and after Ψ-CLONE was applied. Visually, it 

is apparent that the WM volumes change less when standardized images are segmented. 

Table 5 shows the coefficient of variation of relative tissue volumes for CSF, cortical GM, 

subcortical GM, ventricles, and cortical WM. The coefficients of variation from 

segmentation after standardization by Ψ-CLONE are smaller than those without 

standardization for cortical WM, cortical and subcortical GM, and ventricles, indicating that 

the segmentation is more stable. As there are only nine time-points there is insufficient data 

to determine significance.

The subcortical gray matter class consists of the thalamus, caudate and putamen structures. 

We compared the volumes of these structures before and after standardization and calculated 

the coefficient of variation in both cases. Results are shown in Table 6. The thalamus 

volumes for Ψ-CLONE standardized images are most stable as evinced by the reduced 

coefficient of variation. The coefficient of variation decreases slightly for putamen and 

increases slightly for caudate. However the accuracy of LesionTOADS segmentations for 

subcortical structures is not as high as it is for the cortical GM or WM, hence these numbers 

may not be reliable indicators of segmentation consistency. Additionally, these are only nine 

time-points of a single subject, so we cannot claim statistical significance in these 

measurements at this point.

4.2. MR Intensity Scale Standardization for MS Patients

To allow us to have statistical power in our exploration of MR intensity scale 

standardization, we employ a cohort of 15 Multiple Sclerosis (MS) patients with 57 scans. 

Each patient has at least three scans (mean # of scans per subject is 3.8) acquired 

approximately a year apart. Preprocessing of the images included skull-stripping (Carass et 

al., 2011) and bias field inhomogeneity correction (Sled et al., 1998). For this experiment 

our atlas consisted of:

a1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82 × 0.82 × 1.17 mm3 voxel 

size),

a2: T2-w image from the second echo of a DSE (3 T, TR = 4177 ms, TE1 = 12.31 ms, 

TE2 = 80 ms, 0.82 × 0.82 × 2.2 mm3 voxel size),

a3: PD-w from the first echo of a DSE (3 T, TR = 4177 ms, TE1 = 12.31 ms, TE2 = 80 

ms, 0.82 × 0.82 × 2.2 mm3 voxel size),

a4: FLAIR (3 T, TI = 11000 ms, TE = 68 ms, 0.82 × 0.82 × 2.2 mm3 voxel size)

aT1: Quantitative T1 map computed as described in Section 2.2,

aT2: Quantitative T2 map derived as described in Section 2.2,
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aPD: Quantitative PD map derived as described in Section 2.2,

and our subject image was:

b1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82 × 0.82 × 1.17 mm3 voxel 

size). (Parameters, excepting TR, not provided to the algorithm)

We use an atlas MPRAGE as the target pulse sequence to which we standardize the 57 data 

sets. We treat each data set independently, handling the intensity standardization as a cross-

sectional task. To validate the intensity standardization, we segmented (Shiee et al., 2010) 

the original MPRAGE datasets giving us ten labeled structures: ventricles, sulcal CSF, 

cerebellar GM (Cereb. GM), cortical GM (Cort. GM), thalamus, putamen, cerebellar WM 

(Cereb. WM), cortical WM (Cort. WM), and lesions. Using these structures as reference, we 

compared the mean intensity within these structures prior to standardization and after 

standardization with UPL—using the target MPRAGE in our atlas as a standardization 

target—and our method (Ψ-CLONE). We note that the atlas images did not have lesions. For 

applications like T1-w intensity standardization, we observed that the presence or absence of 

lesion samples in the training data did not affect the synthesis result. The primary reason is 

that white matter lesion intensities are similar to GM (and rarely CSF) in T1-w contrasts. 

Thus, the database has a large number of normal appearing GM and CSF samples available 

to reconstruct the lesion intensities.

Results are shown in Table 7. The mean intensity values of the original images and the Ψ-

CLONE standardized images recorded in Table 7, demonstrate that our method is moving 

the MS data intensities closer to the atlas intensities, as desired by standardization. A one 

tailed F-test on the mean structure intensities after standardization shows that the standard 

deviation of the mean structure intensities across the 57 datasets for Ψ-CLONE is 

significantly smaller in comparison to UPL for seven of the ten structures. We also note that 

the statistical significance does not change if the segmentation is done on the original data or 

on the standardized versions.

Next, we ran Lesion TOADS segmentation on images before and after standardization. 

These segmentations were used to calculate image contrast between neighboring structures 

to indicate the effect of synthesis-based standardization on subsequent segmentation. We 

looked at the following structure boundaries, Cortical CSF-Cortical GM, Cortical GM-WM, 

WM-lesions, WM-Ventricles, WM-Caudate, WM-Putamen, WM-Thalamus, Caudate-

Ventricles, and Thalamus-Ventricles and have tabulated the results in Table 8. We can show 

that on average these contrast values for synthetic images are higher than the real images, 

significantly in most cases. The contrast values for synthetic images are also closer to the 

reference contrast values for the same structures, than the original images. We have defined 

contrast between two neighboring structures f and g as , where μ(f) is the mean 

intensity of the brighter structure f and μ(g) is the mean intensity of the structure g. The 

higher the contrast, the easier it is to differentiate structures.
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4.3. T2-w Synthesis from Real MPRAGE Data

To demonstrate T2-w synthesis from MPRAGE on real data, we used the 21 subjects from 

the publicly available multimodal reproducibility data (Landman et al., 2011). We held out a 

single subject as the atlas:

a1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.0 × 1.0 × 1.2 mm3 

voxel size),

a2: T2-w image from the second echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms, TE2 

= 80 ms, 1.5 × 1.5 × 1.5 mm3 voxel size),

a3: PD-w image from the first echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms, TE2 = 

80 ms, 1.5 × 1.5 × 1.5 mm3 voxel size),

aT1: Quantitative T1 map computed from two flip angles (3 T, TR = 100 ms, TE = 15 

ms, α1 = 15°, α2 = 60°, 1.5 × 1.5 × 1.5 mm3 voxel size),

aT2: Quantitative T2 map derived from a two-point method (3 T, TR = 6653 ms, TE1 = 

30 ms, TE2 = 80 ms, 1.5 × 1.5 × 1.5 mm3 voxel size),

aPD: Quantitative PD map derived from the MPRAGE and the DSE images using the 

method described in Section 2.2.

Our subject image is:

b1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.0 × 1.0 × 1.2 mm3 

voxel size). (Parameters, excepting TR, not provided to the algorithm)

We note that the atlas image did not have lesions. For an application like T2-w synthesis, we 

again observed that the presence or absence of lesion samples in the training data did not 

affect the synthesis result. The primary reason is that white matter lesion intensities are 

similar to GM (and rarely CSF) in T1-w and T2-w contrasts. Thus, the database has a large 

number of normal appearing GM and CSF samples available to reconstruct the lesion 

intensities.

The remaining 20 available subjects each have two MPRAGE acquisitions and two 

corresponding DSE images which are co-registered to the MPRAGE. These images were 

acquired on the same scanner within a short duration of each other. For each of these 40 

images (20 subjects × 2 MPRAGE scans) we synthesized a T2-w image. As the atlas was 

imaged on the same scanner we directly compare the synthesized T2-w image with the true 

T2-w image from the same scanning session, using PSNR and UQI. We compared to 

MIMECS (Roy et al., 2011) and to a deformable registration-based synthesis.

To carry out synthesis using deformable registration, the atlas image is registered 

deformably to the subject image of the same contrast. The same deformation is then applied 

to the atlas image of the desired contrast to produce the synthetic subject image. We use the 

state-of-the-art registration method SyN (Avants et al., 2008) for this synthesis and refer to 

this method as D-SyN. Table 9 shows the PSNR and UQI for these three methods. We 

observe that our method (Ψ-CLONE) provides a significantly (α < 0.01, using the right-
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tailed two sample t-test) better quality synthesis in comparison to both MIMECS and D-

SyN.

Figure 7 shows the results for each synthesis approach in comparison to the ground truth 

image. Though the PSNR values for D-SyN are better than MIMECS (see Table 9), the D-

SyN synthesis result is anatomically incorrect—the ventricle boundary is incorrect and 

lesions posterior to the ventricles are not synthesized. As the output of D-SyN is based on 

deformably registering the atlas to the subject, if the atlas does not contain certain tissue 

features—lesions, for example—then the synthesized subject will not contain them as well. 

The lesion in Fig. 7 is a white matter lesion. We know that lesion boundaries appear slightly 

different in the MPRAGE than in the real T2-w image, and hence it cannot be perfectly 

reproduced in the synthetic T2-w image. However we aim to synthesize it as correctly as 

possible and do a better job than currently available synthesis algorithms. The result of 

MIMECS is quite noisy and Ψ-CLONE yields an image that is most visually similar to the 

true image.

We also used the atlas images of this dataset to evaluate our estimation procedure for the 

intrinsic parameters T2 and T1. The median T2 values calculated by the two point method 

(Landman et al., 2011) using the DSE images were 76 ms for WM, 85 ms for GM, and 175 

ms for CSF. We used our estimation procedure (as described in Section 2.2) and the 

estimated median T2 values obtained were 76 ms for WM, 91 ms for GM, and 762 ms for 

CSF. Both CSF distributions have a very large standard deviation (∼104), due to numerical 

errors. The intensities determined by the imaging equations also plateau off after a certain T2 

value due to their inverse exponential nature (see Eq. 2). Thus the intensities produced for 

high enough T2 values are very close to each other. The T1 map was estimated via two flip 

angle spoiled gradient images, as mentioned in the atlas description. This is not an ideal 

approach as the images acquired were noisy and the flip angle calibration is not considered 

accurate enough. The median T1 values thus calculated using the dual flip angle image were 

775 ms for WM, 1074 ms for GM, and 1616 ms for CSF. Our estimation procedure returned 

the following median T1 values of 779 ms for WM, 1151 ms for GM, and 2916 ms for CSF. 

As with T2 values, the intensities produced by high T1 values plateau off after a certain point 

due to the inverse exponential dependence on T1 (see Eqs. 2, 3, 4). Thus, despite being 

slightly different from the expected values, our estimated T2 and T1 values are good enough 

to provide a realistic synthesis.

5. Further Synthesis Applications

In this final experimental section, we present additional results that demonstrate potential 

uses of Ψ-CLONE.

5.1. Synthesizing Higher Resolution T2-w Data

Example-based synthesis of high resolution brain MR images has been explored in many 

recent works (Rousseau, 2008; Manjón et al., 2010a,b; Konukoglu et al., 2013). We applied 

Ψ-CLONE to synthesize higher resolution T2-w images than those acquired on the scanner. 

Our atlas collection  is:
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a1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.1 × 1.1 × 1.1 mm3 

voxel size),

a2: T2-w image from the second echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms, TE2 

= 80 ms, 1.1 × 1.1 × 1.1 mm3 voxel size),

and our subject images come from our MS cohort:

b1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82 × 0.82 × 1.17 mm3 voxel 

size). (Parameters, excepting TR, not provided to the algorithm)

Pulse sequences like the DSE or FLAIR tend to have large TR or TI values to achieve the 

right contrast. To reduce the scan time while imaging patients, these pulse sequences are 

usually acquired at a lower resolution than a T1-w sequence such as MPRAGE. Multimodal 

analysis of such datasets requires all images to exist in the same coordinate system at the 

same digital resolution. This is usually achieved by upsampling the low resolution scans to 

the high resolution ones using interpolation, which results in blurring of the image data. 

Using Ψ-CLONE, we can synthesize a T2-w image from the high resolution MPRAGE. This 

synthetic image will have the same resolution as that of the MPRAGE and hence can replace 

the acquired low resolution image. As we have no ground truth for the higher resolution T2-

w image we visually compare it with the acquired T2-w image. The acquired T2-w image has 

a through-plane resolution of 2.2 mm whereas the subject MPRAGE, and consequently the 

synthetic T2-w image have a through-plane resolution of 1.1 mm. Both are shown in Fig. 8. 

The quality and resolution of the newly synthesized image is visually superior to the original 

acquisition.

5.2. FLAIR Synthesis

FLAIR is the pulse sequence of choice when identifying white matter lesions present in MS 

patients. The lesions appear hyperintense with respect to the rest of the tissue which makes 

delineating them easier. Most leading lesion segmentation algorithms rely on the FLAIR 

image to provide intensity information for accurate classification (Lecoeur et al., 2009; 

Shiee et al., 2010; Forbes et al., 2010). FLAIR images are prone to certain artifacts for a 

variety of reasons (Stuckey et al., 2007). The long inversion times make it difficult to 

acquire high resolution scans in a short time. We demonstrate that if we acquire T1-w, PD-w, 

and T2-w images of a subject, we have enough information to generate a synthetic FLAIR 

using Ψ-CLONE. The lesion intensity signature in FLAIR images is very distinct from the 

rest of the tissues. Hence the presence of lesion samples in the atlas set is essential in order 

to learn to reproduce it correctly. For this experiment, the atlas brain we use has a moderate 

lesion load. The atlas contained the following images:

a1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.0 × 1.0 × 1.2 mm3 

voxel size),

a2: T2-w image from the second echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms, TE2 

= 80 ms, 1.5 × 1.5 × 1.5 mm3 voxel size),

a3: PD-w image from the first echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms, TE2 = 

80 ms, 1.5 × 1.5 × 1.5 mm3 voxel size),
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aT1: Quantitative T1 map computed as described in Section 2.2,

aT2: Quantitative T2 map derived as described in Section 2.2,

aPD: Quantitative PD map derived as described in Section 2.2.

Our subject images are:

b1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.0 × 1.0 × 1.2 mm3 

voxel size), (Parameters, excepting TR, not provided to the algorithm)

b2: T2-w image from the second echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms, TE2 

= 80 ms, 1.5 × 1.5 × 1.5 mm3 voxel size), (Parameters, excepting TR, not provided to 

the algorithm)

b3: PD-w image from the first echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms, TE2 = 

80 ms, 1.5 × 1.5 × 1.5 mm3 voxel size). (Parameters, excepting TR, not provided to the 

algorithm)

We would like to stress that the set of subject pulse sequence parameters (except TR) are 

unknown and these are extracted using the first step of Ψ-CLONE. Next, the new atlas T1-w, 

PD-w, and T2-w atlas images are generated by applying the respective pulse sequence 

equations to the atlas PD, T1, and T2 values. The following step of learning a patch-based 

regression is slightly different from the previous experiments. The feature vector bi for a 

voxel i, is created by concatenating the corresponding 3 × 3 × 3-sized patches centered on 

voxel i, from all three images. The dependent variable ri is the corresponding target atlas 

FLAIR intensity at voxel i. Thus, the training data consists of pairs of 〈bi, ri〉 from the 

extracted synthetic atlas images and the atlas FLAIR image. A nonlinear regression is 

learned using random forests and the trained regression is then applied to the extracted 

patches from the subject images to synthesize the subject FLAIR. Figure 9 displays the 

subject input images and synthetic FLAIR with the true FLAIR for visual comparison.

We ran LesionTOADS on the real and synthetic FLAIR images shown in Fig. 9. The 

resulting segmentations are shown in Fig. 10. The lesion volume obtained from the real 

FLAIR using LesionTOADS was 3107.5 mm3 whereas that obtained from a synthetic 

FLAIR was 5900.3 mm3. The excess seems to come from slightly enlarged regions with 

lesion-like intensities in the synthetic FLAIR. Our result, though visual in nature, is still a 

large improvement on the FLAIR synthesis result demonstrated in Roy et al. (2013a). 

Synthesizing FLAIR images is especially useful when the original FLAIR has artifacts, 

which can lead to erroneous tissue segmentation. In the next experiment, we looked at data 

where the acquired FLAIR was of bad quality due to motion artifacts and created a synthetic 

FLAIR image for visual comparison. The atlas brain for this experiment also has lesion 

voxels, which are essential for training. The atlas set was:

a1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82 × 0.82 × 1.17 mm3 voxel 

size),

a2: T2-w image from the second echo of a DSE (3 T, TR = 4177 ms, TE1 = 3.41 ms, 

TE2 = 80 ms, 0.82 × 0.82 × 2.2 mm3 voxel size),
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a3: PD-w from the first echo of a DSE (3 T, TR = 4177 ms, TE1 = 3.41 ms, TE2 = 80 

ms, 0.82 × 0.82 × 2.2 mm3 voxel size),

a4: FLAIR (3 T, TI = 11000 ms, TE = 68 ms, 0.82 × 0.82 × 2.2 mm3 voxel size)

aT1: Quantitative T1 map computed as described in Section 2.2,

aT2: Quantitative T2 map derived as described in Section 2.2,

aPD: Quantitative PD map derived as described in Section 2.2.

The subject set consisted of:

b1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82 × 0.82 × 1.17 mm3 voxel 

size), (Parameters, excepting TR, not provided to the algorithm)

b2: PD-w image from the first echo of a DSE (3 T, TR = 4177 ms, TE1 = 3.41 ms, TE2 

= 80 ms, 0.82 × 0.82 × 2.2 mm3 voxel size), (Parameters, excepting TR, not provided to 

the algorithm)

b3: T2-w image from the second echo of a DSE (3 T, TR = 4177 ms, TE1 = 3.41 ms, 

TE2 = 80 ms, 0.82 × 0.82 × 2.2 mm3 voxel size). (Parameters, excepting TR, not 

provided to the algorithm)

The results of this experiment are shown in Fig. 11. The synthetic FLAIR shown in Fig. 

11(d) does not possess the motion artifacts present in the true FLAIR in Fig. 11(e), since 

these are not present in the input T1-w, T2-w, and PD-w images.

Segmentation errors can also stem from misalignment of multimodal images. In the next 

experiment we will demonstrate the potential benefit of using Ψ-CLONE generated 

synthetic FLAIR images in multimodal analysis. We use the same set of atlas and subject 

image sets as above, but for a different individual subject in this experiment. The original 

FLAIR image (Fig. 12(e)) for this experiment has a voxel size of 0.82 × 0.82 × 4.4 mm3, 

which is much larger than the MPRAGE voxel size of 0.82 × 0.82 × 1.17 mm3. Registering 

the original FLAIR to the MPRAGE requires an upsampling by a factor of four in the 

through-plane direction. Upsampling via interpolation (trilinear, in this case) results in 

blurring in the through-plane direction. This blurring is clearly visible in the original FLAIR 

image in Fig. 12(e), especially in the ventricles. It is also visible to some extent in right 

posterior ventricle region of Fig 11(e). The blurring is also a cause of gross misalignment 

between the high resolution images and the low resolution FLAIR images. Such 

misalignment has the potential to adversely affect segmentation results. The synthetic 

FLAIR image is created by applying Ψ-CLONE on a high resolution T1-w image (1.17 mm 

slice thickness) and intermediate resolution PD-w and T2-w images (2.2 mm slice thickness). 

Thus, it is better aligned to the high resolution images and is at a higher resolution than the 

acquired FLAIR image. Fig. 12(d) shows the synthetic FLAIR along with the true FLAIR in 

Fig. 12(e). Visually it is apparent that it is better aligned to the rest of the images than the 

true FLAIR.
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6. Discussion and Conclusion

We have proposed an MR image pre-processing framework, Ψ-CLONE, which allows us to 

perform MR image synthesis and scanner standardization. Ψ-CLONE represents a new 

direction in image synthesis. It works by estimating relevant information about the imaging 

parameters of a given image and incorporating these into a synthesis that respects MR image 

formation resulting in more correct synthetic images then previous synthesis methods. Prior 

work in MR image synthesis has ignored the image acquisition process when solving the 

synthesis problem. Our use of imaging equation approximations and the underlying NMR 

tissue parameters to construct atlases that are adaptive to the subject image is a unique 

feature. In Sections 3 and 4, we demonstrated the significantly higher quality of image 

standardization and synthesis than the existing state-of-the-art methods. In addition to this in 

Section 5, we showcased advanced capabilities of our synthesis approach—specifically 

FLAIR synthesis—which cannot be accomplished by other methods (Roy et al., 2013a).

Application of Ψ-CLONE for image synthesis can be used to enhance and expand 

multimodal datasets for better image processing. Improved resolution for modalities like 

FLAIR and DSE pulse sequences which are often acquired at a low resolution can prove 

useful for tasks such as segmentation and registration. In addition, the ability to replace an 

artifact-ridden image with a synthetic one for better and more consistent processing of the 

entire dataset will help in providing more usable subject data, which should in turn help 

improve the statistical power of any derived scientific results.

In addition to improving the quality and capabilities of MR image synthesis, Ψ-CLONE is 

also quite fast, taking less than five minutes to synthesize a new image. In comparison, state-

of-the-art methods like MIMECS take around 2–3 hours on the same computational 

resources. This makes Ψ-CLONE well-suited as a quick pre-processing tool or as an MR 

intensity standardization that can be done on the scanner prior to any other processing. The 

nonlinear simultaneous equation solver can sometimes lead to local minima in the absence 

of a good initialization. The robustness of estimation is something we want to work on in the 

immediate future, by incorporating more accurate models of the pulse sequence equations. 

This will help improve the pulse sequence parameter estimation. The atlases used in the 

experiments are obviously of critical importance in the quality of the synthesis that can be 

performed. As such we are working to acquire high resolution data from a small cohort of 

subjects on multiple scanners to have a complete picture of the NMR properties at various 

field strengths as is technically feasible.

Ψ-CLONE has certain limitations which we would like to address in the future. First, it 

requires a segmentation of the input image(s) to estimate the imaging equation parameters. 

Specifically, the pulse sequence parameter estimation depends on tissue class means 

provided by a fuzzy k-means algorithm on T1-w images. For typical T1-w sequences like 

MPRAGE, the fuzzy k-means algorithm is fairly robust in providing the class mean 

intensities. In the rare case that the algorithm fails, the estimated imaging parameters tend to 

have very large errors, which results in the formation of inferior synthetic atlas images that 

can be easily spotted as inaccurate and rectified at the end of Step 2. Some of the earlier 

image synthesis methods (Rousseau, 2008; Roy et al., 2010b, 2011) had similar drawbacks 
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that have since been overcome by dictionary selection techniques and use of a higher-

dimensional space to normalize image patches (Roy et al., 2013a). Incorporation of these 

ideas is feasible, but we have yet to explore them. However, unlike Roy et al. (2013a) we do 

not require a WM peak normalization step.

Second, our pulse sequence parameter estimation method allows us to generate images of 

high quality and similar characteristics to the ground truth images (see Section 3 for 

experiments). However, the estimated parameters are not identical to the truth for various 

reasons including the use of theoretical and approximate pulse sequence equations. This is 

not ideal, as even though the metrics we use to measure the similarity of the images are 

commonplace; they may have a subtle deficiency that could only be revealed by a far larger 

and more rigorous study. Our estimation of PD, T1, and T2 maps also requires (a) 3 different 

types of pulse sequence images, preferably T1-w, PD-w, and T2-w images, of an acceptable 

resolution (the worst we have worked with is 1 × 1 × 5 mm3 voxel-size in experiments 

described in Jog et al. (2013b) for a different application), (b) known pulse sequence name 

(for example SPGR or DSE), and (c) known imaging equation or approximation for each of 

the three. These can be potentially restrictive in some clinical scenarios and we are working 

towards relaxing these requirements.

A third deficiency is our chosen regression model (random forests), it is being used because 

of it expediency and its ability to handle nonlinear intensity transformations. When 

predicting, random forest regression takes the mean of all the training data that accumulates 

in a leaf node during model training. In addition, when using the random forest the output 

value from each tree is averaged to give the final prediction from the regression. Clearly all 

these averages diminish the quality of the results, which can be seen in Fig. 11 where the 

synthetic result appears smoother than the truth. This could be addressed by modifying the 

random forest to do a linear fit of the data in the leaf nodes or through the use of a different 

regression approach. Finally, the influence of the patch size on the synthesis results has been 

explored—not reported here—though a complete understanding and rationale of the 

optimality of small patch size, i.e. 3 × 3 × 3, is not completely understood at present.

In summary, we have described a new MR synthesis approach which incorporates principles 

based on the pulse sequence equations. The framework is validated on synthetic and real 

data demonstrating its superior synthesis to state-of-the-art approaches. In addition, we have 

demonstrated the capability to synthesize the FLAIR pulse sequence, which is a noted 

deficiency of the MIMECS algorithm Roy et al. (2013a). Our estimation of pulse sequence 

parameters to generate a better atlas image could be used by any synthesis approach 

(Rousseau, 2008; Rousseau and Studholme, 2013; Roy et al., 2013a,b; Jog et al., 2014a,b) to 

help improve results immediately.
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Highlights

• We describe an MR image synthesis algorithm that works by estimating pulse 

sequence parameters of given image

• We create subject specific atlas (training) images to learn an intensity mapping 

using patch-based random forest regression

• We demonstrate superior image synthesis and intensity standardization and 

compare to the state-of-the-art

• We also demonstrate advanced capabilities of image synthesis via super-

resolution and FLAIR synthesis experiments

• Our algorithm is computationally fast and is a powerful image preprocessing 

tool
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Figure 1. 
A flow chart of the Ψ-CLONE algorithm.
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Figure 2. 
Shown are (a) an SPGR image (TR = 18 ms, TE = 10 ms, α= 45° with 0% additive noise) 

which we use as our subject image b1, the maximum intensity value is 1080, the (b) new 

atlas image, ab1, with pulse sequence parameters estimated from b1, and (c) the difference 

image |ab1 − b1|, the maximum value is 5.
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Figure 3. 
Shown are (a) an SPGR image (TR = 18ms, TE = 10ms, α= 45° with 3% additive noise) 

which we use as our subject image b1, the (b) reconstruction, b̂
1, of the subject image with 

the same pulse sequence as used to image (c) the atlas target image a1 (TR = 18ms, α= 30°, 

TE = 10ms with 0% noise).

Jog et al. Page 27

Med Image Anal. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Histogram of a typical noiseless Brainweb phantom
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Figure 5. 
(a) An example input subject SPGR from which we synthesize a T2-w image. (b) The true 

T2-w image and the outputs of synthesis produced by (c) MIMECS and (d) Ψ-CLONE.
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Figure 6. 
The brown plot illustrates relative WM volumes (with respect to the ICV) over nine weeks 

before any standardization while the green plot illustrates the same values after intensity 

standardization using Ψ-CLONE.
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Figure 7. 
Shown are (a) the true T2-w image, and the synthesis results from the MPRAGE for each of 

(b) D-SyN, (c) MIMECS, and (d) Ψ-CLONE (our method). The lesion (in the green circle) 

and the ventricles (in the blue circle) in the true image are synthesized by MIMECS and Ψ-

CLONE, but not by D-SyN.
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Figure 8. 
The MPRAGE has a through-plane resolution of 1.1 mm, while the original T2-w has 

through-plane resolution of 2.2 mm. This is evident as the true interpolated T2-w image 

shows blurring while the Ψ-CLONE synthesized image is crisp.
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Figure 9. 
Subject input images along with the synthetic and true FLAIR images.
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Figure 10. 
Real T1-w image along with the corresponding real and synthetic FLAIR images and their 

resulting segmentations.
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Figure 11. 
Input T1-w, T2-w, and PD-w images followed by the synthetic FLAIR and the true FLAIR. 

The true FLAIR shows motion artifacts, which are not present in the synthetic FLAIR.
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Figure 12. 
Input T1-w, T2-w, PD-w images with the synthetic FLAIR and the true FLAIR. The true 

FLAIR shows blurring because of interpolation in order to match the high resolution T1-w
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Table 1

Flip angles used in Brainweb SPGR simulation vs estimated Flip angles after fitting.

True flip angle (°) Estimated flip angle (°)

30 32.08

45 48.70

60 65.08

75 84.79

90 106.57
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Table 3

PSNR (dB) values between a1 and b̂
1, for standardization of Brainweb phantoms with varying flip angles (°) 

and noise levels are shown for UPL and Ψ-CLONE. In the noise free case, UPL is better, however the 

introduction of noise causes UPL results to deteriorate.

0% Noise 3% Noise

Flip Angle UPL Ψ-CLONE UPL Ψ-CLONE

15° 37.95 27.95 27.27 26.00

30° 62.66 35.90 28.93 30.96

45° 49.26 37.32 28.88 31.48

60° 46.94 37.67 28.81 31.39

75° 46.08 37.79 28.78 31.52
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Table 6

Coefficient of Variation (CV) of the relative tissue volumes (× 10−3) over the nine weeks on the original data 

and after intensity standardization with Ψ-CLONE for each of caudate, putamen, and thalamus.

Structures

Vol. CV Caudate Putamen Thalamus

Original 9.9 9.9 51.9

Ψ-CLONE 10.3 9.7 45.3
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Table 8

Contrast values between neighboring structures for original, synthetic, and atlas images.

Structure Boundary Contrasts

Struct. Boundaries Original Ψ-CLONE Atlas

Cort CSF–Cort GM 0.594 0.604* 0.625

Cort GM–WM 0.480 0.482 0.489

WM–Lesions 0.279 0.300 —

WM–Caudate 0.341 0.367* 0.370

WM–Putamen 0.214 0.219 0.240

WM–Thalamus 0.176 0.208* 0.269

WM–Ventricles 0.846 0.863* 0.878

Ventricles–Caudate 0.765 0.784* 0.804

Ventricles–Thalamus 0.814 0.827* 0.834

*
indicates that the contrast in synthetic images higher than the original images (statistically significant using Student's one-tailed T test with p < 

0.05).
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Table 9

Mean and standard deviation (Std. Dev.) of the PSNR and UQI values for synthesis of T2-w images from 40 

MPRAGE scans.

PSNR UQI

Mean (Std. Dev.) Mean (Std. Dev.)

D-SyN 16.59 (1.35) 0.64 (0.06)

MIMECS 15.01 (0.84) 0.78 (0.03)

Ψ-CLONE 18.59 (1.09)* 0.79 (0.02)*

*
Statistically significantly better than either of the other two methods (α level of 0.01) using a right-tailed test.
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