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Abstract

Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates 

are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors 

that result from the use of automated geocoding methods and from linearized approximations of 

roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) 

along with handheld GPS instruments were used to geocode 160 home locations of children 

enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, 

Michigan. The average and maximum positional errors using the automated geocoders were 35 

and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-

highway distances averaged 23 m and reached 82 m. These differences were attributable to road 

curvature, road width and the presence of ramps, factors that should be considered in proximity 

measures used either directly as an exposure metric or as inputs to dispersion or other models. 

Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-

related emissions were predicted using a detailed road network and the RLINE dispersion model. 

Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 

87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 

5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can 

substantially alter exposure estimates near roads because of the dramatic spatial gradients of 

traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-

related air pollutants, especially near roads, confirmation of geocoordinates is recommended.
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Introduction

Traffic-related emissions are the major source of air pollutants in urban areas, and exposure 

to traffic-related air pollutants has been associated with adverse health effects including the 

onset and exacerbation of asthma, impaired lung function, adverse birth outcomes and 

cognitive decline.1,2 Particularly susceptible groups include children with asthma3–7 and 

individuals living within 200 ft to 500 ft of major roads.8,9 An estimated 40 million people 

in the United States live within 100 m of major roads, railways or airports.10 Measurements 

of traffic-related air pollutants demonstrate very steep concentration gradients in directions 

perpendicular to major roads, for example, elevated levels of PM2.5 and ultrafine particles at 

the roadside levels fall to near background levels at distances of 150–200 m;11–14 similar 

gradients have been shown for other pollutants, for example, volatile organic compounds 

and polycyclic aromatic hydrocarbons.15–18 Given such sharp gradients, precise and highly 

spatially resolved information regarding pollutant concentrations and locations of 

individuals and emission sources is needed to estimate exposure accurately.

As most individuals spend the majority of their time at home, residence location has been 

one of the most commonly used exposure metric in air pollution epidemiological studies.19 

The distance between a residence and emission sources, that is, proximity to highways and 

industry, has been used to associate human health effects with air pollution exposure.20,21 

This exposure indicator or surrogate is easy to obtain, inexpensive and potentially useful in 

many epidemiology studies. However, this indicator can be improved by accounting for 

factors that affect exposure, for example, the spatial and temporal patterns of emissions, 

meteorological processes governing dispersion and infiltration into buildings where 

individuals spend most of their time.

Given the sharp concentration gradients near roads, exposure estimates of traffic-related 

pollutants can be affected by positional errors of residences and other locations, as well as 

by errors in representing the road network. These errors depend on the geocoding method 

and the underlying data, for example, addresses and shape files. Typically, geocoding is 

performed using automated methods and commercial and proprietary software (for example, 

ArcGIS and SAS/GIS) or open access geocoding algorithms (for example, Bing and Google 

maps). Sometimes, more intensive methods are used, for example, aerial photography22,23 

and direct measurements using geographical positional system (GPS) devices. A review of 

geocoding methods and recommendations for epidemiology and other applications are 

presented elsewhere.24–27

Automated geocoding involves inputs, for example, addresses to be geographically 

referenced, processing algorithms to predict the geographic location and reference data sets 

to match and help confirm results.28 Inputs must be standardized and normalized in a format 

compatible with the reference data set.29,30 Matching algorithms can range from simple 

token parsing with lookup tables for standard abbreviations, to more complex programs 
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involving advanced probabilistic methods that can handle misspellings and 

misplacements.29,31 Once input data have been sufficiently processed to be compatible with 

the reference data, matching obtains the final output. Matching efficiency can be increased 

by word stemming, Soundex and relaxing the need to match all attributes in the reference 

data set.29,31 If a match is not obtained, then additional attributes or geocoding at lower 

resolution may be used.30 If multiple matches are obtained, then users may be asked to 

select the best option or use additional reference data sets.

Positional errors have been characterized for several geocoding methods and 

settings.23,25,26,32–35 Effects on exposure estimates, however, have received limited 

attention. This is a particular concern for traffic-related air pollutants, as distances can be 

very short and the source itself (major roads) is part of the geocoding process itself.26 An 

analysis of positional errors in the CALTRANS (California Department of Transportation) 

and TAMN (TeleAtlas MultiNet) road networks in southern California showed differences 

in CALINE436 dispersion model predictions that reached 70% at certain receptors.37 

However, only a few analyses have examined impacts of positional errors at residences, 

schools, workplaces and other locations where individuals may be exposed. In comparing 

three spatial interpolation techniques in Grenoble, France, the choice of geocoding technique 

was found to influence estimates of health effects derived using a fine-scale exposure 

model.38 In a study of homes in 49 US states, the accuracy of geocoding performed by four 

vendors differed by address characteristic and vendor, and these differences showed the 

potential for exposure misclassification on the basis of the concordance between address 

match and census tract.27

This study is aimed at characterizing positional errors for two automated geocoding 

processes, showing errors in representing road networks using a road-link-based system, and 

estimating concentration and exposure errors that result from these errors.

Methods

Study Overview

Positional errors were determined for residence locations of children enrolled in the Near-

road EXposures and effects of Urban air pollutants Study (NEXUS), which is examining 

respiratory outcomes in a cohort of asthmatic children living near major roadways in 

Detroit, Michigan.39 Children were recruited on the basis of the proximity of their residence 

to roadways in the following three exposure groups: children living within 200 m of high 

diesel roads, defined as having traffic that exceeds 6000 commercial vehicles/day 

(commercial annual average daily traffic; CAADT) and 90,000 total vehicles/day (annual 

average daily traffic; AADT); children living within 200 m of low diesel/high-traffic roads, 

defined similarly but including only roads with CAADT below 4,500; and children living in 

low-traffic areas, defined as those at least 300 m from any road with over 25,000 AADT. 

The present analysis considers 160 residences of the NEXUS participants. These homes 

were approximately equally distributed across the three exposure groups. The NEXUS study 

design oversamples homes near major roads. All study elements received approval by the 

University of Michigan Institutional Review Board. In addition, as a community-based 
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participatory research study, the study design and conduct was approved by our local 

community-based Steering Committee.

Geocoding Homes

Geocoordinates of study homes were measured using a handheld GPS device (GPSmap 

60CS, Garmin International, Olathe, KS, USA) by our technician who stood in front of each 

home, generally as close as possible to the front door, and no further than 9 m away. When 

the indicated accuracy was 10 m or better, the location was recorded on a data entry form 

and as a waypoint in the device's memory. Four other GPS units (including two similar units 

from Garmin and two others) were used to confirm the instrument's calibration. To minimize 

GPS technician error, we utilized regular training, written protocols, standardized data entry 

forms and other measures.

Initial comparison between the on-site GPS measurements and two automated geocoders 

(described below) showed that 40 of the 160 residences had positional errors exceeding 50 

m and sometimes much more (many kilometers). These sites were checked for possible data 

errors, for example, incorrect addresses and data entry mistakes. If errors remained, our 

technician was sent out to confirm both the address and the GPS coordinates, which lowered 

the number of homes with errors that exceeded 50 m to 32 homes. Again, addresses were 

checked; if errors remained, the technician was sent out a third time. The third set of GPS 

coordinates, which in all cases matched those taken the second time, was considered correct.

The first automated geocoder used publically available software, “Bing Maps” (http://

www.bing.com/maps/). Each address (number, street, city and ZIP code) was manually 

entered into this online program, which returned its latitude and longitude based on the 

European Petroleum Survey Group (EPSG) code for projections, a Mercator projection and 

a spherical model of the earth.40 The second geocoder used ESRI ArcMap 10.0 (Build 2414, 

Redlands, CA, USA), the Topologically Integrated Geographic Encoding and Referencing 

(TIGER) 2012 road shape files and the North American Datum for 1983. Address locations 

were determined using the “Geocoding Menu” and US Streets Geocode Service 10.0. This 

program uses a cascading sequence of geocoders, initially the Tele Atlas Address Points 

database, which maps 54 million residential and commercial US address records to specific 

physical locations, followed by Tele Atlas Street Address Range database, the 9-digit ZIP 

code locator and, lastly, the 5-digit ZIP code locator.41

Latitude and longitudes were converted to Universal Transverse Mercator coordinates for 

error analyses and dispersion modeling purposes, as described below.

Road Network and Proximity Analysis

An on-road emission inventory was developed for the ∼ 800-km2 study area using data 

obtained from the Southeast Michigan Council of Governments (SEMCOG) and the 

Michigan Department of Transportation (MDOT). The network used 9498 links (linear 

segments) to represent 3109 km of roads, which included all but small (but numerous) local 

roads. The network extended at least 5 km beyond the locations of the NEXUS homes and 

fully encompassed the city of Detroit (∼355 km2 area). Road links represented road 
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centerlines. Separate links were used to represent each direction of the major roads, as well 

as large service roads (parallel to freeways), if any, and major ramps.

Distances from study homes (using the on-site GPS measurements) to the major roads were 

determined using the “Near” function in ESRI ArcMap (version 10.0) and the 2012 TIGER/

Line shape files for roads. A second distance measure, relevant to the emission inventory 

and link-based road network just described, was calculated as the perpendicular distance to 

the road link representing the highway segment.

Air-Quality Modeling and Emission Inventory

PM2.5 concentrations at study homes resulting from primary exhaust emissions from on-road 

traffic were predicted using RLINE following the guidance for roadway sources.42 RLINE 

is a steady-state dispersion model that incorporates new algorithms for predicting 

concentrations from line sources, including “upwind” concentrations resulting from plume 

meandering.43,44 It utilizes a numerical method (or analytical approximation) that integrates 

multiple point sources along a line source, and dispersion parameters derived from recent 

field data and wind tunnel experiments. The model can predict concentrations at receptors 

very close to roads. Inputs to RLINE included hourly surface meteorological observations 

processed by AERMET for 2010 from Detroit City Airport, which was determined to be 

representative of the area, the road-link emission inventory described below, receptor height 

(1.8 m for the breathing level) and receptor locations (described below). Hourly 

concentrations for calendar year 2010 were predicted, from which daily (24 h) and annual 

average concentrations were calculated. Given our focus on local traffic-related air 

pollutants, concentrations due to point, area and regional emissions sources were not 

considered.

An hourly link-based PM2.5 emission inventory was compiled for the road network 

described earlier and the year 2010. This involved merging traffic data (from MDOT) with 

traffic demand model outputs (from SEMCOG) to estimate AADT and speed for each road 

link. AADT was adjusted using temporal allocation factors (TAFs) for month, day-of-week 

and hour-of-day. On the basis of the SMOKE model,45 a bi-modal TAF pattern portrayed 

morning and evening rush hours on weekdays; a unimodal pattern represented a broad 

afternoon peak on Saturdays and Sundays. TAFs depended on the road type, which were 

designed as National Functional Class (NFCs) 11, 12, 14, 16, 17, 19 or 0, respectively, 

representing interstate, other freeway, other principal arterial, major collector, minor 

collector and other road types. Fleet mix (modeled using eight vehicle classes) also 

depended on the NFC link, as well as hour-of-day and day-of-week. Emission factors were 

generated using MOVES2010,46 the monthly average temperature, link speed, vehicle class, 

and the local vehicle age and fleet distributions. Finally, hourly emissions Ei,t (g/m-s) for 

each link i and hour t were calculated as:47

(1)

where AADTi = annual average daily traffic (vehicles/day); TAFMi,t, TAFDi,t and TAFHi,t 

= monthly, daily and hourly TAFs, which depend on NFC and time t (month, day and hour; 
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dimensionless); FMi,j = fleet mix for link i and vehicle class j (dimensionless); and EFi,j,t = 

MOVES2010 emission factor for link i, which depends on vehicle speed, vehicle class j and 

time t (using season and average monthly temperature, dimensionless).

Concentration Errors

We first demonstrate concentration errors due to positional errors that result from miscoded 

home locations and approximations in the configuration of the road network using a 

sensitivity analysis and simplified test case. This modeled a single road link (north–south 

orientation, 1 km length, NFC = 11, AADT = 200,000, hourly PM2.5 emissions for 2010) 

and a set of 22 receptors in a transect perpendicular and centered across the road (east–west 

orientation, 50 m intervals to 500 m from the road). Annual average and 24-h concentrations 

were predicted using RLINE and 2010 meteorology.

Effects of geocoding errors for the 160 home locations were evaluated by comparing 

dispersion model predictions at two sets of receptor locations: the on-site GPS 

measurements, considered the “gold standard” and coordinates given by the Bing-automated 

geocoder for the same homes. Because the ARC-GIS geocoder gave results comparable to 

the Bing decoder, dispersion modeling was not conducted a third time.

Error Analysis

Positional errors for the 160 study homes were defined as the distance between the GPS 

measurement and the automated geocoding estimates. Geocoding errors associated with the 

road-link network were estimated as the difference in home-to-road distances determined 

using the GPS measurements and the TIGER shape files for the roads, and home-to-road 

distances determined using the same home coordinates and the road-link network. Only the 

major highways used to classify homes were considered.

Concentration errors because of geocoding errors for the home locations were estimated as 

differences between RLINE predictions using on-site GPS measurements and the automated 

geocoding coordinates. Both annual average and maximum 24-h concentrations for 2010 

were considered. Descriptive statistics, including relative absolute differences (RADs), were 

calculated for positional errors and concentration differences. To examine effects of 

highway proximity, concentration errors were stratified by distance to major roads. Homes 

with RADs exceeding 25% were mapped and received further analysis. The relationship 

between positional and concentration errors was explored using several regression models.

Results and Discussion

Errors in Geocoding Homes

Of the 160 home locations (mapped in Figure 1), 36 (23%) were located within 100 m of the 

major roads, 46 (29%) within 100–200 m, 5 (3%) within 200–300 m, 2 (0.6%) within 300–

400 m and 70 (43.8%) were at distances exceeding 500 m. The few homes in the 200- to 

500-m bins (n = 8) were pooled for subsequent analysis.

Table 1 summarizes positional errors for the two automated geocoding techniques, and 

Figure 2 compares the two cumulative distributions. For the Bing geocoder, positional errors 
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averaged 32 ± 32 m (SD); errors exceeded 50 and 100 m at 32 (20%) and 7 (4%) homes, 

respectively, and the maximum error was 157 m. The ArcGIS geocoder gave slightly larger 

but generally very similar errors. Positional errors were not affected by proximity to a 

specific named highway (that is, I-75, I94, M-10 and M-39), the distance to the highway, 

city region or the initial classification into the three exposure groups. Scatterplots showed 

small biases in the east–west direction (median of 0.89 and −1.39 m for Bing and ArcGIS, 

respectively), and larger biases in the north–south direction (−2.72 and 8.03 m; 

Supplementary Figure S1 in the supplementary material). These biases represent systematic 

errors that may result from the legacy of the Public Land Survey System that used a 

rectangular network of surveys, or other displacement and projection errors.26 Errors made 

by the two geocoders also were weakly correlated (r = 0.25), suggesting that some errors 

had a common source, for example, incorrect street numbering, or possibly issues with the 

GPS measurements, despite being triple-checked.

Errors and differences among automated geocoders have been documented in several 

studies. For 1000 residences in upstate New York, USA, the mean, median and 95th 

percentile differences between MapMarker plus 6.0 and Geographic Data Technology 

software were 58, 38 and 152 m, respectively.32 In 100 homes in urban areas of New York, 

the median error was 32 m and 89% of homes had errors below 100 m.48 For 234 urban 

residences in south central Iowa, US, the median error was 56 m and 81% of homes had 

errors below 100 m as determined using ArcView 3.2 and TIGER files; a commercial firm 

using proprietary software obtained slightly smaller errors (median of 50 m, 84% below 100 

m).23 For 21,890 residences in Sydney, Australia, differences between MapInfo 5.5 and 

StreetWorks 5.0 averaged 47 m, and 31 m after removing outliers (5% of the data).49 For 

104,865 residences in suburban Orange County, FL, USA using ArcGIS 9.1, the median and 

95th percentile errors were 41 and 137 m, respectively.33 For 135 rural addresses in West 

Virginia, USA, several automated geocoding methods showed comparable results (for 

example, the median errors from 39 to 62 m, and 84% within 100 m of GPS measurements 

with E911 conversion).35 For 354 homes in France, the median errors ranged from 26 m to 

36 m, depending on interpolation technique.38 Overall, these studies are quite consistent and 

show average positional errors from 47 m to 58 m, and median errors from 26 m to 62 m, 

95th percentile errors from 137 m to 152 m and that errors exceed 100 m at roughly 10% to 

20% of sites. Recent review papers considering a large number of geocoding studies and 

applications, including those with greater geographic and environmental diversity, show 

larger errors.25,26

Positional errors can be affected by address type, projection method, parcel size, road 

orientation, technician errors and other factors.24–26 Errors are larger in rural areas where 

geocoding uses PO boxes32,50 or other substitutes for addresses that cannot be geocoded.33 

Projections in online maps may not align with the more sophisticated projections in the GIS 

software, for example, the EPSG code used by Bing has changed several times and may be 

out of date.40 In addition, GPS measurements can be affected by satellite geometry, 

atmospheric conditions, loss of signal and multipath errors (because of reflections from 

nearby tall buildings, water bodies and dense clusters of trees).51 Home coordinates should 

lie within the property parcel boundary, but mapped positions may not correspond to the 
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geocoded site (near the front door in the present study); such errors may increase for larger 

buildings or parcel sizes.

Parcel sizes in Detroit averaged 431 ± 249 m2 (± SD), including typically small front and 

backyards; the floor area of houses in our cohort averaged 132 ±45 m2, and the house 

footprint averaged 77 ± 29 m2 (Data Driven Detroit, personal communication). Errors 

because of parcel size itself are estimated as 11 m, on the basis of one-half of the average 

parcel dimension (assuming one-fourth of the sum of the parcel's length and width, the mean 

parcel size area and a typical 2:1 parcel dimension). The components of positional errors 

were estimated using a simple Gaussian quadrature analysis that assumed independence 

between error components. The total error (as a SD) was apportioned to parcel size variation 

(11 m), GPS uncertainty (5 m using the typical indicated GPS precision), projection errors 

(up to 8 m on the basis of the systematic differences) and address errors (5–10 m, calculated 

as the balance of the error). Although approximate, this analysis suggests that parcel size 

and address errors are the most significant error sources.

Overall, the positional errors resulting from automated geocoding in Detroit were somewhat 

smaller than those reported previously for residences. This may result from our double and 

triple checking, the regular and stable street numbering and the small parcel size. Still, a 

fraction of homes had positional errors exceeding 100 m or more, a large amount 

considering the steep concentration gradients near major roads, as demonstrated in the 

following section. Automated geocoding produces larger positional errors in rural areas and 

in urban areas with large parcel sizes, irregular address numbering or rapid growth. As 

shown later, errors in the direction perpendicular to roads are the most significant; these will 

occur for addresses on roads that are perpendicular to highways. To avoid large errors, we 

recommend confirming geocoded coordinates whenever feasible.

Distances to Roads

Distances to the major roads for the high-traffic homes determined using the TIGER road 

shape files and the road-link network were highly correlated (r = 0.80, n = 82), and the 

average difference between the two methods was 23 ± 17 m. Distances using the TIGER 

shape files were shorter in most (82%) cases, as expected, as these represent distances to the 

road edge, whereas calculations using the link-based network reference the road centerline 

(on each side of the highway). In addition, the link- based network used a simplified road 

geometry, for example, curves were represented using a minimal number of linear segments. 

These two factors accounted for most differences, including cases where the Tiger file 

estimates were larger. Automated calculations also may calculate distances to access ramps, 

typically labeled with the main road's name. Substantial differences occurred for a subset of 

homes, for example, on the basis of the fractional bias (deviation from the mean), the two 

sets of distances differed by at least 25% for 44% of the homes, and by at least 50% for 16% 

of the homes. As discussed below, this could cause large differences in exposure estimates, 

given the sharp concentration gradients near roads.

This analysis highlights differences in proximity estimates using road edges versus road 

centerlines, and the accuracy of the road-link network. A difference of 10 –20 m is 

reasonable, given that most highways in Detroit have three or four lanes in each direction, a 
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right-hand shoulder and sometimes a left-hand shoulder. In addition, many highways have a 

two-lane service drive on each side separated from the highway by a low-profile barrier and 

buffer. However, most service roads have only modest traffic, and thus should not be 

counted as part of the highway. The level and significance of traffic on ramps (for example, 

vehicle acceleration causing higher emissions) must be evaluated on a case-by-case basis. 

The largest highways in Detroit, which contain 12 and 14 lanes (excluding shoulders, 

service lanes and ramps), were represented by parallel groups of 3 or 4 lanes in the road-link 

network, and did not result in larger errors.

Exposure metrics using distance from the road edge may be advantageous compared with 

metrics using the road centerline, as the former is the distance from the emission source, 

particularly if vehicle-induced turbulence fully mixes exhaust emissions across the road 

width. However, this assumption may be less valid for wide roads, low-traffic speeds, low-

traffic conditions and if the edge is defined by a shoulder or buffer. Notably, the distance to 

the road edge may approach zero for buildings that are immediately adjacent to the road, 

which causes inverse distance measures to “blow-up” mathematically. (Several Detroit 

homes had very small distances.) Overall, this analysis highlights the need to carefully 

formulate and evaluate proximity measures used either directly as an exposure surrogate, or 

indirectly as an input in a dispersion, land use regression or other types of exposure model.

Concentration Gradients for Test Road

Concentration transects for the test case are shown in Figure 3. For this large highway 

(AADT = 200,000 vehicles/day), the roadside annual and maximum 24-h average PM2.5 

predictions were 17.6 and 129 μg/m3, respectively. Concentrations rapidly dropped with 

distance: the annual average fell by 11 and 25 times at distances of 100 and 500 m, 

respectively; the 24-h average fell by 8 and 16 times. Note that transects may not be 

symmetrical because of the influence of meteorology (for example, prevailing winds) and 

other emission sources. In realistic cases, gradients at larger distances will be lower than the 

test case (which modeled a single road link), as concentrations will include contributions 

from other roads, as well as regional and urban background levels, which are usually 

substantial for PM2.5. In addition, positional changes that are parallel to the road will not 

affect concentrations unless another road is encountered.

The sharp concentration gradients in Figure 3 suggest the influence of even small positional 

errors. We quantified the sensitivity to concentration errors by expressing concentration 

changes in terms of a 10-m change in the receptor-to-road distance (using the derivative of 

the concentration transect, that is, sensitivity = Δμg/m3 per Δ10 m). Both absolute and 

relative concentration changes were calculated after averaging the eastern and western 

halves of the transect. For the annual average, for example, increasing the receptor-road 

distance from 50 to 60 m decreased concentrations by ∼ 1 μg/m3 or 19%. Relative 

concentration changes for 10 m distance changes from 50 to 200 m (the range appropriate 

for NEXUS high-traffic homes) were 6% to 19% for annual averages, and slightly lower for 

24-h averages, 5% to 16%. Sensitivity was highest at shorter distances. Considering the 

overall range of sensitivity (5% to 19% concentration change per 10 m), concentration errors 

from 13% to 49% might be expected for homes near highways because of the median 
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geocoding error (26 m, Table 1), and from 10% to 40% considering the differences between 

road edge and centerline (the median difference of 21 m). However, these estimates are 

overstated, as positional errors occur in all directions (not just perpendicular to roads), other 

roads contribute PM2.5 (especially considering the density of Detroit's road network), and 

some homes are at greater distances where sensitivity is lower. Thus, positional errors must 

be evaluated using a large-scale simulation and the full road network, described next.

PM2.5 Concentrations at Study Homes

Predicted annual average PM2.5 concentrations due to traffic exhaust emissions ranged from 

0.45 to 5.2 μg/m3 and averaged 1.27 μg/m3 across the 160 homes (using the on-site GPS 

coordinates). Receptors near the major roads had the highest concentrations. The highest 

annual (5.2 μg/m3) and 24-h average (26.3 μg/m3) concentrations occurred at the same 

home, which was located 42 m from I-75 (AADT = 132,800). Annual average 

concentrations at homes more than 300 m from the major roads ranged from 0.4 to 1.7 

μg/m3 and averaged 0.83 μg/m3.

Concentration predictions for 2010 were lower than monitored levels and source 

apportionments for Detroit performed for earlier years. In the past 10 years, annual average 

PM2.5 concentrations monitored in Detroit have ranged from 10 to 17 μg/m3, depending on 

site and year. The major PM2.5 sources have been identified as coal combustion, road traffic 

emissions, municipal waste incinerators, oil refineries, oil sewage sludge incinerators and 

iron/steel manufacturing.52 On the basis of chemical mass balance (CMB) apportionments 

and samples collected in summer and winter seasons in 2004–2006, the estimated average 

traffic contribution at a population-oriented monitor located in northeast Detroit (Allen Park) 

was 5.3 μg/m3 or 30% of PM2.5.53 In another CMB study monitoring ambient air near six 

residences in Detroit in summer and winter 2004–2006, the estimated traffic contribution 

was slightly higher, 5.9 μg/m3 or 33% of PM2.5.53 Both studies were conducted during 

periods when PM2.5 levels at some sites exceeded the annual National Ambient Air-Quality 

Standards, then set at 15 μg/m3. By 2010, however, annual average PM2.5 concentration 

across Wayne County (11 monitoring sites) encompassing Detroit had fallen to 10.1 

μg/m3,54 compared with 14.5 μg/m3 during the 2004–2006 period used for CMB 

apportionments.53

Even accounting for the decline in PM2.5 concentrations, dispersion model predictions were 

considerably lower than the CMB apportionments. This likely results from the substantial 

reductions in local PM2.5 emissions and concentrations achieved in past years, especially in 

the diesel fleet; the exclusion of secondary pollutants, pavement, brake and tire wear, and 

entrained dust from RLINE predictions; differences between CMB-monitoring sites and the 

dispersion model receptors; model input errors, especially vehicle emission rates;55 and 

meteorological influences. Despite these limitations and uncertainties in dispersion 

modeling results, our analysis of the influence of positional errors on pollutant contributions 

from traffic sources should not be greatly affected, as the models are used in a comparative 

manner, for example, concentration errors are estimated by comparing predictions at two 

sets of receptors, and as we expressed results using relative differences.
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Concentration Errors at Homes

Table 2 shows absolute and relative concentration errors at the 160 study homes resulting 

from geocoding errors, that is, differences between receptors determined using the 

automated (Bing) geocoder and the on-site GPS measurements. The maximum errors were 

0.88 and 6.79 μg/m3 for annual average and 24-h maximum PM2.5 concentrations, 

respectively. Concentrations using automated geocoordinates were within a factor of 1.5 of 

those using GPS measurements for annual averages, and within a factor of 2 for daily 

averages (Figure 4).

Considering the RADs, positional errors caused errors of 8 ± 10% (maximum of 54%) for 

annual averages and errors of 8 ± 12% (maximum of 87%) for 24-h maxima. The 

distribution of errors, shown in Figure 5, includes several homes with large errors, which are 

mapped in Figure 6. Of the 13 homes with the largest differences (RAD 425%), three were 

located near M-39, four were near M10, five were near I-94 and one was near the junction of 

other secondary roads, in addition to the major roads. Although spread across the study area, 

three homes were within 100 m of major roads, and the remainder were between 100 and 

200 m.

Both absolute and relative errors tended to decrease with distance from the road. 

Concentration errors depended on positional errors, and a power law relationship using the 

absolute positional error explained a portion of the concentration error (r = 0.68; Figure 7a). 

Model fit improved (r = 0.79) when only distance errors in the direction perpendicular to the 

road and homes within 500 m were considered (Figure 7b). Errors expressed as RADs 

tended to decrease with distance from the road, for example, errors in annual average 

concentrations fell from 10 ± 10% for homes within 100 m of highways, to 5 ± 8% for 

homes over 500 m from highways. However, the highest errors did not follow this trend, and 

RAD exceeded 20% for ∼ 5% of the homes in each distance bin (Table 2).

Large concentration errors resulted from two reasons. First, for homes near the major roads, 

concentrations were very sensitive to small changes in the distance to the road. The 

steepness of concentration gradients near roads, particularly within the first 200 m of the 

road, was shown earlier in Figure 3. Second, positional errors may locate the home near to a 

secondary road (not necessarily the high-traffic road used to classify the residence), or move 

the home away from such sources. However, these events were uncommon.

Strengths and Limitations

This paper benefits from its use of a modern dispersion model specifically designed for road 

sources, the availability and quality of data collected for NEXUS, and the effort made to 

correctly geocode locations and confirm results. Further, Detroit is likely to be 

representative of many older cities in the United States of America. Several limitations are 

recognized. First, the sample consisted of 160 home locations in one, Midwest, suburban- 

to-urban US locale. Other settings may have greater geographic or environmental diversity 

that might affect and likely increase both positional and concentration errors. In 

consequence, positional errors for Detroit were somewhat smaller than those reported 

elsewhere, and thus our estimates of concentration differences are likely to be 
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underestimated. Errors in TIGER files that represented the road network37 were not 

evaluated. The GPS measurements were assumed to provide accurate locations, and errors 

are unlikely to exceed 5 or 10 m. However, on-site measurements may not correspond to the 

parcel centroids or locations mapped by the automated geocoders. While dispersion model 

predictions were compared to monitored and apportioned concentrations, predicted 

concentrations were assumed to be accurate on both an absolute and a relative base. 

However, the use of relative errors and the model-to-model comparisons of the analyses 

diminish these limitations. Finally, the “motor city” has generally flat topography and is 

largely suburban with mainly low-rise buildings. Some results may not apply to cities with 

different configurations.

Conclusions

This paper has examined errors in estimating near-road concentrations of traffic-related air 

pollutants due to positional errors that result from the use of automated geocoding methods. 

Using a modern dispersion model and a detailed road network, concentrations were 

predicted at 160 homes of children participating in an epidemiological study in Detroit, 

Michigan. Comparing results of automated and manual geocoding methods for home 

locations, positional errors averaged 35 m and reached 197 m; larger errors are likely in 

other urban areas. Comparing road edge and road centerline, differences in house-to-

highway proximity averaged 23 m and reached 82 m; road curvature and road width were 

important factors that should be considered in proximity measures used either directly as an 

exposure metric, or as an input variable to a dispersion or other model. Geocoding errors in 

home locations produced concentration errors that averaged only 9%; however, much larger 

errors were found for a subset of homes, for example, up to 54% for annual averages and 

87% for daily averages. Positional errors were particularly important for locations near 

roads. Our results and literature suggest that 5–20% of homes can have geocoding errors 

exceeding 100 m, a large amount considering the steepness of concentration gradients of 

traffic-related air pollutants. Whereas the use of automated geocoding methods may be 

essential in deriving proximity measures and exposures of traffic-related air pollutants, 

particularly if dealing with thousands of sites, verification of locations and distances from 

major roads is recommended whenever possible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Roads and buffers along highways in Detroit from which children were recruited to 

participate in NEXUS. Locations of 160 NEXUS homes are shown as dots.
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Figure 2. 
Cumulative distribution of absolute positional errors for 160 NEXUS homes.
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Figure 3. 
Crossroad concentrations of PM2.5 for test case using prediction from RLINE dispersion 

model and 2010 Detroit meteorology. Results show annual and 24-h averages.
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Figure 4. 
Scatterplots contrasting annual average (left) and 24-h maximum (right) PM2.5 

concentrations using GPS and automated geocoding home locations. Concentrations 

predicted using RLINE dispersion model and 2010 Detroit meteorology. Plots show 160 

homes; dashed red lines indicate a factor of 1.5 agreement; black lines indicate a factor of 2 

agreement.
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Figure 5. 
Relative absolute differences in annual average and 90th, 95th and 98th percentile 24-h 

concentrations at NEXUS receptors.
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Figure 6. 
Location of homes with relative annual average PM2.5 concentration errors exceeding 25%.
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Figure 7. 
Dependency of absolute annual average concentration errors at 160 homes on total 

positional errors (left) and perpendicular errors to the major roads for residences within 500 

m (right). Power law model shown as solid line.
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