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Genetic evidence in the mouse solidifies the calcium
hypothesis of myofiber death in muscular dystrophy

AR Burr1 and JD Molkentin*,1,2

Muscular dystrophy (MD) refers to a clinically and genetically heterogeneous group of degenerative muscle disorders characterized
by progressive muscle wasting and often premature death. Although the primary defect underlyingmost forms of MD typically results
from a loss of sarcolemmal integrity, the secondary molecular mechanisms leading to muscle degeneration and myofiber necrosis is
debated. One hypothesis suggests that elevated or dysregulated cytosolic calcium is the common transducing event, resulting in
myofiber necrosis in MD. Previous measurements of resting calcium levels in myofibers from dystrophic animal models or humans
produced equivocal results. However, recent studies in genetically altered mouse models have largely solidified the calcium
hypothesis of MD, such that models with artificially elevated calcium in skeletal muscle manifest fulminant dystrophic-like disease,
whereas models with enhanced calcium clearance or inhibited calcium influx are resistant to myofiber death and MD. Here, we will
review the field and the recent cadre of data from genetically altered mouse models, which we propose have collectively mostly
proven the hypothesis that calcium is the primary effector of myofiber necrosis in MD. This new consensus on calcium should guide
future selection of drugs to be evaluated in clinical trials as well as gene therapy-based approaches.
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Facts

� The primary myofiber death-inducing effect underlying
muscular dystrophy (MD) is an unstable plasma membrane
and an associated dysregulation in calcium handling or
influx.

� Genetic data in mice shows that unregulated cellular
calcium entry alone is sufficient to induce myofiber death
and MD.

� Genetic data in mice shows that enhanced calcium clearance
from the cytosol mitigates myofiber death and MD.

� Genetic data in mice shows that making mitochondria
insensitive to calcium overload reduces myofiber death
and MD.

Open Questions

� Is the calcium overload or dysregulation that occurs in MD
primarily due to membrane ruptures or dysregulated ion
channel and exchanger activity?

� What intracellular domains of calcium dysregulation most
directly couple to initiation of myofiber death in MD?

� Given our recent consensus on calcium as the common
mediator of myofiber death in MD, what calcium-affecting
drugs might be best to attempt for use in human clinical
trials?

MD is a disease of progressive muscle weakness and
degeneration of myofibers caused by mutations in genes that
often serve a structural role in stabilizing the plasma
membrane of the myofibers (referred to as the sarcolemma).
DuchenneMD (DMD) is an X-linked recessive genetic disease
that is the most common form of MD in humans with an
occurrence of ~ 1 in 3500 males.1 Dystrophin, the protein
encoded by the gene mutated in DMD, functions in stabilizing
the sarcolemma, as do a host of other gene products that
when mutated result in limb-girdle MDs, congenital MDs, and
various myopathies.2 Loss of select sarcolemmal structural
gene products or even gene products involved in membrane
repair, such as dysferlin, lead to membrane instability and
a hypothesized influx of calcium that serves as the final
common pathway leading to myofiber necrosis and muscle
degeneration.3 However, this model of pathogenesis with
calcium serving as the central transducer of myofiber death
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has remained a hypothesis, and although many biochemical
lines of evidence support this hypothesis, it was not until the
past few years that the use of mouse genetics allowed for a
more definitive analysis of this ‘calcium hypothesis’.
The concept that membrane instability could lead to calcium

overload, mitochondrial dysfunction, and ultimately the necro-
sis of myofibers predates the discovery of dystrophin. This
calcium hypothesis was originally proposed as a final common
pathway for multiple neuromuscular diseases in 1976 by
Wrogemann, which remains remarkably accurate and an
impressive deduction given the limited data available at the
time.4 Here, we will review the body of evidence that we
believe has solidified the concept that calcium serves as the
common intracellular transducer of myofiber necrosis in most
forms of MD, with a special emphasis placed on data derived
from recent genetic studies in the mouse.

Excitation Contraction-Coupling

The process of muscle contraction is initiated by acetylcholine
binding to the acetylcholine receptor in motor neurons at the
end plates, leading to the opening of voltage-gated sodium
channels across the sarcolemma and down the t-tubules into
the myofibers. The wave of depolarization leads to a
conformational change in the L-type calcium channel and a
direct gating of the ryanodine receptor (RyR) within the
sarcoplasmic reticulum (SR), allowing for a very large release
of calcium causing muscle contraction. Muscle relaxation

occurs as the SR calcium-ATPase (SERCA) pumps calcium
from the cytoplasm back into the SR (Figure 1).
Alterations in excitation contraction-coupling have been

observed in MD. Indeed, muscle weakness is a hallmark of
DMD, with a slowing in relaxation that suggests a defect in SR-
calcium reuptake.5,6 Interestingly, although the mothers of
boys with DMD that only contain one functional dystrophin
gene do not typically showmuscleweakness, their muscles do
relax slower than normal controls.7 These early studies of
muscle physiology in boys with DMD and their mothers
provided the first evidence that there may be a deficit in
calcium handling in muscular dystrophies, but it was not until
the discovery of themdxmouse that calcium handling could be
more thoroughly dissected.
Like boys with DMD, the mdx mouse model of MD has a

loss-of-function mutation in dystrophin. Although the mdx
mouse only has a modest 10–20% deficit in specific force
generation in the hindlimb musculature, it has a much more
severe deficit in relaxation that is suggestive of a major
problem in calcium reuptake by the SR.8–10 Thus, a deficit in
relaxation appears to be an evolutionarily conserved aspect of
MD that is prominent even in the mildly pathologic mdx
mouse.11,12 Such a defect in relaxation is predicted to result in
prolonged elevations in cytosolic calcium under continuous
contractile activity.
Initial studies with fluorescent calcium-indicator dyes

reported that excitation contraction-coupling was unchanged
in myofibers from mdx mice compared with wild-type
controls.13 However, subsequent studies consistently observed
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that the decay phase of the calcium transient was prolonged
in mdx muscle fibers, consistent with the profile of delayed
relaxation observed in intact muscle.14,15 The mechanism of
slowed reuptake appears to be due to decreased SERCA
activity, which has been observed in microsomes from boys
with DMD, Sgcd−/−mice (mouse model of limb-girdle MD due
to loss of δ-sarcoglycan gene, which similarly disrupts the
dystrophin-glycoprotein complex similar to that observed in
mdx mice with the loss of dystrophin) and dy2j/dy2j mice that
have a mutation in Lama2.15–17 The slowed reuptake across a
diversity of dystrophic models suggests that decreased
SERCA function may be a generalizable feature of many of
the muscular dystrophies.
More recent studies utilizing low-affinity calcium-indicator

dyes that more faithfully measure the calcium transient, along
with computer modeling to estimate calcium release, have
found that calcium release is slower inmdx fibers.18 In addition
to deficits in the velocity of calcium release, the localization of
calcium release is also changed in mdx muscle fibers in a
more diffuse pattern.19 This is interesting because dystrophin
localizes to the sarcolemma junction with the SR at the triads,
and thus may have a role in patterning calcium release.20

Deficits in the patterning of calcium release are likely to
expose greater subcellular regions of the muscle fiber to
higher concentrations of calcium than would otherwise occur.
This situation could expose mitochondria to higher calcium
levels, and if sustained, could lead to mitochondrial swelling,
rupture, and necrosis of the muscle fiber (this issue will be
discussed in greater detail later).

Resting intracellular Calcium Concentration

Although muscle utilizes calcium in a highly specialized
manner to regulate contraction and relaxation, multiple other
calcium-sensitive intracellular regulatory processes still pro-
ceed and must be adequately regulated. One of these
processes is opening of the mitochondrial permeability
transition pore (MPTP) in response to calcium overload, which
causes mitochondrial depolarization and eventual swelling
and rupture of this organelle.21,22 Calcium overload also
promotes activation of the calcium-activated protease calpain,
which has also been shown to contribute to the pathogenesis
of MD.23,24 These calcium-regulated degenerative processes
are likely governed both by the amplitude and duration of
calcium present in the cytosol, likely during contraction and at
rest. Initial attempts to quantify resting intracellular calcium in
dystrophin-deficient myofibers utilized biopsy specimens from
boys with DMD.25–27 Three techniques available at the time
were X-ray fluorescence, histochemical staining, and atomic
absorption spectrophotometry, all of which showed higher
resting calcium in muscle from boys with DMD.25–27 However,
later studies conducted with the newly available fluorescent
calcium-indicator dyes such as Fura-2 and Indo-1 produced
equivocal results that partially ‘unseated’ the calcium hypo-
thesis (Table 1).13,28–30 Although it is possible that resting
calcium is truly elevated as identified in later studies with
arguably more definitive technical approaches (see below), it
is also possible that the key biologic effect underlying myofiber
degeneration is due to defects in total calcium dynamics, Ta
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such as rates of calcium release and reuptake, as well as
subcellular domain-specific calcium elevations.
The recent use of calcium-sensitive microelectrodes has

supported the hypothesis of increased resting calcium in
dystrophic myofibers, although this method of measurement is
not without some limitations.31–33 For example, Altamirano
et al.34 used calcium microelectrodes to show that resting
intracellular calcium was increased to 308 nM±6 nM in mdx
myotubes compared with 113 nM± 2 nM in wild-type myo-
tubes, and in vivo resting calcium was measured to be 315
nM± 8 nM in mdx gastrocnemius versus 112 nM±2 nM in
wild-type gastrocnemius.32 We also observed a threefold
elevation in intracellular resting calcium in the gastrocnemius
muscle from mdx mice using microelectrode technology.33

The caveatswith usingmicroelectrode technology are twofold.
First, given the known weakness of the dystrophic membrane,
a leak around the microelectrode may cause a spurious
increase in the intracellular calcium that is recorded. Second,
puncture of the muscle cell membrane is a form of cellular
injury that could also alter calcium measurements. However,
measurements of resting calcium in wild-type fibers with the
microelectrode approach matches those values obtained with
calcium-sensitive fluorescent dyes.
Another hypothesis is that selective calcium microdomains

might be altered in dystrophic myofibers leading to disease. In
2001, Robert et al. used calcium sensing aequorin protein
targeted to different intracellular locations. They showed that a
subsarcolemmal aequorin protein detected increased calcium
levels in mdx myotubes.35 Mallouk et al.36 used a calcium-
activated potassium channel to detect increased subsarco-
lemmal calcium concentrations in mdx mice. A membrane
localized calcium-sensitive dye, FFP-18, also showed sig-
nificantly elevated levels of subsarcolemmal calcium in
myofibers from mdx mice.37 The concept of microdomains of
calcium is well-known in cardiovascular biology but further

work is still required to understand its role in the pathogenesis
of MD and the potential for therapeutic applications.38

Role of the L-type Calcium Channel

As discussed earlier, the L-type calcium channel (α1s subunit
encodes the channel itself) is largely mechanically coupled to
the RyR in skeletal muscle, without a requirement for external
calcium to pass through the channel. Given this feature it
would appear to be a relatively poor target for pharmacologic
antagonism in possibly treating DMD in humans. Indeed,
clinical trials undertakenwith L-type calcium channel inhibitors
including diltiazem, verapamil, nifedipine and flunarizine have
produced mixed results (Figure 2).39–43 The study with
verapamil reported a significant improvement in muscle
strength but unfortunately this was also accompanied
by cardiac side effects.43 A trial with diltiazem showed
decreased deterioration of muscle from biopsies of the lower
but not upper extremities, suggesting that under certain
conditions there may be a small positive effect of these
inhibitors.44 Thesemixed results are nonetheless encouraging
given that even a theoretically poor target in the calcium
handling pathway of skeletal muscle produced some clinical
effect when inhibited.
L-type calcium channel inhibitors have also been used in

animal models of MD. In one study mdx mice were injected
with saline, diltiazem, or verapamil for 18 days. Themice given
either of the two calcium channel inhibitors showed decreased
levels of circulating creatine kinase and decreased necrosis in
the diaphragm.45 A more recent study observed that after
1 week of treatment of mdx mice with nifedipine, intracellular
calcium was decreased and grip strength and swimming times
were increased.32 Overall, these studies in mice and humans
suggest that the small amount of calcium influx from the L-type
channel may contribute to the pathogenesis of MD. L-type
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Figure 2 Schematic of the pharmacologic agents that have been or could be used to address a profile of elevated calcium in dystrophic muscle. Drugs previously tested in
dystrophic mouse models are shown in blue text, whereas those that are more experimental are shown in red text
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calcium channel inhibitors are interesting targets because of
the fact that they are already clinically approved for human use
(Figure 2).

SR Calcium Regulation in MD

As discussed earlier, myofibers from dystrophic mice or DMD
patients show a defect in SR-calcium handling and reuptake
during relaxation.11–17,46 Indeed, we showed that myofibers
from Sgcd−/− andmdxmice have significantly slower reuptake
of calcium and that this defect can be corrected by over-
expression of SERCA1 through transgenesis, leading to a
marked lessening of myofiber necrosis and muscle wasting
(Table 2).15 Furthermore, adeno-associated virus delivery of
SERCA2 rescued pathology in the hindlimb of Sgcd−/− mice,
and in a separate study, viral delivery of SERCA1a was shown
to decrease pathology in the diaphragm of dystrophic
mice.15,47 Because the SERCA2 vector utilized is already in
clinical trials for congestive heart failure,48 viral delivery of
SERCA2 could be a clinical option in the future (Figure 2).
Overall, the data obtained by SERCA overexpression are
highly supportive of the calcium hypothesis of disease in MD,
as they suggest that increasing the rate of calcium clearance
during relaxation reduces myofiber necrosis. Indeed, the drug

BGP-15 increased SERCA activity and reduced muscle
pathology in mdx mice, resulting in greater muscle-specific
force.49 Thus, in addition to gene therapy, the use of
pharmacologic agents that increase SERCA expression or
activity is also an interesting strategy to consider in the future.
Modification of calcium release from the SR has also been

investigated through genetic strategies. For example, calcium
sparks can be readily observed in myofibers from dystrophic
muscle, although they are typically never observed in wild-type
myofibers.50 Sparks are attributed to unregulated opening of a
group of RyRs, suggesting that in dystrophic muscle the RyR
channels might be leaking calcium.50,51 Mechanistically,
calcium sparks are normally inhibited by the protein calstabin.
In mdx muscle fibers, calstabin binds less avidly to the RyR
leading to leak,52,53 and restoring this interaction with the drug
S107 (Figure 2)53 decreased MD disease inmdx and Sgcb−/−

mice.54,55 Thus, just as correction in calcium leak from the SR
was sufficient to partially rescue dystrophic pathology, similar
to how overexpression of SERCA might also be protective by
better maintenance of resting calcium.
Although less studied than the RyR complex, calcium

release from the SR via the inositol (1,4,5)-triphosphate
receptor (IP3R) may also have an important role in the

Table 2 Summary of findings of genetic manipulations of calcium handling in transgenic used to investigate mechanisms of MD pathology

Genetic alteration Year Dystrophy model Change in calcium handling Change in phenotype

Sarcolemma
dn TRPC6 transgenic81 2009 mdx and Sgcd−/− dnTRPC6 inhibited increased SOCE in

Sgcd−/− fibers
dnTRPC6 TG reduced histopathology
and serum CK

Trpc3 overexpression81 2009 Trpc3 transgenic Increased SOCE versus WT TRPC3 TG caused dystrophy-like
histopathology without membrane
permeability

Adenoviral dnTRPV288 2008 Bio14.6 hamster Decreased calcium influx in high-calcium
solution

dnTRVP2 decreased dystrophic
histopathology

Transgenic dnTRPV288 2008 mdx Decreased calcium influx in high-calcium
with 2-APB

dnTPV2 improved muscle function and
decreased histopathology

Trpv2−/−89 2009 mdx Not evaluated Trpv2−/− had increased force and
decreased membrane permeability

Stim1 transgenic87 2014 Stim1 transgenic Stim1 overexpression increased SOCE
and resting calcium

Stim1 TG led to severe dystrophy-like
phenotype in muscle

dnOrai1 Tg87 2014 mdx and Sgcd−/− dnOrai inhibited increased SOCE in
Sgcd−/− and mdx fibers

dnOrai TG decreased histopathology and
CK release in muscle

NCX1 Tg33 2014 mdx, Sgcd−/−,
and Dysf−/−

NCX1 increased [Na]i and increased Na,
Ca exchange

NCX1 TGworsened pathology in hindlimb
but improved pathology in diaphragm

Slc8a1f/f with MLC-CRE33 2014 Sgcd−/− Not evaluated Deletion of NCX1 protein improved
histopathology at early time points

EC-coupling
SERCA1 transgenic15 2011 Sgcd−/− and mdx SERCA1 increased rate of SR-calcium

uptake
SERCA1 TG decreased histopathology
and serum CK

SERCA1 transgenic15 2011 TRPC3 Not evaluated SERCA1 TG rescued pathology mediated
by TRPC3 overexpression.

AAV-SERCA215 2011 mdx Not evaluated SERCA2a overexpression improved his-
topathology in gastrocnemius

AAV-SERCA147 2010 mdx Not evaluated SERCA1 improved force after eccentric
contraction and decreased
histopathology

Mitochondrial
Ppif−/−109 2008 mdx, Sgcd−/−

and Lama2
Ppif deletion decreased mitochondrial
swelling

Ppif−/− decreased histopathology in all
MD models. Improved strength in Sgcd−/−

Ppif−/−110 2009 Col6a1−/− Ppif deletion decreased mitochondrial
depolarization

Ppif−/− decreased histopathology and
EBD uptake

Calpain
Calpastatin transgenic23 2002 mdx Not evaluated Calpastatin overexpression decreased

histopathology and EBD uptake
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pathogenesis of MD.56–58 One study found that in dystrophin-
deficient myotubes, IP3R activation events were downregulated
following transfection with minidystrophin, suggesting activa-
tion of this receptor is a downstream consequence of
dystrophin deficiency.59 As inhibition of calcium sparks is
already known to associate with reduced dystrophic pathol-
ogy, it is plausible that a strategy targeting IP3R signaling could
also benefit dystrophic muscle.

Stretch and Store-Operated Calcium Entry

The first evidence for aberrant calcium entry through the
sarcolemma of diseased skeletal muscle came in 1988 by
Turner et al.60 working withmdxmuscle fibers versus wild-type.
Calcium currents were also observed to be elevated in mdx-
diseased myotubes under conditions of mechanical stress.61

Previous studies have also observed thatmdxmuscle fibers are
more sensitive to cell death due to osmotic stress than wild-type
muscle fibers.62 Interestingly, calcium entry is also increased in
muscle fibers from mdx mice under conditions of osmotic
stress.14,63,64 In some of these studies, the observed current
was inhibited by gadolidium and lanthanum, suggesting entry
through channels of some sort.14,63,64 Finally, very large sodium
currents also appear to be triggered by eccentric contraction,
which could have implications for increased calcium influx due to
sodium–calcium exchange dynamics.65

The activation of sodium and calcium entry by stretch provides
a likely explanation for the damage and force decrement
observed during eccentric contractions in mdx mice.65,66 For
example, muscle from wild-type mice show only a modest
decrement in force after eccentric contractions, whereas muscle
from mdx mice exhibits large deficits in force, as well as
membrane instability and loss of intracellular enzymes.67–69 Both
the elevation of sodium and calcium and the damage incurred by
eccentric contraction can be inhibited by gadolidium and
lanthanum.66,70 Thus, in both intact muscles with eccentric
stretch and in individual muscle fibers with osmotically mediated
stress, calcium and sodium entry appear to be a primary
mechanism that could directly lead to myofiber death.
The proximal mechanism linking sodium and calcium entry

to membrane stress may be the recently described X-ROS
(X-reactive oxygen species) pathway.71 It was also shown that
calcium entry and ROS production can act in a positive
feedback loop in mdx muscle under conditions of osmotic
stress, showing that calcium can amplify ROS production and
vice versa.72 An alternative or potentially complementary
explanation of stretch-induced calcium entry was suggested
by the observation that Src can phosphorylate the transient
receptor potential canonical-1 channel to give greater
activity.73 Finally, calcium entry in skeletal muscle has also
been associated with a process known as receptor-operated
calcium entry (ROCE), such as through the P2X7 ATP-
activated channel in association with phospholipase A2
signaling and diacylglycerol generation.74–76

Genetic Evidence for the Calcium Hypothesis: TRP
Channels and Orai1-Stim1

Members of the TRPC family form heterotetrameric calcium
and sodium entry channels that open in response to stretch,

decreased SR-calcium content, and diacylglycerol77–79

(Figure 1). Vanderbrouk et al.80 first hypothesized that the
increased cationic currents observed in dystrophic myofibers
was due to TRPC channels. A later study by Millay et al.81

showed that store-operated calcium entry was increased in
myofibers from Sgcd−/− mice, and that this activity was fully
inhibited with a dominant-negative (dn) TRPC channel mutant
in transgenic mice (Table 2). Furthermore, overexpression of
wild-type TRPC3, which is known to increase calcium influx,
generated abundant store-operated calcium entry that fully
induced skeletal muscle pathology in vivo that was highly
reminiscent of MD (Table 2).81 These results were actually
profound and proved for the first time that increased calcium
entry alone was capable of mediating essentially all the
disease aspects of MD at the level of the myofiber in vivo.
Conversely, overexpression of dnTRPC6 ameliorated dys-
trophic pathology in Sgcd−/− and mdx mice (Table 2).81 Thus,
TRPC protein activity is both necessary and sufficient in the
development of MD, although whether this channel generates
a bonafide store-operated calcium entry process is still
debated.82–84 These observations suggest that pharmacolo-
gic inhibitors against TRP channels could be of clinical value in
MD (Figure 2).
Although TRPC channels can result in pathologic calcium

entry, the more newly identified Stim and Orai proteins are
thought to be the true mediators of store-operated calcium
entry85 (Figure 1). Recently, shRNA-mediated knockdown of
Orai1 in vivo decreased store-operated calcium entry in
myofibers from mdx mice, also reducing muscle pathology.86

Other work using skeletal muscle transgenic strategies has
shown that Stim1 overexpression, which markedly increases
store-operated calcium entry, is pathogenic in skeletal muscle
and induces fulminant MD (Table 2).87 Moreover, expression
of a dominant-negative Orai1 protein by transgenesis in
mouse skeletal muscle completely blocked Stim1 transgene-
induced MD disease, as well as reduced dystrophic disease in
Sgcd−/− mice (Table 2).87 The results of this study provide
additional genetic proof in mice that calcium entry alone is
sufficient to induce the entire process of MD. Furthermore,
inhibition of these key pathogenic calcium entry pathways in
mdx or Sgcd−/− mice, such as through TRPC channels or
Orai1-Stim1 complexes, can be strongly protective. Such
results strongly suggest that calcium is the nodal mediator of
myofiber necrosis and muscle degeneration in MD.
Alternatively, stretch-mediated calcium entry may also

contribute to dystrophic pathology, such as through the
transient receptor potential vanilloid (TRPV) family
members.88 Trpv2−/− mice exhibited less-muscle pathology
in the mdx background, suggesting that the TRPV2 channel
itself is a critical disease determinant (Table 2).89 Ho et al.90

determined that SKF-96365 and ruthenium red both inhibited
stretch-activated currents in myofibers, which were also
inhibited in Trpv4−/− mice. These results suggest that broad
inhibitors of the greater TRP subfamilies could be an
interesting approach to attempt in treating MD. Indeed,
cationic antibiotics that broadly inhibit such channels, such
as streptomycin, were shown to ameliorate aspects of muscle
disease in mdx mice.66,91 Unfortunately, chronic use of
streptomycin adversely affects the heart and diaphragm, likely
through inhibition of mitochondrial ribosomal activity.92

Calcium hypothesis in muscular dystrophy
AR Burr and JD Molkentin

1407

Cell Death and Differentiation



Na Homeostasis and Indirect Control of Calcium and MD

The gradient of sodium ions across the plasma membrane is
the basis for excitability and active transport, but this sodium
gradient also serves as a co-regulator of calcium influx
through the sodium–calcium exchanger (NCX), the sodium–

potassium–calcium exchanger, and the sodium–hydrogen
exchanger (NHE1) (Figure 1). In living organisms, the activity
of the sodium–potassium ATPase (NKA) generates and
maintains the plasma membrane sodium gradient. Impor-
tantly, increased intracellular sodium concentration, as mea-
sured in dystrophic myofibers, can cause sodium-dependent
exchangers to function in reverse-mode and thereby lead to a
net increase in intracellular calcium levels through NCX and
possibly contribute to pathologic effects of MD.
The first study that measured intracellular sodium in mdx

mice found a marked elevation of resting sodium levels from
13±3mM to 24± 2mM in the gastrocnemius and from
13.0±0.3 mM to 23.5±0.7 mM in the diaphragm.93 Resting
sodium levels of 11.5 mM in wild-type myofibers and 22.5 mM
in mdx myofibers were subsequently measured using a dye-
based method, suggesting that the above results were
accurate.94 Intracellular sodium measurements have also
been extended to DMD patients using sodium 23 magnetic
resonance imaging, which estimated a value of 25.4 mM in
control muscle versus 38.0 mM in DMD patient muscle,
suggesting that sodium overload may be an even larger
component of the MD disease process in humans as they
appear to have even higher basal levels.95,96 The critical
concept here related to sodium is that not only could such an
elevation cause cellular edema, but it would result in a
secondary increase in basal calcium levels through the
reversal of the NCX and NHE1 when the membrane is
depolarized, augmenting calcium overload.
We observed that NCX1 protein levels were profoundly

elevated in muscle tissue from dystrophic mice, which we
modeled by generating transgenic mice to overexpress NCX1
in skeletal muscle.33 The overexpression of NCX1 induced a
progressive dystrophic-like pathology in hindlimb skeletal
muscle that was associated with greater reverse-mode
calcium entry through this exchanger (Table 2).33 Not
surprisingly, the overexpression of NCX1 exacerbated the
pathology of the hindlimb musculature when crossed into the
mdx and Sgcd−/− mouse models, again by presumably
increasing calcium influx.33 Finally, the deletion of endogen-
ous NCX1 (Slc8a gene) specifically in skeletal muscle
ameliorated the early pathological profile of MD disease in
Sgcd−/− mice when this type of reverse-mode calcium entry
normally occurs and contributes to pathology.33 Thus,
inhibitors that either selectively reduce intracellular sodium
levels so that NCX remains in forward mode operation, or
inhibitors against reverse-mode NCX activity, could be
therapeutics to evaluate in human clinical trials. Indeed,
ranolazine, a general sodium-lowering drug reduced muscle
pathology in Sgcd−/− mice33 (Figure 2). It is interesting to note
that because of the thermodynamics of sodium and calcium
exchange mediated by NCX1, reversal will occur in dystrophic
muscle at a more polarized membrane potential because
intracellular sodium is elevated (calculations performed based
on formula from ref. 97 not shown).

Another recent study looked at the role of theNHE1 inMD, in
part because intracellular pH was observed to be elevated in
dystrophic muscle.98 Iwata et al. showed that both sodium and
calcium were elevated with MD, and that treatment of
dystrophic myotubes with inhibitors of NHE1 decreased
sodium and use of these inhibitors in vivo decreased
dystrophic pathology when administered to mdx mice or
BIO14.6 hamsters.98 These results are consistent with the
NCX1 data discussed above and again suggest that sodium
elevation is a considerable disease mechanism that can
underlie secondary calcium entry, leading tomyofiber necrosis
and muscle degeneration in MD.

Calcium-Activated Protease Activity

The calpains are calcium-activated proteases that are
critical to muscle development and homeostasis (Figure 1).
Increased calpain activity can exacerbate pathology in MD by
cleaving critical intracellular proteins, and not surprisingly,
calpain activity is increased inmuscle frommdxmice.99 To test
the involvement of calpains in the MD disease process,
Spencer et al.23 overexpressed the inhibitory protein calpas-
tatin in the mdx mouse, which ameliorated dystrophic
pathology (Table 2). Interestingly, calpastatin overexpressing
mice had less necrotic lesions in histologic sections, but
membrane instability was still present.23 A subsequent study
using leupeptin, a protease inhibitor with some specificity to
calpains, found less pathology in dystrophic mice.100 Recently,
Briguet et al.101 repeated overexpression of calpastatin
in the mdx mouse and failed to observe a difference in
muscle pathology; however, when they inhibited both
calpains and the 20 S proteasome with SNT198438, they
were able to ameliorate the dystrophic phenotype. Despite
minor inconsistencies, the overall conclusion is that calcium
elevation in MD participates in calpain proteolytic activity,
which contributes to myofiber dysfunction and necrosis and
hence could be pharmacologically inhibited to treat MD
(Figure 2).

MPTP Opening

Calcium- and ROS-induced MPTP-opening results in depo-
larization and swelling of the mitochondria leading to loss of
energy production and ultimately the rupture of this organelle
and myofiber necrosis (Figure 1). The MPTP is a multiprotein
complex found within the inner membrane of mitochondria
regulated by the prolyl isomerase cyclophilin D (CypD,
encoded by Ppif gene). Recent data have shown that the
pore itself is most likely comprised of the mitochondrial F1FO

ATP synthase, which spans the inner mitochondrial
membrane.102,103 CypD sensitizes the pore to opening in
response to elevated ROS or calcium. Indeed, mice lacking
the gene for CypD show reduced MPTP opening to various
stimuli and general protection from cardiac and brain ischemic
injury in vivo.104

By using mitochondrial localized aequorin proteins it was
also shown that mitochondrial calcium is increased in mdx
myotubes.35 The first evidence that calcium overload of the
mitochondrial may actually happen in vivo was provided
through the study of a mouse model of MD owing to a
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deficiency in Col6a1.105,106 Early work in theCol6a1−/− mice
defined mitochondrial deficiency and apoptosis as hallmarks
of this disease, clearly linking mitochondrial dysfunction
to this muscle disease.106 Furthermore, they implicated
CypD by finding that the mitochondrial dysfunction observed
in vitro and the cell death observed in vivo was inhibited by
the CypD inhibitor cyclosporine A.105,107 The improvement
in mitochondrial function and reduction in cell death
was subsequently shown in patients with Ullrich’s congenital
MD, and this therapy was tolerated even after long-term
follow-up.108

At about the same time we reported that muscle from mdx
and Sgcd−/− mice had swollen mitochondria, suggesting that
MPTP opening is a pathogenic occurrence in MD.109 Indeed,
deletion of the Ppif gene reduced mitochondrial swelling and
led to a profound reduction in the dystrophic phenotype of
Sgcd−/− mice and the Lama2−/− mice, the latter of which is a
model of congenital MD due to lamininα2 deficiency
(Table 2).109 Ppif deletion also led to decreased muscle
pathology and restoration of mitochondrial function in the
Col6a1 mouse model as deletion of MD.110 The fact that four
separate models of MD with potentially divergent proximal
mechanisms of disease were each rescued suggested that
MPTP opening due to calcium dysregulation may be the final
common pathway for multiple muscle diseases. Indeed,
Debio-025, a CypD inhibitor, also ameliorated dystrophic
pathology in mdx mice and an Ulrich congenital MD mouse
model105,109,111–113 (Figure 2). These results further implicate
calcium as the primary second messenger in mediating
myofiber necrosis and muscle degeneration in MD.

Novel Medical Treatments Based on the Calcium
Hypothesis

The calcium hypothesis of MD suggests a number of potential
treatment options, only a small number of which have been
tested to date (Figure 2). Preclinical efficacy in the mouse has
been shown for inhibitors of the MPTP (Debio-025), NHE1
(cariporide and 5-(N-ethyl-N-isopropyl)-amiloride), ryanodine
leak inhibitors (S107), indirect SERCA activators (BGP-15),
stretch-activated channel inhibitors (streptomycin), L-type
calcium channel inhibitors (verapamil, diltiazem, and nifedi-
pine), TRPC channel inhibitors, inhibitors of X-ROS pathway
(colchicine), and reverse-mode NCX inhibitors (ranolazine) or
other general inhibitors that reduce intracellular sodium
(ranolazine).33,39,41–43,49,53–55,71,91,92,98,109,114 Many more
inhibitors have yet to be tested including novel TPRC/TRPV
inhibitors, SERCA activators, and other inhibitors of NCX1
including KB-R7943 and SEA0400115–123 (Figure 2).
Alternatively, gene therapy approaches are also rapidly

maturing and could be translated into the clinic, such as
SERCA2 viral vectors, which are now in phase II/III trials for
human heart failure.48 SERCA gene therapy is particularly
exciting to consider given the large magnitude of effect
associated with increasing SERCA activity in ameliorating
disease in multiple mouse models of MD, results observed
across independent laboratories.15,47 Another possibility
could be adenoviral gene therapy to express dnTRPC or
dnTRPV channels selectively in skeletal muscle, which
appears to reduce or eliminate most of store-operated,

stretch-dependent, and even ROCE pathways that are known
to occur in dystrophic skeletal muscle.

Summary and Implications of the Calcium Hypothesis

The calcium hypothesis has matured greatly over the past
decade; thanks to genetic models that have proven beyond a
doubt the importance of calcium overload/dysregulation in
mediating myofiber necrosis and MD pathogenesis. Clearly,
calcium homeostasis can be corrected at multiple levels to
positively impact MD, including at the level of the SR, the
plasma membrane, and the mitochondria. It seems logical,
given the known mechanical defects within the dystrophic
plasma membrane that alterations in calcium and sodium
levels likely stems from excessive activation of various
channels and exchangers that then leads to alterations in
SR-calcium handling and mitochondrial calcium loading. For
example, it is easy to see how slowed calcium reuptake to the
SR could lead to greater mitochondrial uptake and MPTP
opening, which in turn could lead to reduced energy
production and failure of active transport, thereby producing
even greater sodium and calcium overload and eventually
cellular necrosis. Although the data we presented in geneti-
cally modified mouse models makes a compelling case for the
calcium hypothesis of disease pathogenesis in MD as
originally proposed by Wrogemann, questions still remain.
However, in the meantime we believe that the animal data are
more than compelling enough to spur new clinical trials aimed
at correcting defects in calcium handling and basal calcium
overload, both with pharmacologic agents and with gene
therapeutic approaches.
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