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Abstract

IL-4 was identified as the first cytokine to be produced by mast cells and is responsible for 

promoting mast cell IL-13 production. IL-4 and IL-13 play a prominent role in stimulating and 

maintaining the allergic response. As closely related genes, IL-4 and IL-13 share a common 

receptor subunit, IL-4Rα, necessary for signaling. Here we summarize the literature on mast cell 

activation associated with IL-4 and IL-13 production, including downstream signaling. We also 

describe the positive and negative roles each cytokine plays in mast cell immunity and detail the 

differences that exist between mouse and human mast cell responses to IL-4 and IL-13.

Mast Cell Function Overview

Mast cells develop from hematopoietic progenitors but complete their maturation in 

peripheral tissues. They are widely distributed throughout most tissues, especially at the 

mucosal interface [1–3]. Due to their location at the interface between the host and the 

external environment and their expression of Toll-like receptors that recognize bacterial 

components, mast cells are known for their role as first-line defenders against invading 

pathogens [4–14]. However, the characteristic for which mast cells remain most recognized 

is their involvement in allergic disease. Mast cells are responsible for the symptoms of 

atopic disease during an allergic response including; itching, sneezing, and allergic asthma. 

Mast cells enact these processes through an immediate release of preformed inflammatory 

mediators, such as histamine, heparin, tryptase and acid hydrolases; followed by a later de 

novo production and secretion of numerous cytokines, chemokines, and arachidonic acid 

metabolites [15]. Of the cytokines produced my mast cells, IL-4 and IL-13 are of most 

interest to us for this review.

Mast Cells Produce IL-4 and IL-13

Mast cell cytokine secretion plays a pivotal role in the pathogenesis of allergic disease and 

inflammation [16]. Among the cytokines produced by human and mouse mast cells are IL-4 

and IL-13. In fact, IL-4 was the first cytokine shown to be made by mast cells, in 1987 

[4,17–20]. Mast cell IL-4 production has been best studied in relation to IgE-mediated 
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activation [4], however it can also be produced in response to IL-33 [1–3,21] and lectins [4–

14,22]. During the allergic response, IL-4 is produced in vivo and rapidly made in mast cells 

to stimulate inflammatory responses [15,23]. Additionally, IL-4 promotes IL-13 production 

in mast cells [16,24,25]. In contrast to IL-4, IL-13 is induced by LPS [4,17–20,25], SCF 

[4,26], IgG [27], and IL-1β [28], in addition to IgE [20] and IL-33 [29]. IL-13 is produced 

by mast cells in allergic rhinitis [30,31] and can be blocked by the anti-inflammatory 

corticosteroid dexamethasone [19].

Regulating IL-4 and IL-13 Production

Due to its critical role in determining the nature of immune responses, the regulatory 

pathways eliciting IL-4 production have been extensively studied. While IL-4 is most widely 

recognized for mediating Th2 cell differentiation and thus antibody-driven immune 

responses, there are similarities and differences in the pathways utilized for TCR versus IgE-

mediated IL-4 secretion. The Th2-specific transcription factor c-maf has been shown to be 

responsible for activating the IL-4 promoter and promoting Th2 cell differentiation. 

However, c-maf is not required for mast cell IL-4 production [32]. Additionally, mast cells 

produce IL-4 independently of STAT6, which is required for Th2 cell differentiation [33]. In 

contrast to the IL-4 production pathway utilized by T cells, several signaling proteins, 

transcription factors, and DNA modifiers have been implicated in IL-4 production by mast 

cells, including: GATA-1/-2, PU.1 [34]; NFAT2 [35,36]; Ikaros [37], and a 3′ enhancer 

region in the IL-4 gene [38]. It is worth noting that there are also differences in IL-4 

production among mast cells from different mouse strains, with Th1-prone C57BL/6 

displaying a vigorous IL-4 response [37].

Although there are gaps in our knowledge of how mast cells produce IL-13, several 

components for IgE-mediated IL-13 production in mast cells have been identified. TRAF6, 

NF-κB, and NFAT are required for IL-13 secretion downstream of high affinity IgE receptor 

(FcεRI) crosslinking [39,40]. Furthermore, IL-13 production by IgG receptors, which share 

receptor and signaling components with FcεRI, requires the Src family kinase Fyn [27]. 

Despite this role in IgG-mediated IL-13 production, mast cells lacking Fyn tyrosine kinase 

actually show enhanced IgE-mediated IL-13 production [41]. On another note, SCF-induced 

IL-13 production in mast cells requires EGR-1, however it is currently unclear how 

important this may be for the pathogenesis of allergic disease [26].

Effects of IL-4 and IL-13 on Mast Cells: Allergy and Infection Models

IL-4 and IL-13 are closely related genes. The IL-4 and IL-13 receptors share a common 

subunit (IL-4Rα) required for signal transduction. IL-4Rα paired with IL-13Rα1 can be 

activated by IL-13 or IL-4. In contrast, IL-4Rα paired with the common gamma chain is 

only activated by IL-4 [42]. In an allergic model, IL-4 and IL-13 act on the vasculature, 

sensitizing towards histamine, platelet activating factor (PAF), or leukotriene C4 (LTC4), 

and enhancing mast cell-mediated anaphylaxis [43]. A key difference in IL-4 and IL-13 

signaling is the lack of IL-13 effects on human T cells, which are IL-4-responsive. IL-4 has 

been described as a potent regulator of human mast cell phenotype, growth and 

differentiation [44].
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Together IL-4 and IL-13 have been shown to protect mice from nematode infections, with 

IL-13 exerting indirect effects on mast cells by altering the overall immune response 

[45,46]. Specifically, IL-13 promotes Th2 development [47]. During gut infections and 

allergic responses, IL-4 and IL-13 act on the intestinal epithelium to increase mucosal 

permeability and decrease glucose absorption and chloride secretion. In contrast, IL-4 

enhances mast cell-dependent PGE2 and histamine responses during nematode infection, 

while IL-13 has no effect on these responses [48].

Effects of IL-4 and IL-13 on Mast Cells: Differences Between Human and 

Mouse Systems

While mast cells produce IL-13, their ability to respond to IL-13 has been sparsely reported. 

To identify gene expression differences between IL-4 and IL-13, the Nilsson group studied 

the HMC-1 mast cell line and primary human cord blood mast cells. IL-13 induced c-fos 

expression, up-regulated ICAM-1 (CD54), and decreased c-kit expression. IL-4 elicited the 

same genes, but with greater potency [44]. Both cytokines suppressed HMC-1 proliferation, 

while only IL-4 altered cord blood mast cell development [44]. In patients with allergic 

rhinitis, nasal mucosa revealed that miR-143 was the most significantly down-regulated 

miRNA when comparing allergic rhinitis patients to healthy donors [49]. Using the HMC-1 

cell line, Yu et al. found that miRNA-143 blocked IL-13Rα1 expression [49]. Thus 

miRNA-143 suppression during allergic rhinitis is predicted to enhance IL-13 signaling.

The effect of IL-4 on mast cells has been extensively studied, showing both positive and 

negative effects (Figure 1). IL-4 induces mast cell proliferation [4] and survival through 

several pathways. Proliferation requires leukotriene production [50], which is convenient, as 

IL-4 induces leukotriene synthase [51]. In altering the mast cell response, IL-4 has been 

shown to activate a plethora of signaling pathways including; MEK, AP-1, p-38, AKT and 

SHP-1 [52–54]. Both IL-4 and IL-13, through use of the IL-4Rα subunit, activate signal 

transducer and activator of transcription-6 (STAT-6) [55]. Interestingly, IL-4 signaling in 

mast cells induces a truncated version of Stat6 that is generated by protease cleavage, and 

may serve as a dominant negative protein [32,56,57].

While IL-4 does have some negative effects, the majority of its effects on mast cells are 

positive – especially in the human system. For example, IL-4 can enhance cytokine 

production and alter the cytokine profile towards a Th2-type subset [52,58]. IL-4 can also 

promote degranulation [59,60], adhesion [61], and chemotaxis [62]. On differentiated 

human mast cells, IL-4 enhances FcεRI expression, and can synergize with IgE to do so 

[63,64]. In addition, IL-4 alters mast cell phenotype by promoting MCT (tryptase-positive, 

chymase-negative) rather than the MCTC (tryptase-positive, chymase-positive) phenotype 

[61,65]. This is perhaps due to IL-4-mediated down-regulation of Kit expression [65–67]. In 

mice, however, IL-4 may promote the CTMC phenotype, which is analogous to the human 

MCTC type. It does this by enhancing the effects of SCF in some in vitro culture systems 

[68], and by suppressing expression of the mucosal mast cell (MMC) proteases MMCP-1,-2, 

and -4 [69].
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In addressing why IL-4 effects on human and mouse mast cells are somewhat contradictory, 

the stage of cell differentiation appears to be a major factor [66]. In less mature cells, IL-4 

may promote some differentiation, but is generally suppressive. For example, in developing 

human or mouse mast cells, IL-4 induces apoptosis, and suppresses FcεRI and c-Kit 

expression [70–73]. We postulate that IL-4 is an endogenous regulator, made by mast cell 

precursors and acting via STAT6 to elicit apoptosis [74]. In developing mouse mast cells 

cultures, IL-4-mediated apoptosis correlated with mitochondrial damage and could be 

blocked by Bax deletion or Bcl-2 overexpression [72]. By contrast, in mature mouse 

peritoneal mast cells or in differentiated human mast cells, IL-4 enhances degranulation, 

resulting in increased mast cell-mediator release [59,60]. By comparison, mouse bone 

marrow-derived mast cells (BMMC) cultured with IL-4 show decreased Kit and FcεRI 

expression via Stat6, and reduced IgE-mediated transcription of IL-4,-5,-6, and -13 [75,76]. 

Its important to note that mouse BMMC are less mature than human skin, intestinal, or 

mouse peritoneal mast cells; so these data may be explained by differences in 

differentiation.

Thus far, this review has predominantly focused on IL-4 and IL-13 effects on mast cells 

during IgE-mediated activation. Mast cells can also be activated via IgG. Surprisingly, IL-4 

increases IgG-mediated degranulation and cytokine production in mouse BMMC. This 

enhancement correlates with a STAT6-dependent increase in FcγRIIIa protein expression 

[77]. Taken together, these results lead us to believe that IL-4 may have different effects on 

mast cells depending on both the state of mast cell differentiation as well as the stimulus 

being measured.

In addition to its direct effects, IL-4 can also alter how mast cells respond to their 

environment. For example, in the presence of IL-4, IL-10 induces mouse BMMC apoptosis 

through a Bcl-2- and p53-dependent process that is likely induced by loss of IL-3R and c-Kit 

signaling [74,78,79]. In another example, IL-4 and TGFβ1 are an antagonistic pair when 

acting on mast cells. Each blocks the expression and function of the other’s receptors, with 

IL-4 inhibiting TGFβ1-mediated migration and vice-versa [80].

While the stage of differentiation, the type of stimulus-dependent activation, and 

environmental factors contribute to IL-4 and IL-13 effects on mast cells, a final issue to 

consider is the presence IL-4 and IL-13 receptors. IL-4 and IL-13 can be bound to soluble 

(s) receptors that block their activity. Both the sIL-4Rαand sIL-13α2 are present in serum at 

low concentrations in naive mice, but differences in the affinity and half-life suggest distinct 

functions. Serum IL-4/sIL-4Rα complexes rapidly dissociate, releasing and dispersing active 

IL-4. In contrast, sIL-13α2 and IL-13 form a stable complex that has a considerably longer 

half-life than uncomplexed IL-13 and appears to suppress IL-13 function, serving as a 

“decoy” receptor [81].

Importance of Mast Cell IL-4 & IL-13

While mast cells produce IL-4 and IL-13, the essential role of these cytokines strictly from 

this source has not been widely investigated. This is in contrast to mast cell-derived TNF, 

which has been examined in several contexts. The common approach is to reconstitute c-
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Kit-mutant mice, which lack mast cells, with wild type or gene-deficient mast cells, 

generating a mast cell-restricted knockout mouse. Reconstituting mast-cell deficient mice 

with TNF−/− mast cells, researchers found that IL-33 induced peritoneal neutrophil 

infiltration was partially dependent on mast cell-derived TNF [82]. In addition, Malaviya et 

al found that mast cell deficient mice are unable to clear bacterial infections. Using 

reconstituted mast-cell deficient mice in the presence of TNF-α–specific antibody, 

researchers identified a significant decrease in neutrophil influx necessary for bacterial 

clearance [6,14]. In regards to addressing MC-derived IL-4 and IL-13’s essential role in 

mast cell response, there is a gap in the current research. Thus far, researchers have shown 

that mast cells are not essential for a Th2 response defined by enhanced production of IL-4 

and IgG1 antibody [83]. In addition, mast cell deficient mice reconstituted with IL-4−/− mast 

cells show that MC-derived IL-4 can promote the Th1 response, but again is not essential 

[37]. Future directions to determine mast cell specific IL-4 and IL-13’s role in mast cell 

responses should employ the approaches described in the TNF experiments, using IL-4 and 

IL-13 deficient mast cells to reconstitute mast cell deficient mice and identify each cytokines 

essential role in specific mast cell responses.

While it is unclear how essential the functions of IL-4 and IL-13 on masts cells are, mast 

cells are known to maintain a constitutive presence of functional IL-4 and IL-13 transcripts, 

but not IL-4 or IL-13 cytokines. These transcripts increase under mast cell stimulation 

conditions, however the constitutive presence of IL-4 and IL-13 transcripts were sufficient 

for the rapid production of IL-4 and IL-13 cytokines seen during mast cell activation [47]. 

IL-13 cytokine production is enhanced during IL-33 stimulation in the absence of IgE [84]. 

In addition, researchers have shown that mast cell IL-33-mediated inflammation was 

abolished in IL-13-deficient mice [85]. These results raise the possibility that IL-33 may 

induce IL-13-dependent inflammation in vivo in part by inducing IL-13 production by mast 

cells [84].

Summary

Mast cells are potent sources of cytokines, able to respond to a myriad of stimuli. Their 

production and responsiveness to IL-4 and IL-13 is important to our understanding of 

allergic and inflammatory diseases. Particularly in diseases such as allergic asthma, targeting 

mast cell-derived cytokines may prove extremely beneficial. Currently this is done by 

broadly suppressive drugs, such as corticosteroids. Targeted approaches offer hope for 

selective therapy with fewer side effects.
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Figure 1. 
(A) Summary of factors known to induce mast cell IL-4 or IL-13 expression the signaling 

pathways required for IL-4/IL-13 induction, and signaling pathways activated by the IL-4 

receptor signaling complex. Note that signaling pathways are listed, not depicted as a linked 

cascade. (B) Summary of IL-4 effects on developing or mature mast cells from mouse or 

human origin.
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