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The Good, the Bad, and the Irrelevant: Neural Mechanisms of
Learning Real and Hypothetical Rewards and Effort
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Natural environments are complex, and a single choice can lead to multiple outcomes. Agents should learn which outcomes are due to
their choices and therefore relevant for future decisions and which are stochastic in ways common to all choices and therefore irrelevant
for future decisions between options. We designed an experiment in which human participants learned the varying reward and effort
magnitudes of two options and repeatedly chose between them. The reward associated with a choice was randomly real or hypothetical
(i.e., participants only sometimes received the reward magnitude associated with the chosen option). The real/hypothetical nature of the
reward on any one trial was, however, irrelevant for learning the longer-term values of the choices, and participants ought to have only
focused on the informational content of the outcome and disregarded whether it was a real or hypothetical reward. However, we found
that participants showed an irrational choice bias, preferring choices that had previously led, by chance, to a real reward in the last trial.
Amygdala and ventromedial prefrontal activity was related to the way in which participants’ choices were biased by real reward receipt.
By contrast, activity in dorsal anterior cingulate cortex, frontal operculum/anterior insula, and especially lateral anterior prefrontal
cortex was related to the degree to which participants resisted this bias and chose effectively in a manner guided by aspects of outcomes
that had real and more sustained relationships with particular choices, suppressing irrelevant reward information for more optimal
learning and decision making.
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/Signiﬁcance Statement \

In complex natural environments, a single choice can lead to multiple outcomes. Human agents should only learn from outcomes
that are due to their choices, not from outcomes without such a relationship. We designed an experiment to measure learning
about reward and effort magnitudes in an environment in which other features of the outcome were random and had no relation-
ship with choice. We found that, although people could learn about reward magnitudes, they nevertheless were irrationally biased
toward repeating certain choices as a function of the presence or absence of random reward features. Activity in different brain
regions in the prefrontal cortex either reflected the bias or reflected resistance to the bias. j

Introduction choices (Walton etal., 2002, 2003; Rudebeck et al., 2006; Pessigli-

The environments in which animals and humans live are com-
plex. Thus, to make the best decisions, agents must learn which
choices are associated with good or bad outcomes, such as mon-
etary rewards, or effort. They must then integrate information
about these qualitatively different types of outcomes to make
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one et al., 2007; Croxson et al., 2009; Prévost et al., 2010). Out-
comes may, however, have informational content that is
independent of whether or not they are immediately rewarding.
Imagine an animal foraging for berries on the higher branches of
a tree after a strenuous climb. The animal tries to learn how many
berries the tree carries to know whether to come back again. On a
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specific day, the weather may be good and the animal is able to
gather a lot of berries from the tree, whereas on another day the
weather may be bad and it has to abandon its food gathering
prematurely. Despite not collecting any rewards, when learning
about how good the tree is, it should only take into account how
much food it saw hanging on the tree (this is the informational
content of the outcome), but not how much food it managed to
gather (this is the rewarding aspect of the outcome) on that day as
that could depend on other interfering factors (such as the
weather) and not the tree’s value itself. In other words, sometimes
the rewarding content (i.e., whether the berry reward was really
experienced or only hypothetical) is a bad guide for future
choices, which should be based on more abstract informational
content.

In short, we tried to tackle the fundamental problem of how
contingencies are learned when an outcome has, as is commonly
the case, multiple components only some of which should be
learned. How does information in the irrelevant dimension (in
our experiment, this was the outcome’s reward content) interfere
with the learning of a contingency in the relevant dimension (in
our experiment, this was the outcome’s informational content)?
Because many brain systems are extremely sensitive to obtaining
a reward (Vickery et al., 2011), we examined here whether this
prominence of reward signals in some areas might bias behavior
and hamper learning based on the informational content of the
outcome. More importantly, we wanted to also test whether neu-
ral systems exist to counteract such biases. One region potentially
equipped to contextualize reward appropriately is anterior pre-
frontal cortex (aPFC) because it has been implicated in complex
behaviors, such as pursuing alternative, hypothetical, and poten-
tially novel future courses of action (Boorman et al., 2009;
Donoso et al., 2014; Kolling et al., 2014).

We recorded brain activity using fMRI while participants
learned the reward and effort magnitudes of two options and
chose between them. Crucially, they only sometimes received the
rewards associated with the option chosen. They were, however,
always shown the associated reward magnitude regardless of
whether the rewards were really received or hypothetical (i.e., the
outcome’s informational content was always provided even if the
reward content was not). Thus, whether a reward was real or
hypothetical was incidental and should not have affected partic-
ipants’ future choices, as the information needed for learning was
the same in both conditions. Nonetheless, participants were bi-
ased toward repeating choices that led to real rewards. Ventro-
medial prefrontal cortex (vmPFC) and amygdala activity was
related to this bias. aPFC, frontal operculum/anterior insula (FO/
Al), and dorsal anterior cingulate cortex (dACC) activity ap-
peared to counteract such biases in several ways and mediated
more flexible and optimal decision-making. Because only re-
wards, not effort costs, were real or hypothetical, we were further-
more able to test whether only reward signals or instead the
relative value of repeating a choice was changed when rewards
remained hypothetical (see Materials and Methods). Not receiv-
ing a real reward had profound effects not only on the neural
representation of rewards themselves, but also on representations
of effort costs.

Materials and Methods

Participants

A total of 21 healthy participants (age 19-29 years, 10 female) took part
in the study. The study was approved by the local ethics committee. One
participant was excluded from data analysis because he/she repeatedly
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fell asleep during the MRI scan. Fourteen of the participants had taken
daily placebo capsules for 2 weeks as part of another study.

Task

We designed a task to assess whether reward experience, more specifically
whether a reward was really received or only hypothetical, changed
decision-making even when the real/hypothetical nature of the outcome
was an incidental feature of all choice outcomes. For this purpose, par-
ticipants performed a learning task. They made repeated choices between
two options with the aim of maximizing their monetary pay-off and
minimizing the effort they needed to exert in an interleaved “effort
phase” (Fig. 1). On each trial, there were three phases: first, participants
chose between two options (“choice phase”); then they were shown the
outcome of their choice (“outcome phase”); and then they had to exert
the effort associated with the option they had chosen (“effort phase”).

In the decision phase (Fig. 1A), participants chose between two op-
tions using buttons on a trackball mouse. Each option had three inde-
pendent attributes: a reward magnitude (reward points, later translated
into monetary pay-off), an effort magnitude (amount of effort required
in the effort phase), and a probability of being rewarded. The probability
of each option was shown explicitly on the screen at the time of choice. In
contrast, the reward and effort magnitudes of the options were not ex-
plicitly instructed; and instead, participants had to learn and track these
slowly changing features of the two choices across trials. These magni-
tudes were drawn from normal distributions of which the means fluctu-
ated pseudorandomly and independently over the course of the
experiment between three levels (low, mid, high; Figure 1 D). Participants
were instructed to learn and keep track of the changing mean value of
each magnitude across the experiment. Thus, the reward magnitudes of
the choices constituted the only relevant reward information that could
be tracked and learned, whereas the actual reward receipt (whether the
reward was real or hypothetical) or the probability thereof should not
have had any bearing on future decisions. Only one of the reward or
effort magnitude means was drifting at any one time, and each of the four
magnitudes was at each mean level equally often.

After the participants had selected an option, it was highlighted until
the ensuing outcome phase. In the outcome phase (Fig. 1B), participants
were first shown the reward and effort magnitudes of the option they had
chosen, as well as whether they received a reward or not (in other words,
whether the outcome was a real secondary reinforcer indicating a specific
monetary payment or hypothetical). If they received a reward, the cur-
rent trial’s chosen reward magnitude was added to their total reward
accumulated so far (Fig. 1B, on the bottom of the screen). They were then
shown the reward and effort magnitudes for the option they had not
chosen. During the outcome phase, participants could thus use the dis-
played information to update their estimates of the reward and effort
magnitudes associated with the choices. Importantly, while they were
shown whether they received a real reward or not, this should be irrele-
vant for their future choices as the informational content was the same.
This is because how likely any choice was to be rewarded only depended
on the probabilities that were explicitly cued at the time of choice and
these probabilities changed randomly from trial to trial. In other words,
whether an option choice was likely to lead to a real or a hypothetical
reward was not a feature of the choice that was sustained across trials or
which differentiated it from the other choice, and participants were made
aware of this.

Finally, independently of whether the reward was real or hypothetical,
participants had to perform the effort phase of the trial (Fig. 1C). Rather
than simply exerting a brief force as in some studies of effort, here par-
ticipants had to exert a sustained effort (Salamone et al., 1994, 2003;
Walton et al., 2002, 2003, 2006; Rudebeck et al., 2006; Croxson et al.,
2009; Kurniawan et al., 2013) by selecting circles that appeared on the
screen using the trackball mouse. The circles were added to random
positions on the screen in threes every 3 s (up to a total equal to the
chosen effort magnitude). To make the task more effortful, a random
jitter (5 pixels, total screen size was 1280 X 800 pixels) was added to the
mouse movement, and circles only had a 70% probability of disappearing
when clicked on. Furthermore, we prescreened participants and only
invited participants for the fMRI session if they had perceived the effort
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Figure1. Taskdescription. A, Inthe decision phase, participants were shown two options (i.e., choices), overlaid with the probability of receiving a reward for each choice. They could only decide
after an initial monitoring phase (1.4—4.5 s). The chosen option was then highlighted for 2.9—-8 . B, In the following outcome phase, participants saw the outcome for the chosen option first
(1.9-2.15). The reward magnitude was shown as a purple bar (top of the screen); the effort magnitude was indicated through the position of a dial on a circle. Whether they received a reward was
indicated by a tick mark (real reward, top display) or a red crossed-out sign over the reward magnitude (hypothetical reward, bottom display). If a reward was real, the reward was also added to a
status bar at the bottom of the screen, which tracked rewards over the course of the experiment. A reminder of what option they had chosen was shown at the top of the screen. Then the reward and
effort magnitudes were shown for the unchosen option (1.9—6.95s). Finally, participants performed the effort phase (€) where the number of targets was equivalent to the chosen effort outcome.
Importantly, participants had to perform the effort phase on every trial, independent of whether the reward was real or hypothetical. An example schedule is shown in D, with both the reward and
effort magnitude values of the two choices.
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as aversive and were willing to trade-off money to reduce the effort that
they needed to exert.

Participants had 25 s to complete the clicking phase and otherwise lost
money equivalent to the potential reward magnitude of the chosen op-
tion (1 = 0.3% of trials inside the scanner and 0.1 = 0.0% outside the
scanner). Thus, the amount that could be lost was also independent of
whether the reward had been real or hypothetical.

On most trials (100 of 120), participants had to chose between the two
options with changing reward and effort magnitudes. The reward mag-
nitudes were set between 0 and 20 pence, and the effort magnitudes were
set between 0 and 15 circles that needed to be clicked. On the remaining
trials (special option trials [SOTs]), participants had to choose between
one of the changing options and one of two fixed options whose values
participants learned in a training session outside the scanner. The value
of both fixed options was 7.5 pence, but one had a fixed effort magnitude
of 4 circles and the other had one of 12 circles. The SOTs were included to
ensure that participants learned the values of each choice, rather than just
their preference for one option over the other (a relative preference for
one option over the other would not enable participants to choose effec-
tively on the SOTs).

To summarize, participants needed to learn both the reward and effort
magnitudes of the two options. Independent of these learned quantities,
they were only rewarded on some trials, meaning that the reward mag-
nitude was sometimes real and sometimes hypothetical. In contrast, the
effort needed to be exerted on every trial. The inclusion of the effort
dimension was crucial for arbitrating between different interpretations
of our neural results (see “aPFC and FO/AI effort cost and reward out-
come representations change when the reward is real as opposed to hy-
pothetical”, below). In short, it allowed us to disentangle whether areas
only signaled rewards when they were real or whether they actually car-
ried a signal in favor of switching to the alternative option that was
enhanced when rewards were hypothetical. This signal was important
because it appeared to allow participants to overcome a bias to stay (i.e.,
making the same choices) when the outcome was a real reward as op-
posed to an equally informative, but only hypothetically rewarding,
outcome.

Participants performed 120 trials of the learning task inside the scan-
ner and an additional 120 trials afterward on the next day outside the
scanner to increase the number of trials for the behavioral data analysis.
Each participant performed the same two schedules in randomized or-
der. Participants were informed about the features of the task in two
training sessions before the scan, including the fixed number of trials they
would perform. This ensured that they did not perceive low-effort op-
tions as having a potentially higher monetary value because taking them
might allow participants to move on to the next trial more quickly and to
perform more trials with more chances to win money. Further details of
the training were as follows: In the first training session (45 min), partic-
ipants performed a version of the task without a learning component
(i.e., not only the probability, but also reward and effort magnitudes were
explicitly shown). This training ensured that participants were familiar
with the features of the task, for example, that they understood what the
probability information meant. We also used this session to exclude
participants before the fMRI session that did not find the effort suffi-
ciently aversive to produce robust effects on behavior. In a second train-
ing session (1 h), we instructed participants about the learning task that
they later performed in the fMRI scanner. At the end of the training,
participants were queried about how they made decisions (specifically,
they were asked “What are you thinking about when you’re making your
decision”). All participants reported trying to learn the reward and effort
magnitudes and using the explicitly cued probabilities to make decisions.
No participants reported using information about whether reward had
been real or hypothetical on the last trial when making choices. This
suggested that participants were well aware of how to do the task before
the beginning of the scan. If anything, these thorough instructions
should bias participants to try to counteract any tendencies they might
have to repeat choices based on receiving real rewards.

Interspersed with the 120 learning trials, there were 20 trials on which
participants just had to indicate which option had a higher mean effort
magnitude. These trials were included to ensure participants paid atten-
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tion to the effort dimension. They were not given feedback about those
choices. These trials were not included in the data analysis.

Experiment timings. The options were displayed for 1.4—4.5 s before
participants could make a choice. After the choice was made, the
chosen option was highlighted for 2.9-8.0 s. Next, the outcome was
first displayed for the chosen option (1.9-2.1 s), then for the uncho-
sen option (1.9-6.9 s). Participants then performed the effort exer-
tion task (0-25 s). Finally, the trial ended with an ITI (2.3-7.5s). The
delays used ensured that we could examine the brain activity in the
different phases of the task separately. There were no confounds be-
tween the brain activations in decision, outcome, or effort exertion
phase. All durations were drawn from Poisson-like distributions to
increase design efficiency by having some long delays.

Behavioral analysis

In the behavioral analyses, we tested what information, both relevant and
irrelevant for choice valuation, had an impact on decisions. We were,
however, most interested in whether a reward being real or hypothetical
influenced subsequent decisions. More specifically, we tested first
whether having received a real or hypothetical reward on the last trial
would affect decisions on the next trial. The last trial’s reward type (real vs
hypothetical) might imbue the option it was associated with (i.e., the
chosen option) with positive (or negative, when no reward was received)
affect. This would then make participants more likely to select that op-
tion again or more frequently. Additionally, we tested whether the re-
ward type (real vs hypothetical) changed how participants exerted effort
in the subsequent effort phase of each trial.

All analyses were performed in MATLAB (The MathWorks) and SPSS.
When assumptions about statistical tests were violated, we used the
Greenhouse-Geisser correction (for sphericity violations of ANOVA) or
nonparametric Wilcoxon signed rank test (for violation of normality of ¢
tests).

Decision-making effects of real versus hypothetical reward. First, we per-
formed analyses to establish that participants learned the reward and
effort magnitudes in the task. We ran a logistic regression analysis pre-
dicting whether participants stayed with the same choice as made on the
previous trial (chose it again on the current trial) or switched to the other
option, based on the options’ current reward probabilities (as already
noted, these were explicitly indicated on each trial; and because they
varied randomly from trial to trial, they could not be learned) and the
reward magnitude outcomes and effort magnitude outcomes associated
with the previous three trials. We also included a regressor denoting the
last trial’s reward type (real vs hypothetical). This last regressor was our
main focus of interest; it allowed us to test whether an aspect of the
outcome that should have been irrelevant for learning-biased decisions.
All regressors, except the reward type (real vs hypothetical), were coded
as relative value differences (reward or effort magnitudes or probabili-
ties) between the stay and the switch choice.

The multiple logistic regression was run in MATLAB using glmfit,
with a logit link function as the choice (stay or switch) being predicted
was categorical. All regressors were normalized (as in all subsequent
behavioral and fMRI regression analyses). For each participant, we ob-
tained one B regression weight for each regressor. These were then tested
for statistical significance across all participants.

For the analysis of the decisions, we excluded choices on the SOTs
(i.e., trials in which decisions were not between the usual two options,
making it impossible to classify those choices into stays and switches
in the usual way). On the trials after the SOTs, stay or switch was
coded with respect to the trials before the SOTs, in which the two
usual options were present.

Computational modeling of the decision behavior. To look at the
reward-type-induced decision bias in more detail and test between dif-
ferent potential underlying mechanisms, we fitted different learning
models to the behavioral data. Each model consisted of three main com-
ponents. First, each model had estimates about the mean reward and
effort magnitudes of each option. These were updated on every trial using
a reinforcement-learning algorithm. Second, the magnitude estimates
were integrated with the explicitly cued probabilities to calculate how
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valuable each of the two options was (i.e., their utility). Third, these two
utilities were compared with each other to predict participants’ choices.

Our main question of interest was how reward type (real vs hypothet-
ical) influenced the decision making based on the learned information.
To assess this, we first determined the best simple model using model
comparison (see below). Next, we modified this simple model to test
different hypotheses of how reward type could influence decisions. Com-
paring the model fits, we tested which hypothesis about underlying cog-
nitive mechanism was best supported by the data.

Best simple model

We first wanted to determine the best simple model to capture partici-
pants’ behavior before modifying this model to also capture the impact of
reward type. For this, we compared several models that differed in how
the reward and effort magnitudes were learned and in how reward mag-
nitude and probability were integrated.

For each model, learning was modeled using a standard Rescorla-
Wagner reinforcement-learning rule. On each trial, the predicted reward
or effort magnitude of an option was updated based on the trial’s out-
come, as a function of the prediction error (PE) as follows:

PE, = Outcome, — Prediction,
Prediction,,, = Prediction, + a * PE,

where a was the learning rate. Thus, the learning rate was a measure of
how much participants updated their magnitude predictions when the
outcome differed from their prediction. We fitted models that differed in
their number of learning rates: some models used a shared learning rate
for reward and effort magnitudes, whereas others used separate learning
rates. A last type of model used different learning rates for learning about
the reward and effort magnitudes of the option that was chosen and the
unchosen option.

The reward and effort magnitude predictions we thus obtained were
then integrated together with the probabilities, explicitly shown in the
task display, to yield the utility of each option. Based on previous studies
(Scholl et al., 2014), we tested different methods for integrating reward
magnitude and probability. First, we tested whether they were integrated
optimally, that is, multiplicatively (reward magnitude X probability) as
follows:

1 Y
Utility = it Magnitudeg,,a,q * Probabiltyp,,.g — ¥ Magnitudey,,,

where yis the effort weighting factor and k is a normalization factor (with
k=1+").

Second, we tested whether instead participants used a heuristic and
integrated them as a weighted sum as follows:

Utility = % = Magnitudeg,,,..q + g # Probabilitygemea — % * Magnitudegy,,
where vy is the effort weighting factor, & is the probability weighting
factor, and k is a normalization factor (withk = 1 + y + §).

All combinations of the different learning and integration models were
fitted (total of four models). All models had in common that the utilities
of the two options were compared with each other to predict partici-
pants’ choices using a standard soft-max decision rule.

eB * Utility

P(Option,) =

eB # Utilitya + eB # Utilityp

where B is the inverse temperature, reflecting a participant’s ability to
pick the option with higher utility.

To fit the different models, we used hierarchical Bayesian modeling, as
implemented in JAGS (Plummer, 2003), which has been widely used
previously (Shiffrin et al., 2008; Ahn et al., 2011; Nilsson et al., 2011). The
key aspect of this hierarchical modeling approach is that parameter esti-
mates for individual participants are assumed to come from a group-level
distribution of those parameters. In other words, the estimates of indi-
vidual participant parameters are constrained by the parameter estimates
at the group level. This approach to model fitting requires the setting of
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prior distributions of the group-level parameters to be estimated
(mean * SD). These priors are then updated based on Bayes law using
Markov Chain Monte Carlo algorithms to obtain posterior distributions
of the parameters. For each model, we obtained three chains with 25,000
samples after an initial burn-in of 25,000 samples. We checked for con-
vergence using the JAGS in-built Gelman-Rubin statistic.

We set the priors as follows: the learning rate («) was constrained to lie
between 0 and 1. It was first transformed to a probit scale to facilitate
hierarchical modeling (Nilsson et al., 2011). The priors for the mean
(before transformation) were drawn from a normal distribution with
mean = 0 and variance = 1. The priors of the SD of the group distribu-
tion (before transformation) were drawn from a uniform distribution
between 0 and 10. The mean of the inverse temperature (3) was con-
strained to be between 0 and 10, with the precision (1/variance) drawn
from a gamma distribution (with parameter settings shape = 0.001,
scale = 0.001), which effectively produces a flat prior (Lee and Wagen-
makers, 2014). The prior distributions for probability (8) and effort
weighting (y) parameters were drawn from uniform distributions be-
tween 0 and 20, and the precision was again drawn from gamma func-
tions as before. We confirmed after model fitting that none of the
parameters that we found lay too close to the boundaries of the priors
that we used, ensuring that we were not misestimating the parameters
due to incorrect constraints.

To determine which of the models that we fit best explained our data,
we used model comparison based on deviance information criterion
(DIC) differences (Spiegelhalter et al., 2002). DIC provides a measure of
model fit, taking into account both how well the model explains the data
and how complex the model is. DIC is a hierarchical modeling general-
ization of the Akaike information criterion. The smaller the DIC value,
the better a model explains the data.

Modeling the effect of reward type

Based on model comparisons of the above named simple models, we
determined the best fitting model, which we found to be one based on
a common learning rate for reward and effort and a heuristic utility
(i.e., aweighted sum of probability, reward and effort magnitudes; see
Results).

To assess the behavioral effect of reward type (real vs hypothetical), we
then modified this best fitting model in the following three ways. First, we
considered that one explanation for a difference in choice after real or
hypothetical reward could be that participants only learn from real re-
ward, but not from hypothetical reward (NoLearningHypothetical
model). We modeled this by setting the learning rate to 0 for the chosen
reward outcome on trials where the reward was hypothetical. In all other
instances (i.e., the reward was chosen and real or the reward of the un-
chosen option or of the effort dimension), we used the same learning rate
() as follows:

o Prediction, + a * PE,, if reward real
Prediction,., = { Prediction,, if reward hypothetical
We also tested a version of this hypothesis, in which instead of no learn-
ing for hypothetical reward, learning had a different learning rate for
hypothetical than real reward (LessLearningHypothetical model).

As a second hypothesis, the difference in choice after real or hypothet-
ical reward could be due to participants perceiving only real reward as
rewarding (NoRewardHypothetical model). To test this, we modeled the
hypothetical reward as having a reward magnitude of 0. The rest of the
model was as before:

_ [ Outcome, — Prediction,, if reward real
PE. =10 - Prediction,, if reward hypothetical

We also tested a version of this hypothesis, in which instead of a reward
magnitude of 0 when reward was hypothetical, the reward magnitude
was scaled by an additional free parameter.

As a third hypothesis, we considered that it is perhaps not the reward
magnitudes that are learned differently, but instead, participants might
unwittingly be biased toward choices that had led to real reward. In other
words, this hypothesizes that participants found receiving a real reward
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more rewarding than a hypothetical reward and that they were not only
influenced by the informational content provided by both real and hy-
pothetical outcomes but that they were also influenced by real reward
receipt. In other words, when multiple aspect outcomes are received,
participants not only learn choice—outcome contingencies that are rele-
vant to task performance but irrelevant outcome dimensions also affect
their learning. This was modeled as a bias term when calculating the
utility as follows:

1 b
Utility = T * Magnitudeg,,q + T ® Probabilitygeyara

€

_Y * Magnitudegy,,, + K

3 * Reward TypeLast Trial

where 8 was the probability weighting factor, y was the effort weighting
factor, & was the reward type (real vs hypothetical) weighting factor, and
k was a normalization factor (k =1+ y+ & + &).

We set the prior for the group mean of the weight of reward type (&)
between —10 and 10. This range, including positive and negative values,
was chosen so as not, a priori, to bias values to be only positive (as our
hypothesis would suggest), but to allow a free fit. We again used a flat
distribution for the group SD prior.

To see which of these hypothesis best explained the effects of reward
type on decision, we again used model comparison based on DIC.

Effort exertion phase

In the effort phase, participants used a trackball mouse to click on circles
appearing on the screen to make them disappear. We recorded every
mouse clickindependently of whether the click made the target disappear
or not and whether it was on the circles to be clicked or somewhere else
on the screen. Thus, we could measure the clicking rate on each trial, as a
proxy for motivation.

Here, we tested, using a regression analysis, whether the reward type
(real vs hypothetical) had an impact on how motivated participants were
when exerting effort. Thus, the clicking rate on each trial was the depen-
dent variable, and the regressor of interest was whether the reward was
real or hypothetical on the current trial (recall that the effort phase of
each trial followed the reward outcome phase of each trial). As regressors
of no interest, we also included the chosen option’s effort magnitude (i.e.,
the number of targets participants had to click), the unchosen option’s
effort magnitude, as well as the chosen option’s and the unchosen op-
tion’s reward magnitudes. The regressions were run in MATLAB (glm-
fit), using a log link function as the clicking rate data were constrained to
be >0.

In these analyses, we only included data from the behavioral session
outside the scanner as the EPI sequence sometimes affected the reliability
of the trackball mouse during the effort exertion phase during the scan.
Because of this interference, the clicking performance recorded inside the
scanner may not always have been a reliable measure. Of course, this was
no problem outside the scanner.

MRI data acquisition

Structural MRI and fMRI measurements were taken using a Siemens 3
tesla MRI scanner. For the fMRI, we used a Deichmann EPI sequence
(Deichmann et al., 2003) (TR: 3000 ms; 3 X 3 X 3 mm voxel size; TE: 30
ms; flip angle: 87°; slice angle of 15° with local z-shimming) to minimize
signal distortions in orbitofrontal brain areas. This entailed orienting the
field of view at ~30° with respect to the AC-PC line. We acquired be-
tween 1100 and 1300 volumes (depending on the time needed to com-
plete the task) of 45 slices per participant. Additionally, for each
participant, anatomical images were acquired with a TI1-weighted
MP-RAGE sequence, usinga GRAPPA acceleration factor of 2 (TR: 2200
ms; TE: 4.53 ms; inversion time: 900 ms; voxel size: 1 X 1 X 1 mm on a
176 X 192 X 192 grid) (same protocol as Chau et al., 2014, 2014).

We used Oxford Centre for Functional MRI of the Brain’s Software
Library (FSL) (Smith et al., 2004) for image preprocessing and analysis.
Functional images acquired were first spatially smoothed (Gaussian ker-
nel with 5 mm full-width half-maximum) and temporally high-pass fil-
tered (3 dB cutoff of 100 s). Afterward, the functional data were manually
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denoised using probabilistic independent component analysis (Beck-
mann and Smith, 2004), identifying and regressing out obvious noise
components (Kelly et al., 2010); we considered only the first 40 compo-
nents of each participant that had the greatest impact to interfere with
task data (total up to 550). We used the Brain Extraction Tool from FSL
(Smith, 2002) on the high-resolution structural MRI images to separate
brain matter from nonbrain matter. The resulting images guided regis-
tration of functional images in MNI space using nonlinear registrations
as implemented in FNIRT (Jenkinson et al., 2012). The data were pre-
whitened before analysis to account for temporal autocorrelations
(Woolrich etal.,2001). Statistical analysis was performed at two levels. At
the first level, we used an event-related GLM approach for each partici-
pant. On the second level, we used Oxford Centre for Functional MRI of
the Brain’s Local Analysis of Mixed Effects (FLAME 1) (Beckmann et al.,
2003) with outlier deweighting and tested the single group average. The
main effect images are all cluster-corrected results with the standard
threshold of z = 2.3. We also analyzed data in ROIs, extracted from
spheres with a 3 voxel radius, identified in MNI standard space on the
basis of orthogonal whole-group analyses, or used time courses for illus-
tration purposes only (e.g., Fig. 9).

fMRI analysis

In the fMRI analysis, we investigated the neural underpinnings of the effect
of real versus hypothetical rewards on behavior. We looked at these effects at
two time points. First, we examined activity at the time when participants
made decisions to examine whether brain activity reflected whether the re-
ward had been real or hypothetical on the last trial, as well as whether
the real/hypothetical nature of the reward influenced switch-stay signals. The
second time point we examined was at the time of the outcome after the
decision had been made. At this time point we examined, first, which brain
regions were differently active when rewards were real or hypothetical and,
second, whether the reward type (real vs hypothetical) changed the sensitiv-
ity to the effort and reward magnitude outcomes.

Identifying areas coding real and hypothetical reward and effort in the
outcome and decision phases. In the first design (GLM1), we investigated
the neural effect of the reward being real or hypothetical at the time of the
decision and at the time of the outcome. Additionally, we looked at how
neural activity reflected the other key features of the options, namely,
their reward and effort magnitudes and their reward probabilities. The
regressors used in this design were as follows (for correlations between
the regressors, see Fig. 2A): we used three boxcar regressors, indicating
the onset and duration of the decision phase (duration from the begin-
ning of the trial until participants made a choice), the onset and duration
of the outcome phase (from the appearance of the chosen outcome until
the chosen and the unchosen outcomes were removed again from the
screen), and the effort exertion phase (from the appearance of the first
target that participants needed to remove until they had removed the last
target). We furthermore included the following parametric regressors in
the decision phase: whether the reward of the chosen option had been
real or hypothetical on the last trial, reward and effort magnitude predic-
tions (derived from a standard Bayesian learning model, similar to that
described by Behrens et al., 2007; see below), and the reward probabilities
that had been displayed on the screen. In each case, separate regressors
for the chosen and the unchosen option were used. None of these regres-
sors were correlated with participants’ reaction time, and inclusion of
reaction time did not affect the brain signals reported in the decision
phase. In the outcome phase, we included the following parametric re-
gressors: the reward type (real vs hypothetical) delivered for the chosen
option, the probability of reward for the chosen option, the reward mag-
nitude outcomes, and the effort magnitude outcomes for the chosen and
the unchosen option. The onset of the regressors for reward receipt,
chosen option reward probability, chosen option reward and effort mag-
nitude outcomes was time-locked to the onset of the outcome phase; the
onset and duration of the regressors indexing the reward and effort mag-
nitude outcomes for the unchosen option were time-locked to their dis-
play (appearing ~2 s after the outcomes of the chosen option). In the
effort execution phase, we included the clicking rate as a parametric
regressor. Finally, we included, as confound regressors, six movement
regressors and a regressor indexing when additional visual stimuli were



Scholl, Kolling et al. e Learning Real and Hypothetical Rewards and Effort

A GLM1 - regressor correlations (r-
Decision Phase

Probability (C)

Probability (UC)
PredRewMag (C)
PredRewMag (UC)
PredEffMag (C)

PredEffMag (UC)
Real/hypoth. reward last trial
Outcome phase

Real/hypoth. reward this trial
Probability (C)
RewMagOutcome (C)
RewMagOutcome (UC)*
EffMagOutcome (C)
EffMagOutcome (UC)*

Effort exertion Phase

Clicking rate

Counfound - visual

values)

B GLM 3 - regressor correlations (r-values)

Decision Phase
Real/hypothetical last trial
Probability (C)
Probability (UC)
PredRewMag (C)
PredRewMag (UC)
PredEffMag (C)
PredEffMag (UC)
Probability (C)
Probability (UC) Hypothetical
PredRewMag (C) | reward last
PredRewMag (UC) [ trjal
PredEffMag (C)
Pred EffMag (UC)
Stay-Switch (real reward last trial)
Stay-Switch (hypoth. rew last trial)
Outcome phase

Real/hypoth. reward this trial
Probability (C)
RewMagOutc. (C)
EffMagOutc (C)
RewMagOutc (UC)*
EffMagOutc (UC)*
RewMagOutc (C) ) Hypothetical
EffMagOutc (C) reward this
RewMagOutc (UC)*(¢trial
EffMagOutc (UC)*

Effort exertion Phase

Clicking Rate

Confound - visual

Real reward
last trial

Real reward
this trial

Figure 2.

J. Neurosci., August 12, 2015 - 35(32):11233-11251 + 11239

r-values

Correlations between the regressors included in the fMRI designs. A, Correlations (r values) between regressors in GLM1. The values are the mean of the absolute r values across all

participants. No r values exceeded 0.33. B, In GLM2, no r values exceeded 0.38. C, Chosen option; UC, unchosen option; PredRewMag, predicted reward magnitude; PredEffMag, predicted effort
magnitude; hypoth., hypothetical outcome; RewMagOutcome/RewMagOutc, reward magnitude outcome; EffMagOutcome/EffMagOutc, effort magnitude outcome. *Events time-locked to the

onset of the unchosen option’s outcomes appearing on the screen.

presented to warn participants that they had not clicked the targets on
time and that the halfway point of the experiment had been reached.

We applied a Bayesian learner (similar to the one described by Behrens
etal.,, 2007) to estimate the reward and effort magnitude predictions for
each option for the fMRI analysis. We did this to obtain prediction re-
gressors (of effort and reward magnitudes) for the fMRI analysis that
could not possibly be biased by model specifications of a fitted model.
However, it is of note that the regressors obtained in this way were highly
correlated with those from the best fitting simple learning model (r =
0.95). Therefore, we would not expect the fMRI results to differ were we
to use those regressors instead. Furthermore, most neural results are
completely independent of the model used as we mainly focused on
regressors that described model-free quantities (such as the shown prob-
abilities at the time of the decision or the shown reward or effort magni-
tudes or reward type at the time of the outcome).

In short, the Bayesian model estimated the current reward/effort mag-
nitude predictions based on the previous trials for each of the four mag-
nitudes (option A reward magnitude, option A effort magnitude, option
B reward magnitude, option B effort magnitude) separately. It did this by
taking into account the following properties of the experimental task: (1)

The reward/effort magnitude outcomes were determined by separate
underlying reward/effort distributions for each magnitude (normal dis-
tributions). (2) The mean of a magnitude distribution could sometimes
change. (3) How quickly each mean changed could vary over the course
of the experiment. Sometimes, the mean changed more quickly (high
volatility), whereas at other times, it changes more slowly (low volatility).
(4) The volatility of an attribute was not static but could also change over
the course of the experiment. In other words, the parameters that the
model estimated on every trial for each attribute were the reward/effort
magnitude prediction (mean and variance), the volatility, and the vola-
tility change.

The model estimated these parameters for the current trial based on
last trial’s parameter likelihoods and the last trial’s attribute outcomes. It
did this using Bayes’ rule, which is the most efficient way for updating
beliefs given new evidence. In contrast to the fitted models, this model
did not have any free parameters. For details on the specific mathematical
implementation of the Bayesian learner, see Behrens et al. (2007). The
only noteworthy change compared with Behrens et al. (2007) was that,
whereas they tried to predict binary outcomes using a 8-distribution, we
wanted to predict numerical outcomes using a normal distribution and
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thus added an additional parameter estimating the width of the normal
distribution for the magnitudes.

Relating neural effects of real versus hypothetical reward to behavior. We
also looked for correlations, across participants, between brain represen-
tations of reward type (real vs hypothetical) and the behavioral impact
the reward type had on stay/switch behavior. For this we included, at the
group-level analysis stage of the fMRI data, a covariate denoting for each
participant how much reward type on the last trial influenced subsequent
stay/switch behavior (GLM2). The covariate was thus the regression 8
weight from the behavioral analysis described above, for each individual
participant, indicating how strongly the last trial’s reward type influ-
enced participants’ stay/switch decisions. We looked for correlations be-
tween this covariate and the brain response to reward type at the time of
the outcome phase. To assess whether the regions that we identified in
this analysis made shared or independent contributions to the decision
bias we also performed follow-up partial correlations. For this we first
extracted each individual participant’s fMRI contrast of parameter esti-
mates (COPE) values for the contrast of reward type from ROIs placed
inside the activation clusters using featquery (FSL). We then correlated
the COPE from one region with the decision bias while controlling for
the COPE from another region. In this partial correlation analysis, we are
interested in whether the correlations in both areas explain at least par-
tially independent variance or not. We tested this using partial correla-
tions and mediator analyses (Sobel test) (Preacher and Hayes, 2004).

Time course analysis: how reward and effort magnitude representations
differ for real and hypothetical reward. Having identified which regions in the
outcome phase coded effort and reward magnitudes, we then went on to test
whether reward type (real vs hypothetical) had an impact on the coding of
reward magnitude and effort magnitude outcomes in these regions. This
analysis is orthogonal to the analysis used in initial identification of the ROIs
because the difference of the magnitudes in the real versus hypothetical re-
ward conditions is independent of the sum of the two conditions (i.e., the
main effect of reward or effort outcomes) that was used to identify the re-
gions. First, we extracted the BOLD signal from these regions. We then
up-sampled the time course 10-fold, created epochs from the beginning of
the outcome phase onward, and applied a GLM to every time point sepa-
rately. By averaging the resulting 3 weights across participants, we created
the time courses shown (the SEs of the mean effect across participants are
shown). We included as regressors: the relative reward magnitude outcome
(chosen — unchosen option) as separate regressors on trials when the reward
was real or hypothetical, the relative effort magnitude outcome (chosen —
unchosen option), again as separate regressors for when the reward was real
or hypothetical, and finally we also included regressors for the main effect of
reward type and to denote the expected probability of reward receipt. We
statistically compared the reward outcome regressors in the real and hypo-
thetical reward conditions, using two-tailed ¢ tests performed on the time
course after hemodynamic convolution. For the hemodynamic convolu-
tion, we used a leave-one-out procedure to fit the hemodynamic response
function. Specifically, for each participant, we used the data from all but that
participant to determine the absolute peak (i.e., either the strongest peak or
trough) of the time course in a window between 6 and 12 s. We then aligned
the peak of a canonical hemodynamic response function to this peak. The
hemodynamic response function was made using gammapdf in MATLAB,
with values @ = 72/32%, 8 = 7/3% We then convolved the aligned hemody-
namic response function with the omitted participant’s time course to ob-
tain one value per participant for each regressor of interest.

Stay-switch analysis. We performed a third whole-brain analysis
(GLM3) to assess whether reward type (real vs hypothetical) on the last
trial also influenced brain signals directly related to the choice on the
current trial, namely, whether on the current trial the same choice was
repeated as on the last trial (i.e., a stay decision) or whether the other
option was chosen (switch). In other words, we wanted to identify re-
gions that were not just differently affected by receipt of real and hypo-
thetical reward outcomes but that were activated differentially as a result
of an interaction between the outcome type and subsequent behavior; we
identified brain areas that activated differently when decisions were
made in line with the bias suggested by the last trial’s reward type (i.e.,
stay decision after real reward and switch decision after hypothetical
reward) or against it (stay decision after hypothetical reward and switch
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decision after real reward). In GLM3 (for a list of regressor correlations,
see Fig. 2B), we included again the same boxcar regressors for the onset
and duration of the decision, outcome, and effort exertion phases. We
included as our main regressors of interest in the decision phase whether
the current trial was a stay or a switch choice but coded separately for
instances on which there had been a real or a hypothetical reward on the
last trial previous to it. We then looked at whether stay/switch signals
were affected by whether the reward was real or hypothetical on the last
trial by looking at the difference between these two regressors (stay/
switch after real reward — stay/switch after hypothetical reward on the
last trial). As confound regressors we included, first, a main effect regres-
sor indicating the reward type on the last trial (regardless of whether the
current trial was a stay or a switch decision). Additionally, we also in-
cluded regressors indexing the predicted reward magnitudes, predicted
effort magnitudes, and explicitly shown reward probabilities associated
with both the chosen and unchosen options. Each of these quantities was
included as separate regressors for when the reward had been real on the
last trial and for when it had been hypothetical on the last trial. In the
outcome phase, we included, as in GLM1, a regressor indicating current
reward type (real vs hypothetical) and what the probability of that reward
type had been. Additionally, we included regressors, separately for trials
with real or hypothetical reward, for the chosen and the unchosen reward
magnitude outcomes and effort magnitude outcomes. The regressors in
the effort exertion phase and the other motion confound regressors
phase were as in GLM1.

Connectivity analysis. In the previous analysis (GLM3), we identified
regions with activity reflecting the interaction between the decision to
stay or switch and the reward type on the last trial. To further examine the
relationship between one of those areas (for the sake of simplicity in the
description of the analysis procedure, we note here that the region in
question was the amygdala, which has previously been implicated in
biased decision making) (de Martino et al., 2006; Roiser et al., 2009) and
areas that we had identified as opposing biased decision making, we
conducted an exploratory analysis of the interactions during task perfor-
mance. More specifically, we performed a psychophysiological interac-
tion analysis (PPI) (O’Reilly et al., 2012) to determine whether
connectivity between those types of region changed as a function of the
decision X last reward type interaction effect. We hypothesized, based on
previous research (Roiser et al., 2009), that if a region opposes the bias, it
could do so partly by suppressing activity in a region, such as the
amygdala, that is associated with promoting the bias during the decision.
If that were the case, then a decrease in connectivity should be seen on
trials when participants ended up making a potentially biased decision.
In other words, choices in agreement with last trial’s reward bias could be
partly due to a failure of the bias-opposing region to suppress the bias-
promoting region (the amgydala). To test this hypothesis, we performed
a PPI for every time point during the decision phase, equivalent to the
other time course analyses. We included as main regressors of interest the
time course extracted from the region identified by the bias consistent
choice effect in GLM3 and the interaction between this time course and
this bias effect. Specifically, the bias consistent choice effect regressor was
binary, coding whether decisions were made in line with last trial’s re-
ward type (stay after real reward and switch after hypothetical reward) or
against it. As usual for a PPI analysis, we included as confound regressors
the main effect of the interaction between the current decision and the
last trial’s reward type, as well as the relative probabilities, reward and
effort magnitudes (chosen — unchosen), last trial’s reward type, and the
global time course (Rogers et al., 2007; Friston et al., 1990).

Results

Decision-making analysis

Participants performed a reward and effort learning task in which
they tracked the continuously changing reward and effort mag-
nitude values of two options. The range of reward and effort
magnitude differences between the two options and the influence
these differences exerted on participants’ choices are shown in
Figure 3A, B. We found, as predicted, that participants were more
likely to select an option associated with a higher expected reward
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Behavioral results. 4, Distribution of the Bayesian estimated reward and effort magnitude differences (Option T — Option 2) of the two options on the trials used in the task. B, How

likely participants were to select one option over the other based on the predicted reward and effort magnitude differences between the options. Decisions were analyzed using a regression analysis
(€). Participants were more likely to stay with an option (choose it again) rather than switch to the alternative if the option was associated with a higher displayed probability (“prob”) and higher
past (one[t — 11, two [t — 2], orthree [t — 3] trials ago) reward and lower past effort magnitudes than the alternative option. Furthermore, participants were more likely to stay if they had received
areal rather than a hypothetical reward on the last trial (p = 0.008, highlighted in red). Effort exertion was analyzed using a regression analysis (D) predicting the clicking rate. The regressors were
the effort and reward magnitude outcomes, separately for the option participants had chosen (“C") or not chosen (“UC,” unchosen), and the reward type (i.e., whether the reward was real or
hypothetical). Again, participants’ behavior was influenced by whether the reward was real or hypothetical (p = 0.039, highlighted in red).

magnitude and a lower expected effort magnitude. To test more
formally whether participants learned the changing reward and
effort magnitudes, we performed a regression analysis assessing
the effect of reward magnitude and effort magnitude outcomes
on recent trials and the reward probabilities (which were shown
to participants at the time of the choice; Fig. 3C). This analysis
demonstrated that participants’ decisions to repeat a choice
(stay) or select the alternative option (switch) were influenced by
the reward probabilities they were shown at the time they made a
decision (these varied randomly from trial to trial) and that the
history of reward magnitude and effort magnitude outcomes on
recent trials (i.e., what should be learned) also influenced
whether participants stayed with their previous choice or
switched to the alternative. Furthermore, the impact of more

recent reward and effort magnitudes was larger than for reward
and effort magnitudes received longer ago in the past, as is typi-
cally found in a learning task (ANOVA, main effect of time:
F(y 4064y = 4536, p = 0.031).

Our main factor of interest in this decision analysis was
whether participants’ decisions were also influenced by whether
the reward had been real or hypothetical on the last trial (reward
type). To test this, we also included the last trial’s reward type in
the regression analysis described above. We found that partici-
pants were more likely to repeat a choice (stay) if they had re-
ceived areal reward on the last trial (Fig. 3C, red bar; z = 2.65,p =
0.008, one-sample Wilcoxon signed rank test). To confirm this
result in a simpler way, we divided all trials into two bins: those
that occurred after real rewards and those that occurred after
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Table 1. DIC values®
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Table 2. Parameters of the DecisionBias model”

Model DIC Mean SE
Simple models Learning rate (c) 0.42 0.04
Addition1cx 2828 Inverse temperature (3) 3.85 0.20
Addition2cx 2833 Effort weight (vy) 1.54 0.30
AdditionChosenUnchosenc 2837 Probability weight (5) 1.34 0.17
Multiplication1cx 4353 Reward-type weight (e) 0.19 0.06
Multiplication2ce 4103 “Parameters of the best fitting model incorporating an effect of reward type (DecisionBias model).
Reward-type models (all based on Addition1cx)
DecisionBias 2780
NoLearningHypothetical 2837
LessLearningHypothetical 2822 ing from hypothetical reward might be reduced (LessLearning-
NoRewardHypothetical 3388 Hypothetical model). This model only provided a marginally
LessRewardHypothetical 280 better fit to the data than the simplest Addition1a model (DIC =

“Results of the model fitting analysis. Smaller values indicate a better fit.

hypothetical rewards. We then calculated the percentage of trials
for each participant on which they chose the same option again
(stay) or selected the other option (switch) after the reward had
been real or hypothetical on the last trial. We found, as before,
that participants were more likely to stay when the reward had
been real rather than hypothetical (z = —3.10, p = 0.002, one-
sample Wilcoxon signed rank test).

Computational modeling of the decision behavior

To look at the reward-type-induced decision bias in more detail,
we fitted different learning models to the behavioral data. We first
fitted five models to the data to determine which model to exam-
ine further to assess the effect of reward type (real vs hypotheti-
cal). These models differed in the learning and the decision rules
used. For each model, we computed the model fit using the DIC.
DIC differences between models of 0—5 suggest no evidence in
favor of a model, DIC differences of 5-10 suggests mild evidence
in favor of a model, and DIC differences >10 suggest strong
evidence in favor of a model (Spiegelhalter et al., 2002). The DIC
scores are shown in Table 1. A model with a shared learning rate
for reward and effort and which integrated reward magnitude
and probability in a heuristic manner by linear summation
(Additionla model) showed the best fit (DIC = 2828). This
model explained 81% of participants’ choices on average. We
then analyzed this model further with regard to the mechanism of
how reward type could influence decisions. However, we note
that the second best model (which used separate learning rates for
reward and effort) showed a similar fit, and so we also repeated all
the analyses shown below for this alternative model. We do not
report these analyses here because the conclusions drawn were
identical to those drawn below. It is perhaps worth briefly point-
ing out that the model with different learning rates for the chosen
and the unchosen option (AdditionChosenUnchosena) also did
not provide a better fit to the data than a model with just one
learning rate (Additionla). Therefore, we cannot determine
from our data whether the learning occurs separately for each
option or for the relative value of the two options.

Next, we fitted three model types to test different hypotheses
of how reward type (real vs hypothetical) could affect decisions
(Table 1). The first model type incorporated the hypothesis that
reward type changed how participants learn about reward, more
specifically whether, as could be expected from some basic rein-
forcement learning theories, hypothetical reward is not used for
learning (NoLearningHypothetical model in table). We found
that this model did not provide a better explanation for partici-
pants’ behavior (DIC = 2837). A variant of this model tested
whether, instead of no learning from hypothetical reward, learn-

2822).

The second model tested whether hypothetical reward was
perceived as nonrewarding (NoRewardHypothetical model in
table). Again, this model did not provide a good explanation
of participants’ behavior (DIC = 3388). A variant of this
model tested whether, instead of perceiving hypothetical re-
ward as completely nonrewarding, it might be perceived as
somewhat less rewarding (LessRewardHypothetical model).
This model did not provide a better fit than the simple
Additionla model (DIC = 2830).

The third model tested whether after receiving a real reward
when choosing an option, participants mistakenly perceive the
option as having a higher utility and therefore are more likely to
select it again (DecisionBias model in table). We found this
model to provide the best fit to the data (DIC = 2780). Further-
more, we found that, across participants, reward type had a con-
sistent positive effect (mean = 0.19, 95% confidence interval:
0.01-0.39; Table 2), replicating the result of the regression anal-
ysis that participants prefer options that had received a real rather
than a hypothetical reward in the past. This suggests that partic-
ipants can learn from both hypothetical and real reward but that
they irrationally behave as if choices that had been associated with
areal reward were more valuable to them. The conclusions of this
analysis are therefore the same as those drawn from the regres-
sion analysis.

It is of note that, although this behavioral modeling is able to
tell us that participants are biased toward an option that had been
linked to a real reward, it does not distinguish between different
possible neural mechanisms that could generate this behavior. In
other words, participants could simply have a weak bias or alter-
natively the bias is due to a competition between a brain mecha-
nism that is biased by real reward (and thus drives the behavior)
and another brain mechanism that reflects the true, underlying
task structure (i.e., that participants should ignore for future
choice whether reward is real or hypothetical). To investigate this
question further, we need to interrogate the neural signals.

Effort exertion phase

In the effort exertion phase, we tested for an effect of reward type
(real vs hypothetical) on the clicking rate (i.e., on how vigorously
participants exerted an effort). A multiple regression analysis
(Fig. 3D) revealed that, if the reward were real as opposed to
hypothetical, then the clicking rate increased in the subsequent
effort exertion phase (¢(,9, = 2.214, p = 0.039). Thus, this further
supports the view that reward type was not ignored by partici-
pants but instead affected their decision and effort exertion be-
havior. The effect is consistent with what would be expected if
participants perceived real rewards as more rewarding than hy-
pothetical rewards.
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Outcome phase
A Reward and effort magnitudes

H Effort magnitude (activation)
Il Reward magnitude (activation)

B Real/ hypothetical reward receipt

Real or hypothetical reward on
current trial

Figure 4.  Brain activations in the outcome phase. 4, Increases in BOLD activity correlating
with the relative effort magnitude outcomes (chosen — unchosen option; red) and relative
reward magnitude outcomes (chosen — unchosen option; brown) in the outcome phase. At the
same time, whether a reward was real or hypothetical (B) led to widespread increases in BOLD
activity throughout the brain (pink). All activations are cluster-corrected at p < 0.05.

fMRI results

The behavioral modeling was able to tell us that participants were
biased toward staying with an option that had been linked to a
real reward. However, the behavioral modeling could not distin-
guish between different possible neural mechanisms that could
generate this behavior. For example, the behavioral bias could
simply be due to a brain mechanism that is weakly biased toward
irrationally repeating a choice after real reward. Alternatively, the
behavioral bias could be due to a competition between a brain
mechanism that is biased by real reward (and thus drives the
behavior) and another brain mechanism with activity that re-
flects the true task structure (i.e., whether a reward is real or
hypothetical should be irrelevant for future choice) and tries to
oppose the bias. To investigate this question, we needed to inter-
rogate the neural signals. We reasoned that the effect of reward
type might be seen when the outcomes themselves were pre-
sented and participants needed to use the reward magnitude and
effort magnitude information they received to update their ex-
pectations for their next choices. Alternatively, or additionally, an
effect of reward type might be seen on the subsequent trial when
participants next had to make a decision. Below we first consider
reward type effects at the time of outcome processing; and then in
a later section, we consider the effects of reward type on subse-
quent decision-related activity.
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Table 3. Outcome phase (GLM1)”

Maximum
X y z Zscore
Activations with effort outcome (C — UC)
FO/AI 30 24 -2 399
Ventral inferior frontal gyrus (44v%) 46 18 4 361
dACC/anterior rostral cingulate zone (R(Za) 4 36 32 3.65
Pre-SMA 2 18 54 323
Inferior parietal lobule (PFm©), right 52 —46 40 346
Inferior parietal lobule, (PFm©), left —28 =56 46 333
Area 46/lateral frontal pole (FPI)®, right 38 52 8 340
Dorsolateral prefrontal cortex (area 9/46v) 42 40 22 330
Activations with reward outcome (C — UC)
Supplementary motor area/dACC/posterior 2 0 52 345
rostral cingulate zone (RCZp°®)
dACC/anterior rostral cingulate zone (RCZa) 8 10 38 327
Inferior parietal lobule (PFop©), left =50 -4 28 3.8
Ventral striatum, left -12 8 —10 412
Ventral striatum, right 10 8§ —10 37
Cluster may extend to subcalloscal cortex 0 10 -6 33
Activations with reward type (real/hypothetical)
Putamen, right 14 12 —6 552
Putamen, left —18 14 —4 45
Ventral striatum, left -=10 10 -8 513
Ventral striatum, right 6 12 =2 497
vmPFC 0 48 —4 338
Perigenual ACC —4 36 8 265
Dorsal thalamus (extending to pulvinar), right 6 —18 14 3.07
dACC/posterior rostral cingulate zone (R(Zp) 0 4 36 3.04
Posterior cingulate (area 31°) 0 —48 50 281
Middle temporal gyrus, right 56  —48 —6 406
Inferior parietal lobule (PF/PFt/hIP2°), right 4 —34 48 372
Inferior parietal lobule (PF/PFt/hIP2°), left =50 —40 50 353
Occipital lobe 6 —76 8 365
Cerebellum 4  —64 —16 406

“List of activations in the outcome phase (GLM1) for the difference in activity associated with the effort magnitude
of the chosen option as opposed to the unchosen option (relative effort magnitude outcome), for the difference in
activity associated with the reward magnitude of the chosen option as opposed to the unchosen option (relative
reward magnitude outcome) and reward type (real vs hypothetical). All results are cluster-corrected at p << 0.05.

®Where indicated, anatomical labels were taken from Neubert et al. (2014).
“Where indicated, anatomical labels were taken from Mars et al. (2011).
“Where indicated, anatomical labels were taken from Sallet et al. (2013).
“Where indicated, anatomical labels were taken from Beckmann et al. (2009).

Reward magnitude and effort magnitude signals at outcome

When we examined activity during the outcome phase of trials
(GLM1; see Materials and Methods), we found that the relative
reward magnitude outcome (i.e., the chosen — the unchosen
reward magnitude) led to an increase in BOLD activity in the
ventral striatum and elsewhere (Fig. 4A, brown; Table 3). There
was an analogous effect of relative effort magnitude outcome (the
chosen — the unchosen effort magnitude) in FO/AI, ACC, and
aPFC (Fig. 4A, red; for a complete list of activations, see Table 3).
We did not find any areas that showed a decrease in BOLD with
either regressor. We note that we used relative outcome signals,
rather than just the chosen outcome, because in our task partic-
ipants were shown information at outcome about both the cho-
sen and the unchosen options. Therefore, for future decisions,
the relevant quantity is how good an option is compared with the
other option available. One could consider this quantity to be the
relative evidence for switching/staying. However, in control anal-
yses (data not shown), we confirmed that the regions carried
signals for both the chosen and the unchosen options separately
(with reversed signs). Thus, our data do not speak to the issue of
whether learning is about the relative evidence for the chosen
versus the unchosen option or occurs separately in relation to the
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evidence for the chosen option and the
unchosen option. Both of these possibili-
ties are compatible with both our fMRI
and behavior modeling findings, and fur-
ther studies are needed to address this spe-
cific question.

Furthermore, we also note that, as we
used sustained effort, there is an inherent
(and naturalistic) confound between
amount of effort and duration of the ef-
fort (or delay). Comparison of our study
results with other studies (Prévost et al.,
2010) suggests that the effort-related acti-
vations resembled those found in a pure
effort task rather than in a pure delay-
discounting task.

Representation of whether reward is
real or hypothetical is widespread at the
time of the outcome and relates to
decision biases

We found widespread effects, in the out-
come phase, of the reward type (real vs
hypothetical) in areas including the ven-
tral striatum and the vimPFC (Table 3; Fig. 4B, pink).

Notably, we also found activation with reward type in the
aPFC, meaning that aPFC was more active (main effect) when
outcomes were real rather than hypothetical (Fig. 4B, right hand
panel; t,4) = 2.42, p = 0.025, statistical test in ROI, see “aPFC and
FO/ALI effort cost and reward outcome representations change
when the reward is real as opposed to hypothetical”, below). At
first glance, this might be surprising in as far as prior studies (e.g.,
Boorman et al., 2011) found that aPFC deactivates in proportion
to the value of the option chosen. However, the result is consis-
tent with the hypothesis that aPFC carries signals reporting the
relative value of the choice not taken (the counterfactual choice),
which would be the choice subjects would switch to if they could
change their decision (and which they might switch to on the next
trial) (Boorman et al., 2011). Thus, in our experiment, the acti-
vation found in relation with reward type is consistent with an
enhanced switch signal that helps to overcome the stay bias in-
troduced by real reward. If this interpretation is true, then indi-
vidual differences in the strength of this activity should also relate
to individual differences between participants in behavioral bias.

Therefore, we assessed next whether these BOLD increases
related to the behavioral impact of reward type (real rewards
biased participants toward staying with the same choice on the
next trial; Fig. 3C) using GLM2 (see “Relating neural effects of
real versus hypothetical reward to behavior”, above). Brain areas
that are linked to the bias in behavior induced by real rewards
should be ones in which the difference in activity in response to a
real versus a hypothetical reward is greatest in participants exhib-
iting the strongest behavioral bias. We found such an effect in
vmPEFC (Fig. 5, red). By contrast, brain areas that are linked to
resistance against the behavioral bias induced by real rewards
should be ones in which the difference in activity in response to a
real versus a hypothetical reward is greatest in participants exhib-
iting the weakest behavioral bias. We found such an effect in
aPFC and a dorsal part of ACC (Fig. 5, blue; Table 4). Thus, this
further supports the view that aPFC and dACC represent evi-
dence in favor of switching to the alternative, and counteract
signals advocating staying with the current choice in vmPFC
when the reward was real as opposed to hypothetical.

Figure 5.
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Correlations between the decision bias and the neural response to real versus hypothetical reward in the outcome
phase. Participants who had a larger BOLD increase to real compared with hypothetical rewards in the vmPFC showed a larger
behavioral bias (positive correlation; red). In contrast, participants who showed a larger activation to real compared with hypo-
thetical rewards in the aPFC or the dACC showed a weaker behavioral bias (negative correlation; blue). All results are cluster
corrected at p < 0.05. Forillustration, we also show scatter plots of these correlations (B, €) using averages within spherical ROI's
with a radius of 3 voxels in MNI space.

Table 4. Outcome phase (GLM2): between-subject correlations neural signal real/
hypothetical reward and decision bias”

Maximum z
X y z score

Positive correlations

vmPFC -2 40 -2 3.2
Negative correlations

Pre-SMA/dAC(/anterior rostral 2 22 44 3.9

cingulate zone (R(Za)
aPF(/lateral frontal pole (FPI)® 38 58 -2 3.54

“List of positive and negative correlations between individual differences in the neural signal for reward type (real vs
hypothetical) in the outcome phase and the behavioral decision bias (GLM2). Al results are cluster-corrected at
p<0.05.

“Where indicated, anatomical labels were taken from Neubert et al. (2014).

To assess whether aPFC and vimPFC made independent con-
tributions in relation to the decision bias, we performed partial
correlations between the COPE values extracted from these re-
gions (for coordinates, see Table 4) and the behavioral impact of
reward type (decision bias). We found that, when controlling for
aPFC correlations, the correlation between vmPFC and decision
bias was still significant (r = 0.49, p = 0.032). Similarly, the
negative correlation between aPFC and the decision bias re-
mained significant after controlling for vmPFC—behavior corre-
lations (r = —0.498, p = 0.03). Similarly, we found that vmPFC is
not a mediator for the effect of aPFC on behavior (z= —0.91,p =
0.36, Sobel test). Distinct neural processes linked to vmPFC and
aPFC exert independent influences consistent with induction of
the decision bias and with resistance to the decision bias. In con-
trast, when controlling for dACC, the correlation between aPFC
and decision bias was no longer significant (r = —0.34, p = 0.16),
suggesting that activity in both of these areas reflects a common
process related to resistance to the decision bias. Furthermore,
whereas the activations of aPFC and dACC in response to real
compared with hypothetical reward were strongly correlated
(p = 0.642, p = 0.002), this was not true for aPFC and vmPFC
(r=—0.246, p = 0.296) or dACC and vmPFC (r = —0.233,p =
0.324). This further supports the view that, even though both
aPFC and vimPFC were more active when a reward is real rather
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Figure 6.

Time courses from selected regions showing the main effect of real versus hypothetical reward and how the coding of the relative reward and effort magnitude outcomes is affected by

the reward being real. A—(, Locations of the ROIs. Relative effort magnitude outcomes (chosen — unchosen option) (D) led to a larger increase in BOLD when the reward was real rather than
hypothetical inaPFCand FO/AI, but not in ventral striatum. Similarly, relative reward magnitudes (chosen — unchosen option) () led to astronger decrease in BOLD when the reward was real rather
than hypotheticalin aPFCand FO/AI, but notin ventral striatum. F, Whether the reward was real or hypothetical not only led to an increase in BOLD in ventral striatum and vmPFC but also in the aPFC.
D, E, Significance was based on the result of paired two-tailed ¢ tests comparing the hemodynamically convolved time courses from trials on which the reward was real or hypothetical: *p << 0.05;
*¥p < 0.01; ***p < 0.0071. F, Significance tests were one-sample two-tailed ¢ tests. All ROIs were selected on the basis of an orthogonal contrast; aPFC, FO/Al, and dACC ROIs were selected based
on the whole-brain-corrected contrast-relative effort magnitude at the time of outcome (chosen option — unchosen option); the ventral striatum ROl was selected based on the whole-brain-
corrected contrast-relative reward magnitude at time of outcome (chosen — unchosen option); the vmPFC ROl was selected based on the whole-brain-corrected contrast real versus hypothetical
reward outcome. The ROIs were 3 voxels in radius in the case of all cortical regions (aPFC, FO/AI, dACC, and vmPFC) and 2 voxels in radius in the case of the subcortical region (ventral striatum).

than hypothetical, activity in the two regions made independent
and very different contributions to behavior. In other words,
aPFC did not exert its influence on behavior by reducing the
effect of reward on the vmPFC.

We note that, as with any fMRI study, all results discussed here
are correlational, and further studies using techniques that can
interfere with brain function will be needed to address questions
about causality between brain and behavior more directly.

aPFC and FO/AI effort cost and reward outcome
representations change when the reward is real as opposed to
hypothetical

So far, we have reported two main types of results. First, we have
shown that reward magnitude and effort magnitude significantly

affect activity in several frontal cortical regions in the outcome
phase, when participants witness the consequence of their deci-
sions. Second, we have shown that reward type (real vs hypothet-
ical) also affects activity in several frontal cortical regions in the
outcome phases of trials and that this effect was related to the
irrational behavioral bias to repeat choices associated with real as
opposed to hypothetical rewards. Thus, the next obvious ques-
tion was whether, within areas coding reward magnitude and
effort magnitude, there was any influence of reward type. This
allowed us to arbitrate between two opposing hypotheses: First, a
region could code real and hypothetical reward differently be-
cause it is sensitive to the rewarding aspect of an outcome. In this
case, the effort magnitude should always be represented the same,
independent of reward type, as the effort always needs to be exe-
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aPFC - overlap of neural effects
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Reward type (more activation to real reward)

B Negative correlation between neural effect of
reward type and behavioural decision bias
More activation to relative effort magnitude
outcome on real than hypothetical reward trials
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Figure7. Varioussignalsare presentin the aPFC during the outcome phase. Different signals
are present in aPFC that are consistent with a role in overcoming a bias to stay with the current
choice when there is real rather than hypothetical reward. 4, First, aPFCactivity increases when
rewards are real (pink) and participants with a stronger increase are better at overcoming the
behavioral bias (blue). B, Second, the representation of effort magnitude outcomes increasesin
aPFC when reward is real (yellow). We also show the relative effort magnitude outcome con-
trast (red) used to identify our aPFCROI (used for time courses in Fig. 6).

cuted regardless of the reward type. Second, as an alternative
hypothesis, a region could represent reward and effort magni-
tudes differently when the reward is real if its activity is related to
counteracting a decision bias; in this case, we would expect it to
represent reward and effort magnitudes more strongly when the
reward is real to overcome the bias to stay with the rewarded
option by enhancing the representation of the alternative option.

Using a time course analysis (Fig. 6), we found, to our sur-
prise, that in the ventral striatum, there was no difference in the
reward magnitude outcome effect for real versus hypothetical
rewards (t(,9, = 0.55, p = 0.587), even though there was a strong
main effect (i.e., BOLD increase when the reward was real vs
hypothetical; £, = 5.81, p < 0.001).

In contrast (Fig. 6), in aPFC and FO/AI, both reward magni-
tude and effort magnitude signals were significantly affected by
reward type. In both regions, relative reward magnitude out-
comes (chosen option reward magnitude outcome — unchosen
option reward magnitude outcome) led to a BOLD decrease;
related results have previously been reported (Boorman et al.,
2009, 2011, 2013). But this effect was stronger when the reward
was real (aPFC: t(,9) = —2.314, p = 0.032; FO/AIL t 14, = —3.671,
p = 0.002). Similarly, relative effort magnitude outcomes (cho-
sen option effort magnitude — unchosen option effort magni-
tude) led to a stronger increase in BOLD signal when the reward
was real (aPFC: t(,, = 2.27, p = 0.035; FO/AL: t,5, = 2.89, p =
0.009). This effect is striking because the effort that had to be
exerted did not vary depending on whether reward was real or
hypothetical. Instead, the effect on effort and reward magnitude
outcomes suggests that aPFC and FO/AI code the evidence in
favor of the counterfactual option (the switch choice) more when
there is more need to consider this because receiving a real reward
biases behavior toward staying with the current option. The pat-
tern of results was qualitatively similar in dACC, although it did
not reach statistical significance (reward magnitude-related effects
of reward type: t,) = —1.55, p = 0.138; effort magnitude-related
effects of reward type: #,4) = 1.534, p = 0.142).

As already discussed in the last section, we also found an acti-
vation with real reward (main effect) in aPFC (Fig. 6; t(,9, = 2.42,
p = 0.025). This is not consistent with aPFC merely coding the
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Decision Phase
A Relative decision value

[ Relative decision value activation
M Relative decision value deactivation

B Real/ hypothetical reward receipt
on the last trial

Real or hypothetical reward on
the last trial

Figure 8.  Brain activations in the decision phase. Relative decision value (4), a linear con-
trast of the regressors for relative (chosen — unchosen option) predicted reward magnitude +
shown reward probability — predicted effort magnitude, led to increases (orange) and de-
creases (blue) in BOLD at the time of the decision. Regions activated in this contrast are regions
in which activity is covarying with the value information that ought, rationally, to guide
decision-making. Importantly, we also found increases in BOLD (B) in the vmPFC (beige) when
a real rather than a hypothetical reward had been received on the last trial. vmPFC activity,
therefore, covaries with an outcome feature that led to irrational biases in behavior. All results
are cluster-corrected at p << 0.05.

value of the chosen option in an inverse or negative fashion. It is,
however, like some of the other results found, consistent with the
idea that aPFC codes the values of choices in a reference frame
tied to the relative value of switching to the alternative choice as
opposed to staying with the current choice.

aPFC carries all information necessary for reigning in the
impact of rewards on decisions and representing costs when
necessary

From the series of analyses conducted so far, aPFC repeatedly
emerged as an area carrying various signals that are consistent
with it playing a role in counteracting the bias to repeat choices
(stay) introduced by real reward (Fig. 7). First, aPFC activated
when rewards were real rather than hypothetical, consistent with
a switch signal to overcome the bias (GLM1) (Figs. 4, 6). Impor-
tantly, participants in whom this signal was stronger had a re-
duced behavioral bias or, in other words, were better at
overcoming the bias (GLM2) (Fig. 5). Next, aPFC also showed an
increase in the coding of the reward and effort magnitudes
(GLM3) (Fig. 6) when reward was real, again consistent with a
role in overcoming the bias by enhancing the signal indexing the
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Table 5. Decision phase (GLM1)”

Maximum
zscore

Activations with relative decision value
Inferior parietal lobule (PFop and PF/PFt/hIP2%), right 66 —30 32 438
Inferior parietal lobule (PFop and PF/PFt/hIP2), left  —58 —38 34 3.87

Ventral premotor (area 6r), left —48 0 8 4.04
Insula (middle), left —38 2 4 334
Posterior rostral cingulate zone (R(Zp") -2 2 43 3.80
Deactivations with relative decision value

Pre-SMA 8 24 48 418
dAC(/anterior rostral cingulate zone (RCZa% —6 32 36 3.68
Inferior frontal sulcus/area 46, right 40 48 —2 404
Dorsolateral prefrontal cortex (area 9/46V°), left 42 30 38 393
aPF(/lateral frontal pole (FPI), left —24 60 4 3.64
Inferior parietal lobule (PGa/PGp®), right 48 —56 38 4

Inferior parietal lobule (PGa/PGp®), left =30 —64 34 332
FO/Al, right 32 26 —4 461
Superior parietal lobe (area 7%) 6 —64 46 3.44

Activations with reward type (real/hypothetical)
on the last trial

vmPFC 2 46 —2 33
Superior temporal gyrus 52 —8 —8 365
Inferior parietal lobule (PGp®), left —36 —66 30 3.28
Posterior cingulate (area 319, right 16 —48 34 32
Posterior cingulate (area 319), left —6 —5 22 3.04
Cerebellum —16 —48 —22 3.05

“List of activations and deactivations with relative decision value and of activation with last trial’s reward type (real
vs hypothetical) during the decision phase (GLM1). All results are cluster-corrected at p << 0.05.

®Where indicated, anatomical labels were taken from Mars et al. (2011).
“Where indicated, anatomical labels were taken from Neubert et al. (2014).
“Where indicated, anatomical labels were taken from Beckmann etal. (2009).
“Where indicated, anatomical labels were taken from Sallet etal. (2013).

value of the alternative choice (switch) when real reward in other
brain areas biased behavior toward repeating the current choice
(stay).

At the time of choice, the vimPFC is sensitive to whether the
reward was real or hypothetical on the last trial

To understand further what signals at the time of decision-
making (as opposed to at the time of the previous trials’ outcome
phase) might mediate the real reward-induced bias to repeat
choices, we next investigated signals at the time of the decision
phase. In addition to a regressor indexing the last trial’s reward
type (real vs hypothetical), we also included regressors indexing
all the rational decision variables that ought to have influenced
decision making (i.e., the learned reward and effort magnitudes
and the explicitly shown probabilities, GLM 1) (Fig. 2A). For
simplicity of presentation, we combined these rational decision
variables into a “relative decision value” contrast. Specifically, the
contrast for relative decision values included the following: cho-
sen option value (reward magnitude + probability — effort mag-
nitude) — unchosen option value (reward magnitude +
probability — effort magnitude). We found that relative decision
value was associated with activity in several areas (Fig. 8A4; Table
5). For example, relative decision value was associated with
BOLD increases in a midcingulate region and decreases in dACC,
FO/AI and aPFC. We also note that, although the vmPFC did not
carry a statistically significant signal of relative decision value, we
found a subthreshold activation.

The important result, however, is that whether the reward on
the last trial had been real as opposed to hypothetical again af-
fected vmPFC at the time of decision-making just as had been the
case in the outcome phase (Fig. 8B, beige). This signal was signif-
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icant even after whole-brain cluster-based correction for multi-
ple comparisons. The outcome-related and decision-related
effects in vmPFC relating to whether rewards were real or hypo-
thetical were distinct because of their large temporal separation.
On average, 17 s elapsed between the outcome phase of one trial
and the decision phase of the next trial (Fig. 1).

Amygdalar activity at the time of choice reflects the bias to
repeat choices when reward was real as opposed to
hypothetical on the last trial

So far, we have identified regions susceptible to the bias induced
by real rewards because they activated differently when reward
was real versus hypothetical. Although such an activation pattern
reflects the registration of the impact of the reward type, one
could also imagine a region that then uses this information to bias
behavior (i.e., the decision to stay or switch). Previous studies (de
Martino et al., 2006; Roiser et al., 2009) have found the amygdala
to play such a role; more precisely, they found the amygdala to
activate more when decisions were in agreement with a frame (or
bias) than when decisions were made against it. In our case, this
would translate to more activity when a decision is made to stay
after a real reward or switch after a hypothetical reward (i.e.,
behavior in both cases that is in line with the “frame” introduced
by the real/hypothetical reward on the last trial). And on the other
hand, this would translate to reduced activity when a decision is
made to switch after a real reward or stay after a hypothetical
reward. We tested this hypothesis (GLM3) by including a stay-
switch regressor and a regressor for last trial’s reward type (in
addition to regressors controlling for the options’ values). This
analysis then allowed examination of how such stay-switch sig-
nals interacted with the previous trials’ reward type: We com-
pared activity associated with staying and switching on trials that
followed either real or hypothetical rewards (i.e., a contrast of the
regressors stay/switch on trials after a real reward minus stay/
switch on trials after a hypothetical reward). The contrast re-
vealed activations in the amygdala (Fig. 9A, green) and other
regions (for a full list of activations, see Table 6). For the next
analyses, we focused on the amygdala because previous studies
suggested that this was a key area of interest (de Martino et al.,
2006; Roiser et al., 2009). However, further studies should also
investigate the other areas found in the same contrast in more
detail. To look at the effect in more detail, we extracted the BOLD
time course from an ROI in the amygdala (Fig. 9B). We found
that the amygdala was more active when participants decided to
stay with the same option (repeat a choice) only after they had
received a real reward on the last trial. In contrast, the amygdala
was more active when participants decide to switch when the
reward outcome on the last trial was only hypothetical. In other
words, when the decision to stay or leave was made in line with
the participants’ overall decision bias, the amygdala was more
active.

Asan exploratory analysis, we next hypothesized, by analogy with
previous studies (Roiser et al., 2009), that if the amygdala biases
participants, its activity might be affected by an area that opposes the
bias. If this were the case, then decisions would be more likely to be
made in line with the overall decision bias when connectivity be-
tween a frontal lobe area and amygdala is weaker (i.e., the frontal
lobe area is less able to influence the amygdala). In our experiment,
the frontal brain area most likely to have such a role was aPFC. To
test this idea, we performed a PPI analysis in which we measured
whether the functional coupling between amygdala and aPFC (mea-
sured as correlation in activity) was reduced when decisions were
made in line with the overall decision bias. We found (Fig. 9Ci) that,
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A Decision phase

B Stay minus switch (deactivation)
M Choice in line with or against last trial's
reward type (real vs. hypothetical)

Scholl, Kolling et al. ® Learning Real and Hypothetical Rewards and Effort

B Amygdala - stay minus switch

0 in decision phase
<
0.1
2
]
=]
5o - -
5 y Stay-switch split
o by last trials
N reward type
3 -0.1 Real
o Hypothetical
€ O 4 8 12
w Time (s)

C Connectivity between aPFC and amygdala
ii) Decrease of negative correlation by bias

« i)Main effect

£ 0

c

=

o

g

=

E-M_\A/\f\/

-

Q

N

n

%.0.2

()

E

i . : :
(1] 4 8 12
Time (s)

Figure9.

Effect size (arbitrary un

effect on choice

£o.a

kKRR

0 4 12
Time (s)

Stay and switch signals in the decision phase. 4, In the decision phase, in addition to decision signals (shown in Fig. 8), dACC activity decreased when participants chose to stay rather

than switch relative to the last trial (blue; i.e., when they chose the same option again as on the last trial). This was independent of whether the reward had been real or hypothetical on the last trial.
In contrast, regions including the amygdala (green) differentially activate to whether a trial was a stay or a switch, depending on whether the reward was real or hypothetical on the last trial. All
results are cluster-corrected at p << 0.05. B, Specifically, when there had been a real reward on the last trial, the amygdala was more active on stay than on switch trials (purple line). In contrast, when
the reward had been hypothetical on the last trial, the amygdala was less active on stay than on switch trials (blue). During decisions, the amygdala’s activity was negatively coupled with the aPFC's
activity (i); anegative correlation between activity in the two regions. This negative coupling was decreased (Cii) on trials when participants made choices that were consistent with the overall bias
introduced by the last trial’s reward type. *p << 0.05 (two-tailed one-sample test of correlation values).

Table 6. Decision phase (GLM3)”

Maximum
X y z zscore

Deactivations with stay> switch

dACC/anterior rostral cingulate zone (RCZa)/d32°  —8 36 32 327

Medial superior parietal cortex near IPS1/IPS2 4 =74 46 3.03

Inferior parietal lobule (PGa®), left —40 —54 50 335
Activations for interaction (stay-switch)

X (real/hypothetical reward on last trial)

Amygdala, right 30 —6 —20 3.5

Putamen, right 28 14 —10 3.66

(audate, right 18 16 4 3.08

Temporal fusiform cortex -4 =32 —16 386

Putamen, left —28 8§ —10 356

Hippocampus, left =22 -2 18 34

aPF(/medial frontal pole (FPm¢) 2 58 18 357
dAC(/anterior rostral cingulate zone

(RCZa"), left —14 10 40 32

Brainstem 6 —24 -2 364

“List of activations for stay versus switch and its interaction with last trial’s reward type (real vs hypothetical). All
results are cluster-corrected at p << 0.05. Lists comprise main peaks and subpeaks.

®Where indicated, anatomical labels were taken from Beckmann et al. (2009).
“Where indicated, anatomical labels were taken from Mars et al. (2011).
“Where indicated, anatomical labels were taken from Sallet et al. (2013).

at the time of the decision, aPFC and amygdala were, in general,
negatively coupled (p < 0.05 at every time point, two-tailed one-
sample t test). This negative coupling was smaller (Fig. 9Cii) when
decisions were made in line with the bias, shown as a reduction in the
negative correlation between the two areas (p < 0.05 at 16 time
points, two-tailed one-sample ¢ test). Thus, in summary, we found
that the functional connectivity or coupling between aPFC and

amygdala may be linked to how well participants are able to prevent
themselves from being biased. However, we also note that our design
may not be the most ideal for examining such an interaction effect; in
our task (in contrast to the task used by de Martino et al., 2006),
decisions should be influenced by many factors; thus, our categori-
zation of whether a trial was in line with, or against, the bias was
somewhat simplistic: for example, on some trials, the rationally bet-
ter option might also have happened to either be the option consis-
tent or inconsistent with the bias. Thus, further research is needed to
probe the connectivity between these areas in more detail.

Discussion

In complex natural environments, single choices can lead to mul-
tiple aspect outcomes. Humans should particularly learn about
those aspects contingent upon choice: in our task, such aspects
were reward and effort magnitudes. Importantly, participants
should not learn choice—outcome feature relationships when
those outcome features have no contingent relationship with
choice: in our task, whether a reward was really received or only
hypothetical. Participants were able to learn the real contingen-
cies; they could use the informational content of reward, but they
were also biased by its rewarding properties. At a neural level, we
found areas possibly inducing (e.g., vmPFC and amygdala) and
counteracting (aPFC, dACC, AI/FO) this bias.

Real rewards biased decisions

After obtaining real rather than hypothetical rewards, partici-
pants were more likely to repeat choices. This irrational bias re-
mained even after controlling for factors that should, rationally,
have influenced decisions. This suggests that participants per-
ceived choices recently associated with real reward as preferable
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to those associated with hypothetical reward. Intriguingly,
whether reward was real or hypothetical also affected how partic-
ipants exerted effort. Using computational modeling, we found
that this bias was not due to participants not learning about hy-
pothetical rewards or treating hypothetical rewards as if no re-
ward had occurred. Instead, we found that the bias was best
explained as participants simply preferring options that had led
to a real reward independent of their other attributes that should
rationally influence decisions (e.g., learned reward or effort mag-
nitudes or explicitly shown probabilities).

Brain networks driving decision bias

Two competing networks were related to the extent irrational
biases manifested in behavior. Activity patterns and between-
subject correlations suggested that vimPFC and amygdala con-
tributed to the bias, whereas aPFC, together with FO/AI and
dACC, counteracted it.

When participants saw choice outcomes, vmPFC encoded
whether reward had been real or hypothetical. We also found a
positive correlation between this signal and participants’ behav-
ioral biases to repeat choices after real rewards. Participants
whose vmPFC activity was more affected by whether reward was
real were more biased.

vmPFC was not just active at choice outcome but also during
decisions. Then vmPFC activity reflected whether reward had
been real or hypothetical on the last trial, but it did not signifi-
cantly encode any quantity that should rationally have affected
decisions, such as reward and effort magnitudes or reward prob-
abilities. These quantities were instead represented in aPFC,
dACC, and FO/AL This result recalls other studies that failed to
find vmPFC activity when both rewards and effort costs had to be
integrated before participants could choose (Croxson et al., 2009;
Prévost etal., 2010; Burke et al., 2013; Kurniawan et al., 2013; but
see also Skvortsova etal., 2014). It contrasts, however, with a large
body of work confirming the importance of vmPFC in reward-
guided decision-making (Rangel and Hare, 2010; Rushworth et
al., 2012) and in subjective estimates of real reward contingencies
(Tanaka et al., 2008).

vmPFC’s role in inducing decision bias may be related to a
more general role in choice repetition when this is advantageous.
vmPFC activity at choice outcome predicts whether similar
choices will be taken on the next opportunity (Boorman et al.,
2011). Moreover, contrary to widespread beliefs about persevera-
tive behavior after frontal lesions, vmPFC lesions reduce the rates
at which advantageous choices are retaken (Noonan et al., 2012).

vmPFC has been linked to construction of task models to
guide behavior (Daw et al., 2011; Wunderlich et al., 2012). In
those studies, vmPFC contextualized real reward information
relevant for decision-making in task models. In contrast, in our
study, whether reward is real should be completely ignored,
rather than used within a model framework. Thus, our results
suggest that, although vmPFC may be good at contextualizing
real reward within a task model, it may be not as good at ignoring
whether a reward is real or hypothetical.

Bias-related activity was also present in amygdala. Amygdala and
vmPFC are monosynaptically interconnected, and their activity is
coupled (Carmichael and Price, 1995; Neubert et al., 2015). Whereas
vmPFC was always more active when the last trial had been re-
warded, the amygdala was more active whenever choices accorded
with the irrational behavioral bias that the vmPFC signal could in-
duce. It may be helpful to consider this result in relation to the re-
sponse potentiating effect that reward-related amygdala activity
exerts in Pavlovian instrumental transfer (Bray et al., 2008; Talmi et
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al., 2008; Geurts et al., 2013) and to observations that amygdala
choice coding changes when participants make decisions “framed”
in terms of losses or gains and irrational changes in behavior en-
sue (de Martino et al., 2006). It is also noteworthy that, although we
focused on the amygdala here, other areas were also more active
when choices were in accordance with the irrational bias, and further
studies need to establish the specific roles they play.

Ventral striatum has also been implicated in the response-
potentiating influences of reward in Pavlovian instrumental transfer
(Bray etal., 2008; Talmi et al., 2008; Prévost et al., 2012; Geurts et al.,
2013), but these regions were less central to the behavioral biases
identified in the present study. Ventral striatal activity increased
identically when reward magnitude outcomes were larger regardless
of whether outcomes were real or hypothetical, although there was a
main effect of reward type (real vs hypothetical) that meant activity
was greater when rewards were real as opposed to hypothetical.
Thus, although ventral striatum was sensitive to reward type, this
effect did not interact with reward magnitude. These results are sim-
ilar to previous reports of no difference in coding of real or hypo-
thetical rewards in ventral striatum (Bickel et al., 2009) and reports
of both fictive and real reward prediction errors in ventral striatum
(Lohrenz et al., 2007; Chiu et al., 2008). These results are, however,
surprising in the context of other brain regions that did code re-
ward magnitudes differently when rewards were real rather than
hypothetical.

A network including aPFC opposed the irrational bias in
decision-making induced by real rewards

Having identified which regions bias behavior when reward was
real, we looked also for whether regions existed that opposed this
bias. We found different activations in aPFC, FO/AI, and dACC
that contributed to overcoming the bias to repeat choices recently
associated with real rewards. The results suggest that one reason
that these regions code costs (e.g., Palminteri et al., 2012) may be
not just because costs are aversive but because they motivate
change in behavior when repetition is maladaptive.

The aPFC was particularly interesting because it carried several
important signals. In agreement with previous studies (Boorman et
al., 2009, 2011; Donoso et al., 2014), aPFC activation increased as the
unchosen option’s reward magnitude increased and deactivated
with the chosen option’s reward magnitude, suggesting that aPFC
represents the relative advantage of switching to the alternative op-
tion rather than staying with the current choice. We extend this
finding by reporting a complementary pattern for the coding of
learned effort cost magnitudes.

Coding of reward magnitude outcomes in aPFC and FO/AI
was affected by whether reward outcome was real or hypothet-
ical. The relative reward magnitude of the unchosen option
was associated with increased activity when reward was real
compared with hypothetical. This suggests that it is not simply
the hypothetical nature of choices that leads to them being
represented in aPFC; if that had been the case, then reward
magnitude ought to have been represented more strongly
when the outcome was hypothetical and effort representation
should be unaffected by reward type. Instead, these results
suggest that aPFC activity is driven by the importance reward
and effort magnitudes have for switching to an alternative
choice. Specifically, when a reward is real, brain regions, such
as vmPFC, bias behavior toward choice repetition. To over-
come this bias, it may be necessary to enhance the representa-
tion of the alternative choice in aPFC. Moreover, as functional
coupling between amygdala and aPFC increased, decisions
were less likely to be made in a biased manner.
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The importance of aPFC in overcoming the bias is further sup-
ported by the observation that reward type (real vs hypothetical) led
to an increase in activation in aPFC. This increase in activation
would be surprising if aPFC only coded a negative value signal, as
then real reward should have led to a deactivation compared with
hypothetical reward. Instead, activation in aPFC is related to pro-
moting the choice of the alternative option. In agreement with this
interpretation, we also found that participants with stronger activa-
tion to reward type in aPFC were better at counteracting the bias to
repeat choices previously followed by real rewards. Thus, although
individual variation in vmPFC activity was positively correlated with
susceptibility to decision biases induced by real rewards, the relation-
ship was the opposite way around for aPFC. Further analysis dem-
onstrated that aPFC and vmPFC constitute two independent
systems: one biasing behavior toward staying with rewarded options
and the other one counteracting this bias when it is important to do
so. aPFC, together with ACC, is not only involved in value-guided
exploration (Daw et al., 2006; Kolling et al., 2012), but also in coun-
teracting reward-based choice repetition when this should be
avoided. In a similar vein, Kolling et al. (2014) suggested that activity
in aPFC and dACC, as opposed to vinPFC, guides decision making
inrisky contexts to maximize longer-term reward even when this did
not maximize reward on the current trial.
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