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Abstract

In typical magnetoencephalography and/or electroencephalography functional connectivity analysis, researchers
select one of several methods that measure a relationship between regions to determine connectivity, such as co-
herence, power correlations, and others. However, it is largely unknown if some are more suited than others for
various types of investigations. In this study, the authors investigate seven connectivity metrics to evaluate
which, if any, are sensitive to audiovisual integration by contrasting connectivity when tracking an audiovisual
object versus connectivity when tracking a visual object uncorrelated with the auditory stimulus. The authors are
able to assess the metrics’ performances at detecting audiovisual integration by investigating connectivity be-
tween auditory and visual areas. Critically, the authors perform their investigation on a whole-cortex all-to-all
mapping, avoiding confounds introduced in seed selection. The authors find that amplitude-based connectivity
measures in the beta band detect strong connections between visual and auditory areas during audiovisual inte-
gration, specifically between V4/V5 and auditory cortices in the right hemisphere. Conversely, phase-based con-
nectivity measures in the beta band as well as phase and power measures in alpha, gamma, and theta do not show
connectivity between audiovisual areas. The authors postulate that while beta power correlations detect audio-
visual integration in the current experimental context, it may not always be the best measure to detect connec-
tivity. Instead, it is likely that the brain utilizes a variety of mechanisms in neuronal communication that may
produce differential types of temporal relationships.
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Introduction

In magnetoencephalography and/or electroencepha-
lography (M/EEG) functional brain connectivity, the

word connectivity can refer to many different mathematical
methods used to measure relationships between brain re-
gions, typically applied to oscillations in one of several fre-
quency ranges. Most connectivity measures used to detect
these relationships, with the exception of local gamma
band phase coherence, do not have a complete bottom-up
theory from neural circuitry to the measured electrical/mag-
netic relationships (for review, see Siegel et al., 2012). As a
result, many connectivity measures are plausible methods
for assessing functional connectivity, and indeed many dif-
ferent types of these measures are utilized, such as coher-

ence, imaginary coherence, and correlation of power
envelopes.

A large number of connectivity methods will use either the
phase or the power of M/EEG oscillations. Regarding phase-
based metrics, a theory termed communication through co-
herence predicts that effective neuronal communication is
established through electromagnetic coherence, a phase-
based connectivity measure (Fries, 2005). Under this the-
ory, oscillations between communicating neuronal groups
have a stable phase relationship, in which action potentials
from a sending group of neurons arrive at a receiving group
when the phase of the receiving group is at an optimal point
to impact their responses and are thus functionally con-
nected. Conversely, if the action potentials from the send-
ing group arrive at the receiving neurons at phases where
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they cause minimal neuronal responses, they are not func-
tionally connected.

It is less clear how neuronal communication could be fa-
cilitated by the temporal correlation of oscillatory power
(Siegel et al., 2012). Instead, power correlations are selected
as a connectivity measure not due to a connectivity theory,
but because of the many known oscillatory power responses
in cognitive states and tasks. For example, because it is
known that the brain has a variety of beta band responses
to stimuli and cognitive states, correlating these responses
between areas can be done to determine connectivity. How-
ever, it is unknown how these covariations of power could
impact effective communication between neurons.

The fact that researchers find realistic connectivity find-
ings with a variety of techniques can have two possible inter-
pretations. First, the analysis techniques could be measuring
distinct aspects of the same underlying neuronal processes
involved in communication. For instance, if two brain re-
gions’ communication produced phase coherent gamma
bursts, both phase coherence and power correlations would
increase. However, the authors feel a more likely scenario
is that different metrics reflect different aspects of brain com-
munication. For instance, working memory could be
reflected through gamma coherence, while stimulus binding
could be reflected in beta power correlations.

The current study investigates the ability of seven magne-
toencephalography (MEG) connectivity techniques to detect
neural audiovisual communication. The connectivity metrics
are based on common linear techniques, which are easily di-
rectly compared, leaving nonlinear and directional methods
for future investigation. Additionally, the authors excluded
methods, which require a large exploration of parameter
space.

M/EEG techniques are often developed and utilized with-
out a reasonable amount of testing and verification (Gross
et al., 2013). In this study, the authors developed a testing
platform that involves very similar active and control peri-
ods, where a subject visually tracks a ball that does or does
not correlate with an ongoing auditory tone. Three key as-

pects of this approach allow for a careful and systematic in-
vestigation of the differences in connectivity techniques.
First, the stimulus involves spatial audiovisual integration,
which allows the authors to view if metrics are sensitive to
communication occurring during audiovisual processing; if
a metric reflects underlying neuronal audiovisual communi-
cation, the authors expect it to detect higher connectivity dur-
ing the audiovisual portion of this task between auditory and
visual regions. This line of reasoning follows many studies in
humans and nonhuman primates, which have shown LFP
(Ghazanfar et al., 2005), ERP/ERF (Giard and Peronnet,
1999; Mishra et al., 2007; Molholm et al., 2002; Shams
et al., 2005), and BOLD (Marchant et al., 2012; Noesselt
et al., 2007; van Atteveldt et al., 2004; Watkins et al.,
2006) -modulated responses in auditory and visual cortices
during congruent audiovisual stimulation. Second, the stim-
ulus provides large time periods where connectivity should
be sustained, which are critical in establishing robust connec-
tivity measurements. Last, the authors test the connectiv-
ity metrics on an all-to-all mapping of cortical voxels,
which avoids the pitfalls of seed selection and typical region
of interest (ROI) analyses, vastly expanding the scope of this
investigation.

Materials and Methods

Hummingballs task

As part of a larger experimental design, subjects per-
formed a task to locate and track a correct target ball from
four distractor balls on a screen. The target ball is identified
in two ways for two separate experimental conditions (Fig.
1). In the first condition, termed sound matching, a pitch
varies depending on the target ball’s distance from the center
of the screen; as the ball moves toward the outside of the
screen, the pitch increases. In the second condition, termed
color matching, the target ball’s color varies depending on
its distance from the center of the screen; as the ball moves
toward the outside of the screen, it changes from green to
red. During sound matching, all balls change color randomly.

FIG. 1. Hummingballs task design. Eye
tracker data and a visually inspected algo-
rithm determine when a subject locates the
correct target ball. Subjects are instructed to
find the ball as quickly as possible and are
given feedback on every trial detailing how
long it took them to locate the correct ball.
Only periods of time after the correct ball is
located and the subject is tracking it are uti-
lized in this report.
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During color matching, a varying tone is still present; how-
ever, it does not correlate with either the target or distractor
balls’ positions. In this way, the stimulus is similar for both
conditions: a varying tone and five color changing balls are
displayed, while the task performed by the subject varies.
Examples of the hummingballs task can be seen in the Sup-
plementary Video S1 (Supplementary Data are available
online at www.liebertpub.com/brain).

An infra-red eye tracker is used to identify when subjects
locate the target ball. Only periods of time after the subject
locates the correct target ball are utilized in this report.
The contrast the authors will explore is sound tracking, as
the active condition when the subject is tracking a ball
whose position corresponds to an auditory pitch versus
color tracking as the control condition, where the subject is
tracking a ball whose position corresponds to the ball’s
color. Simply put, the subject is tracking a unified audiovi-
sual sensory percept or a visual object accompanied by an
uncorrelated tone. In both the active and control conditions,
smooth pursuit of the tracked ball is present, resulting in con-
tributions due to eye movements being canceled between
conditions.

This stimulus is designed to first provide a clear separation
where more audiovisual integration should be occurring dur-
ing sound tracking compared with color tracking. Second,
the time periods are long, on the order of several seconds.
This gives the authors an advantage when investigating con-
nectivity metrics since the longer the time period, the more
the data to make a statistical inference with, resulting in
more robust analysis. The stimuli employed here differ
from a history of studies that use stimuli either comprising
flashes and beeps, illusions, or brief congruent and incon-
gruent stimuli, such as a cat producing a woof sound (Bis-
choff et al., 2007; Dhamala et al., 2007; Hein et al., 2007;
Jones and Callan, 2003). While these studies are excellent
at localizing areas that produce supra-additive responses
to multimodal stimuli, they are not optimal for investigat-
ing connectivity due to the short time frame to determine
a connectivity measurement. Additionally, utilizing short
onset-based stimuli is likely to misidentify event-related
coactivation as connectivity unless a proper illusion or ex-
perimental contrast is employed.

Twenty-one subjects (11 male, 10 female), aged 21–58
(mean age = 32.6 years, SD = 9.6), performed the humming-
balls task, twice on day 1 and twice on a subsequent day
within 4 days of the first. Several datasets were lost due to
eye tracker failure or subject movement and were discarded
from the analysis immediately after collection, leaving on
average 3.29 runs per subject, for a total of 69 runs. Each
run consisted of 16 active and control trials, which lasted
15 sec each. Informed written consent was obtained from
all participants, and the study was conducted according to
the guidelines approved by the National Institute of Mental
Health Institutional Review Board, in accordance with the
Declaration of Helsinki.

Derivation of time series and source techniques

Subjects underwent MEG scans during all hummingballs
sessions. MEG signals were recorded at a rate of 600 Hz in
a magnetically shielded room using a 275-channel whole-
head magnetometer (CTF Systems, Inc., Coquitlam BC,

Canada). An additional 3rd gradient spatial filter derived
from 30 reference sensors was applied to reduce extracranial
signals (Vrba et al., 1995).

For each subject, a volumetric MRI scan was coregistered
with their MEG head coordinates obtained using fiducial
coils at the nasion and two preauricular points, and a warping
transform to a common Talairach subject space was created
using AFNI (Cox, 1996). A 1-cm-spaced grid of points span-
ning the entire brain was generated in this common space
and reverse warped to each individual subject’s anatomy. For-
ward solutions generated through the CTF version 5.2 software
using a multisphere model, which computes spheres for each
sensor aligned to the curvature of the inner skull nearest the
sensor, were then calculated for each voxel for each subject.
Forward solutions that did not include at least ten channels
in every subject with an absolute weighting of two standard de-
viations above the mean per subject were discarded. This was
done to eliminate voxels not properly covered by the scanner
in all subjects as well as voxels with poor signal-to-noise ra-
tios. The remaining 528 voxels resembled a superficial cortical
shell roughly 2 cm deep (Supplementary Fig. S1).

Only tracking segments of time starting 1 sec after the sub-
ject located the ball were used in the present investigation.
Tracking periods under 2 sec were discarded to establish ro-
bust connectivity measurements. Due to beamformers/co-
variance matrices requiring a large amount of time to
stabilize, runs where performance did not yield at least
20 sec of active and control tracking periods were discarded.
Sound tracking and color tracking periods were evenly bal-
anced on an overall run, and per trial level. For instance, if
a sound tracking segment of 8.6 sec was selected, an equal
8.6 sec color tracking time segment was also selected from
the same run. This resulted in a perfectly balanced active
and control time frame per run, thus avoiding known tempo-
ral effects of some connectivity measures as well as beam-
former bias. Connectivity values from each trial over 2 sec
were averaged within each run, yielding a single connectivity
value per run between each voxel pair.

Covariance matrices computed from band-passed time
segments spanning the entire active and control periods
were selected for each run and used to derive adaptive beam-
formers for each of the 528 voxels (Sekihara et al., 2001;
Vrba and Robinson, 2001) regularized at a constant five
femto Tesla per root Hz. Sensor data were band passed
with a 4th-order zero phase-shift Butterworth IIR filter into
a given frequency range before beamformer application,
resulting in estimated virtual channel time series for each
of the 528 voxels for every active and control time segment.

Connectivity metrics

While the number of connectivity metrics is still growing,
the authors chose seven metrics to test (four based on power
fluctuations and three that use phase information). Both
power and phase-based methods have been previously used
to deduce brain connectivity (for a review, see Siegel
et al., 2012).

The phase-based metrics the authors tested were phase co-
herence (Coh), imaginary coherence (ICoh), and phase-lock-
ing index (PLI). Coh is a widely used measure, in which
segments of time D are evaluated between two signals and
the stability of the phase angle difference between the two
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time series is measured over many Ds (full mathematical de-
scription included in Nolte et al., 2004). ICoh, specifically
developed for brain connectivity analysis (Nolte et al.,
2004), is similar; however, only the nonzero phase-lagged
components are utilized. The appeal of ICoh over Coh is
that a zero phase-lagged delay between two neural sources
measured through M/EEG can be influenced by a single
source’s signal spread. Therefore, ICoh, by only utilizing
the nonzero phase relationships, discounts possible artificial
inter-regional relationships. The PLI (Stam et al., 2007), also
developed specifically for brain connectivity, computes an
index of positive and negative phase values, discarding pos-
sible amplitude interactions that can bias ICoh. The PLI is
thought to be advantageous as it is less impacted by ampli-
tude effects present in Coh and ICoh (Stam et al., 2007).

Of these four power-based methods, two are derived from
the Hilbert envelope. The Hilbert envelope, while mathemat-
ically complex (for full description, see Brookes et al., 2008),
is theoretically simple and easy to understand visually as sim-
ply an envelope that surrounds a band-passed oscillatory sig-
nal (Supplementary Fig. S2). The first Hilbert-based method is
Hilbert-R, which is simply a Pearson-R value between enve-
lopes from two voxels. The second Hilbert method, the corre-
lation of average envelope (CAE), introduces a D variable
(Brookes et al., 2011) where the envelope is averaged across
time length D, then windowed throughout the time signal. In
this way, CAE is similar to Hilbert-R, with an effective low-
pass filter that specifies the maximum rate of interaction
between the two envelopes that can be detected. The CAE
connectivity measure is thought to improve as D decreases
from 10 to 0.5 sec or 0.1 to 2 Hz low-pass (Brookes et al.,
2011); however, the given study did not go below 0.5 sec
likely because it was attempting to imitate functional motor
connectivity previously seen with functional magnetic reso-
nance imaging, which cannot detect quicker interactions.

These two additional power-based methods are derived
from the Stockwell transform (for full mathematical descrip-
tions, see Stockwell et al., 1996). The Stockwell transform is
similar to a continuous wavelet transform and is based on a
moving and scalable localizing Gaussian window. The
resulting time–frequency representation has the property
that the integral over time is simply the ordinary Fourier
spectrum wherein any point across the time axis can be re-
solved as an instantaneous power estimate. For the measure
R of Stockwell power mean frequency (RSP-MF), the au-
thors took the mean power value across the frequency band
of interest (for instance, beta band) and then computed a
Pearson-R value from the resulting time series. In contrast,
R of Stockwell power per frequency (RSP-PF) computes
the Pearson-R value for the power time series of each indi-
vidual resolved frequency within the band of interest, and
then calculates the average of the R values as the resulting
connectivity (Supplementary Fig. S3).

As previously stated, the authors selected these seven met-
rics largely because they require no additional variables
other than D and a frequency band; exploring how a variety
of parameters affect results is outside the scope of this article.

Selection of parameters

For all of these connectivity techniques, a frequency range
of interest needed to be specified. While a full analysis across

the spectrum with all connectivity metrics would be ideal, to
limit the scope of the investigation, the authors selected the
beta band (15–30 Hz) for an in-depth analysis.

The authors focused on the beta band because it is known
to be a physiological rhythm that responds to a wide variety
of stimuli and cognitive processes (for review and one of the
latest theories of beta oscillations, see Engel and Fries, 2010)
and is known to be spatially coincident with hemodynamic
responses in similar tasks (Singh et al., 2002). Additionally,
the authors performed a more focused analysis in theta (4–
8 Hz), alpha (8–13 Hz), and gamma (40–80 Hz) bands,
which have all been reported to illustrate multimodal re-
sponses (for review, see Senkowski et al., 2008). It is note-
worthy that as a general trend higher frequency brain
rhythms occur at lower amplitudes, resulting in lower sig-
nal-to-noise ratios, which impact all oscillation-based find-
ings, connectivity notwithstanding.

For each of the phase-based metrics, as well as CAE, a time
window D was set as 1/3rd of a second and computed every 1/
12th of a second (i.e., each D-sized window overlapped 3/4ths
with the last). In this way, metrics were time-resolved over
short highly overlapping windows. Ideally, a full analysis of
D with all of the metrics it applies to would be optimal; how-
ever, the scope is vast. The authors used 1/3rd of a second to
have an acceptable resolution across the frequency domain for
phase-based metrics, while keeping the time frame short to de-
tect interactions on fine temporal scales.

Multiple comparisons

When imaging an entire brain volume, a false discovery
rate test (FDR; Genovese et al., 2002) is commonly utilized
to correct for family-wise type I errors. Importantly, FDR
correction is sensitive to the distribution of p values, that
is, the percentage of tests that differ from the null hypothesis;
as the fraction of nonsignificant tests (high p values) entered
into the FDR increases, p values need to be lower to pass the
q threshold. Because of this, areas which are not expected to
differ from the null hypothesis should be removed before
testing, for instance, CSF, air, and ventricles (Genovese
et al., 2002).

Due to the audiovisual nature of the task, the authors hy-
pothesize that they will detect connectivity differences be-
tween auditory and visual regions, thus expecting no
connectivity differences in the majority of voxels included
in the all-to-all mapping. Voxels not expected to show signif-
icant connectivity are typically not included in connectivity
analyses (Palva and Palva, 2012; Schoffelen and Gross,
2009). The authors included all voxels in the volume to inves-
tigate the specificity of possible audiovisual connectivity dif-
ferences, a component they feel is crucial when investigating
connectivity metrics. For example, a metric which shows in-
creased audiovisual connectivity during audiovisual integra-
tion would be interpreted differently if it additionally
showed increased connectivity throughout the majority of
the brain. Furthermore, by using all full grids of voxels, the au-
thors can verify that connectivity is not a result of signal leak-
age between beamformers as they would be expected to show
star-burst-like patterns with prominent connections to neigh-
boring voxels, which would be excluded in seed selection.

Problematically, the distribution of significant and nonsig-
nificant tests (low and high p values), which underlies the

MEG CONNECTIVITY DURING AUDIOVISUAL INTEGRATION 339



FDR, is vastly different between a single brain volume and
an all-to-all connectivity mapping. For example, in the con-
trast, the authors expected to see no significant connectivity
with a voxel in the hand knob area of motor cortex. In a brain
volume, this voxel would add a single high p value to the
FDR multiple comparisons computation. However, in an
all-to-all mapping, tests are done with every other voxel,
adding an entire brain volume of high p values to the FDR.
This drastically affects the distribution of p values, resulting
in extremely low p values being required to pass the q thresh-
old. To clarify, a theoretical brain volume consisting of 5%
real active and control differences can be compared with a
theoretical connectivity volume, where 5% of the voxels
have real active and control connectivity differences with
5% of the brain. In this case, real active and control differ-
ences in the data drive 5% of tests in the brain volume,
producing low p values, but only 0.25% of the tests in the
all-to-all mapping. To reach an equivalent distribution of
p values as the brain volume, the 5% of voxels in the all-
to-all analysis would need to have real active and control dif-
ferences with the entire brain. As a specific example, because
of the extremely low percent of low p values (as expected) in
the all-to-all analysis in Figures 2 and 3, a p < 7.2e-7 would
be required to pass an overall FDR (q < 0.1) of the entire con-
nectivity volume.

The authors are not the first to point out the limitations of
FDR multiple comparisons testing in connectivity analyses
(Gross et al., 2013; Zalesky et al., 2010). Indeed, alternative
multiple comparisons tests have been developed to apply to
all-to-all connectivity volumes. A high-dimensional statisti-
cal method utilizing neighborhood filters and nonparametric
shuffling has been proposed (Hipp et al., 2011). While this
technique is promising, it requires significant connections
to have clusters of similar neighbors, which the authors are
uncertain to expect at the spatial sampling size of 1 cm. Sim-
ilarly, the authors do not utilize the random field theory (for
introduction, see Brett et al., 2003) due to the required
smoothness of the data, which they are again uncertain to ex-
pect from the metrics, especially at the large spatial sam-
pling. Additionally, a graph metric-based approach, termed
network-based statistics, has been proposed (Zalesky et al.,
2010). However, graph metrics are also directly affected
by spatial sampling (Antiqueira et al., 2010).

In light of this, the authors have opted to rely on the FDR
due to its simplicity and its reliability over the last decade of
publications. However, to account for the FDR limitations in
all-to-all mappings, the authors separated the connectivity
matrix into individual brain volumes, one connectivity vol-
ume per voxel. The authors then perform the FDR on single
brain volumes where it has proven to be robust. Each brain

FIG. 2. Beta band sound tracking minus
color tracking R of Stockwell power mean
frequency (RSP-PF) results; visualization of
all connections q < 0.1. Connections in red
indicate active (sound tracking) is signifi-
cantly larger than control (color tracking),
and connections in blue indicate control is
significantly larger than active.
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volume comprises connectivity values between a single voxel
and every other voxel in the brain. In this way, the authors in-
vestigated every connection regardless of its expected signif-
icance, while simultaneously avoiding massive skew in the
distribution of p values.

The authors emphasize they are not using this multiple
comparisons correction in the typical manner utilized in
brain imaging, which is to deduce brain activity. The authors
are testing the metrics themselves and are not attempting to
prove that audio and visual areas communicate during audio-
visual integration. Hence, they are simply utilizing statistics
to limit the results to connections with stable differences be-
tween the active and control conditions, then viewing which
metrics, if any, show connectivity between audio and visual
regions, thus implicating that they are sensitive to audiovi-
sual communication.

Data processing

In each of the seven connectivity metrics, the resulting
correlation values are Fisher transformed at the appropriate
stage, which is when they are bound between 0 and 1, before
averaging (e.g., Fisher is applied in RSP-PF to the R values at
each resolved frequency within the band of interest before
the R values are averaged together across frequencies).
Results are then averaged between all trials in the run, yield-
ing an active and control connectivity metric between each
voxel pair per subject per run. These are then normalized
by their standard deviations. A linear mixed effects model

is then applied through the NMLE package in R (Pinheiro
et al., 2013) to generate p values while accounting for re-
peated measures within subjects.

These resulting p values are then FDR corrected through
AFNI (Cox, 1996) with a Benjamini–Hochberg correction,
on a brain volume basis as outlined above, and only results
of q < 0.1 are determined as significant and discussed
below. This q threshold was selected because this study is
a comparison of metrics not intending to prove that auditory
and visual areas communicate during audiovisual integra-
tion. If a higher q threshold were employed, the authors are
concerned that a metric may be prematurely deemed unable
to detect the communication when only a slight statistical
variance was present. Furthermore, the authors are interested
in directly comparing connectivity patterns to determine sim-
ilarity between metrics and thus are concerned that a strict
threshold would result in extremely sparse networks that
would de-emphasize similarity between metrics by not
allowing much overlap.

For comparison, the authors additionally performed a tra-
ditional, nonconnectivity SAM power analysis in all fre-
quency ranges. This analysis was performed as outlined
above; however, the authors were able to use a finer spatial
grid (0.5 cm) as well as typical statistics (FDR q < 0.05)
due to computational and statistical simplicity in comparison
with connectivity.

All computations not specifically mentioned otherwise are
performed in Python. AFNI and SUMA (Cox, 1996; Saad
et al., 2004) are utilized for visualization. Due to the massive

FIG. 3. Beta band sound tracking minus color tracking RSP-PF results; region of interest (ROI) breakdown of the all-to-all
connections in Figure 2. Thickness of the lines indicates the amount of significant connections between ROIs, shown in the
legend at upper left. The color of the lines (legend upper right) indicates the average strength of all significant connections
between the ROIs. Within ROI connectivity is shown by a percentage directly to the right of the ROI, colored red for ac-
tive > control and blue for control > active. If any connections between two ROIs include significant positive and negative
values, the line is colored black. If any significant within ROI connectivity has both positive and negative connections,
the percentage to the right of the ROI is also colored black.
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amount of computations involved, this study utilized the
high-performance computational capabilities of the Biowulf
Linux cluster at the National Institutes of Health, Bethesda,
MD (http://biowulf.nih.gov).

Network analysis

This analysis was done on two levels; first, the authors per-
formed a direct connection-by-connection contrast between
the methodologies, which are presented in table format.
The authors have opted for this simple direct comparison
of connections because the time series that go into each
voxel-to-voxel connection are identical and only the method-
ology is varied. This leaves overlapping connections be-
tween methodologies as a direct comparison of the
computational technique without anatomically blurring or
clustering.

In addition to how similar connectivity metrics are, the au-
thors are also interested in where these connections are. To
make the results more concise, the authors performed a sec-
ondary analysis by clustering voxels into 54 ROIs and sum-
marizing the connections between them. Neither averaging
of time signals within ROI nor selecting seeds within each
ROI was performed in this step. Visualizations are summary
figures, indicating the number and strength of connections
between voxel pairs grouped in the ROIs. Overall this
ROI-based analysis adds human readability at the cost of ad-
ditional spatial ambiguity.

Results

Behavioral results

Subjects took on average 6.36 sec to find the target ball
and failed 30.07% of the trials. The time the ball was
found was determined as a point when the target ball
began to be reliably tracked until the end of the trial. The al-
gorithm for determining this was visually inspected to verify
its accuracy (an example can be seen in the Supplementary
Video S2). Trials were considered failed if the subject was
unable to continually track the correct ball from a time
point until the end of the trial. Subjects were 0.62 sec faster
at finding the ball based on sound than color ( p = 0.00227)
and failed 1.88 fewer sound trials than color trials
( p = 3.76e-8).

Overall beta band results

Tracking a ball whose position correlated with a tone ver-
sus a color caused significant differences in connectivity with
all methodologies (Tables 1, 2 and Figs. 2–4). Resulting net-
works with all methodologies are extremely sparse, below 1
in 1000 connections. The greatest number of statistically sig-
nificant connections is seen through CAE, with 130
(0.0934%). The method of computing the FDR for each con-
nectivity volume appears conservative as the largest p value
that achieves q < 0.1 is 0.005 (seen in the CAE methodolo-
gy). In every case, over 94% of the voxels have no connec-
tions that pass the FDR (Table 1). The methodology that
yields the fewest connections is the PLI, with 7 (0.00503%).

Connection strength varies across the metrics; however,
the largest range of strength is seen with CAE, which has
the largest positive difference of .394 as well as the largest
negative difference of �0.338 (Table 1). Notably, because
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this is a connectivity contrast, negative values indicate that
connectivity is larger in the control condition.

Power-based metrics, which included RSP-PF, RSP-MF,
Hilbert-R, and CAE, produced connectivity maps that
largely do not overlap with the phase-based metrics, Coh,
ICoh, and PLI (Table 2). Only one directly overlapping con-
nection is present in both phase-based and power-based met-
rics: a connection between the right angular gyrus and right
V5 seen with Coh, Hilbert-R, and CAE metrics.

Because power-based metrics yielded connectivity pat-
terns separate from phase-based metrics, aside from the sin-
gle aforementioned connection, the authors review their
results separately.

Beta band results, power-based metrics

Power metric-based connectivity patterns are more similar
to each other than those created with phase-based metrics
(Table 2 and Supplementary Fig. S4).

All four power metrics show right hemisphere dominant
increased connectivity between auditory, visual, and multi-
modal areas (Figs. 2–4 and Supplementary Fig. S4A). Impor-
tantly, all four metrics show right hemisphere increases
between primary auditory and V4/V5, as well as between
V4/V5 and the supramarginal/angular gyri (SMG/ANG).
CAE and RSP-PF show the heaviest right side interconnec-
tivity, including connections between R-V4/V5 and both
the right frontal eye fields (FEF) and the right inferior frontal
gyrus (IFG). RSP-MF and Hilbert-R show more limited in-
creases in connectivity, although Hilbert-R shows an in-
crease between the right superior parietal lobule (SPL) and
R-IFG.

Beta band results, phase-based metrics

Coh and ICoh have 23.08% of their connections in com-
mon (Table 2 and Supplementary Fig. S4B). The majority

of these connections are negative and between the left
SMG/ANG and right frontal cortices. PLI shares no common
connections with any other metric.

None of the phase-based metrics show audiovisual con-
nectivity. Coh shows increased connectivity between right
V4/V5 and the right SMG/AMG, as well as between left
V1/V2 and the left SMG/ANG; however, no connectivity
is seen between the auditory cortex and any visual or multi-
modal areas (Fig. 4D–F). It is additionally interesting to note
the increased connectivity seen with Coh between right
SMG/ANG and the bilateral IFG. ICoh additionally shows
left side visual connectivity with the multimodal SMG/
ANG. PLI shows connectivity between the right SMG/
ANG and the R-IFG; however, like the other phase metrics,
no connectivity is detected between audiovisual areas.

Gamma, alpha, and theta band results

While the majority of the analysis is in the beta band (15–
30 Hz), the authors also explored alpha, gamma, and theta
bands. They used two metrics, Coh and RSP-PF, to limit
the scope of the investigation. Coh was selected as a phase
metric because of its similarity to ICoh and because Coh
did not show the short range connectivity in the beta band
contrast that ICoh is designed to compensate for. In addition,
gamma Coh is a major tool used in connectivity literature.
RSP-PF was selected because of its similarity to all the
other power metrics, its lack of additional variables (D),
and its ability to account for frequency-specific sub-band
interactions.

Neither Coh nor RSP-PF connectivity patterns show con-
nections between auditory and visual regions in gamma,
alpha, or theta bands (Fig. 5). It is, however, interesting to
note that gamma Coh between the primary auditory cortex
and the right FEF is greater during audiovisual tracking
than during visual tracking. Additionally, gamma RSP-PF

Table 2. Comparison of Overlapping Voxels and Connections Determined in the Beta

Band When Contrasting Sound Tracking Versus Color Tracking

RSP-PF RSP-MF Hilbert-R CAE Coh ICoh PLI

(A)
RSP-PF 108 14 12 20 0 0 0
RSP-MF 66.67% 21 8 8 0 0 0
Hilbert-R 25.53% 38.10% 47 7 1 0 0
CAE 18.52% 38.10% 14.89% 130 1 0 0
Coh 0.00% 0.00% 2.50% 2.50% 40 6 0
ICoh 0.00% 0.00% 0.00% 0.00% 23.1% 26 0
PLI 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 7

(B)
RSP-PF 85 11 21 32 7 1 3
RSP-MF 55.0% 20 11 11 1 0 1
Hilbert-R 44.7% 55.0% 47 14 9 2 1
CAE 40.5% 55.0% 29.8% 79 10 4 4
Coh 17.1% 5.00% 21.9% 24.4% 41 14 1
ICoh 2.63% 0.00% 5.26% 10.5% 36.8% 38 1
PLI 21.4% 7.14% 7.14% 28.6% 7.14% 7.14% 14

(A) Common (directly overlapping) connections between methodologies. The diagonal is the total amount of significant (q < 0.1) connec-
tions for that methodology; the upper triangle is the number of significant common connections between two methodologies; the lower tri-
angle is the percent of significant connections in common, determined by dividing the upper triangle by the diagonal. (B) Common voxels
between methodologies. The diagonal is the number of voxels that have at least one significant connection. The upper and lower triangles are
the same as A, but for voxels with significant connections instead of the connections themselves.
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shows large negative connectivity between the FEF and the
SPL, as well as between the IFG and the SMG/ANG, signi-
fying larger gamma power correlation during color tracking
between these areas. Alpha RSP-PF shows auditory connec-
tivity with the postcentral gyrus and the precuneus; however,
no connectivity is seen with any segment of the visual cortex.
Theta RSP-PF, theta Coh, and alpha Coh do not show any au-
ditory connectivity.

Within ROI connectivity and signal spread

The largest within ROI connectivity (0.55%) is seen with
Coh in the right SMG/ANG; however, further inspection of
these connections indicates that they are between the intrapar-
ietal sulcus (IPS) and the SMG/ANG. The IPS, being on the
border of the SPL and SMG/ANG, leads to ambiguity in the
ROI separation on their border. Furthermore, even this highest
within ROI connectivity is a very low percentage. The overall
lack of within ROI connectivity provides evidence that these
active and control contrasts are sufficient in dealing with sig-

nal spread in this experimental design. If this were not the case
and signal spread were biasing these results, the authors would
expect to see extensive connectivity with neighboring voxels,
which would manifest as large percentages of within ROI con-
nectivity. The authors stress that utilizing an active and control
period will not always be sufficient to deal with signal spread.
For instance, if the active and control periods are vastly differ-
ent, such as when contrasting a task against a rest condition, it
is plausible that large amounts of connectivity will be seen
with neighboring voxels.

Power differences

Nonconnectivity power results show significant differ-
ences in both the alpha and beta frequency ranges, as well
as trends in theta and gamma bands (Fig. 6). Beta power is
larger during sound tracking throughout the visual/parietal
cortex and inversely stronger during vision tracking in the
left auditory cortex. Notably, there is no significant beta
power difference detected with the right auditory cortex,

FIG. 4. Beta band sound
tracking minus color track-
ing results for the six other
tested metrics aside from
RSP-PF. Metrics are
grouped via power (A–C)
and phase (D–F) accord-
ingly. Refer to Figure 3 for
node and legend labeling.
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which these beta power connectivity results implicate in au-
diovisual integration. Additionally, gamma power shows a
strong localized trend ( p < 0.05) with the right auditory cor-
tex, but not left auditory cortex.

Discussion

Many types of functional connectivity metrics have been
utilized to determine functional brain connectivity in the
past. In this study, the authors test several methods to inves-
tigate which are sensitive to audiovisual integration. These
results show that beta power correlation-based connectivity
strongly detects connectivity between auditory and visual re-
gions. Specifically, all four beta power measures (RSP-PF,
RSP-MF, CAE, and Hilbert-R) exhibit larger connectivity

between V4/V5 and auditory cortices when tracking an au-
diovisual object than when tracking a visual object that
does not correlate with the auditory tone.

In contrast, phase-based methods in the beta band as well
as power and phase methods in the theta, alpha, and gamma
bands do not show any connectivity between auditory and vi-
sual regions.

By investigating the subtle differences between power-
based metrics, the authors can further illuminate aspects of
functional connectivity. Because a similar, but larger, con-
nectivity structure is seen with CAE (with D = 1/3s) than Hil-
bert-R, the authors can conclude that the majority of these
beta power interactions are taking place below 3 Hz (see
Materials and Methods section). Additionally, because a
larger connectivity structure is seen with RSP-PF than

FIG. 5. Gamma (A, B), alpha (C, D), and theta (E, F) sound tracking minus color tracking for the RSP-PF (A, C, E) and
coherence (B, D, F) metrics. Refer to Figure 3 for node and legend labeling.
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RSP-MF, the authors can conclude that these connections
take place in particular sub-bands of beta, and not across fre-
quencies. For instance, if one area’s beta power at 25 Hz fluc-
tuates during audiovisual connectivity, the area it is
connected to cofluctuates at 25 Hz, and not 18 Hz, which is
also within the beta band. This is potentially illuminating
for understanding of the computational network mechanisms
that underlie connectivity.

The present study directly investigated a subset of possible
measures of neural interaction, however, only during audio-
visual integration. It is possible, if not likely, that the brain
utilizes separate network mechanisms to achieve communi-
cation during other tasks, which in turn could produce
other types of inter-regional relationships in different fre-
quency ranges. For instance, working memory may employ
network and cellular mechanisms that produce gamma Coh
between involved areas. The authors can begin to see these
different types of brain connectivity even within the task de-
sign. For instance, stronger gamma RSP-PF connectivity was
seen between the R-SPL and R-FEF during the visual control
task. SPL activity could reflect lateral intraparietal (LIP) ac-
tivity as the spatial resolution of 1 cm is unable to differenti-
ate between them. LIP and FEF work together to drive
decision making and execute eye movements in response
to stimuli (for reviews, see Sugrue et al., 2005; Wardak
et al., 2011). The higher gamma connectivity the authors
see between R-SPL and R-FEF during visual tracking may
reflect communication involved in coordinating the change
in the color of the tracked ball and the production of eye
movements; however, more investigation is required.

Additionally, the authors found IFG connectivity to be of
special interest. The IFG is known to be involved in other
rule-based tasks to identical stimuli, such as the well-
known Stroop task as well as task switching (Derrfuss
et al., 2005). Three beta power methods as well as beta
Coh and PLI detected larger R-IFG connectivity with parie-
tal cortices during audiovisual tracking. The authors suspect
this connectivity to be reflective of the novel task rule set of
the hummingballs stimulus; however, more investigation is
required. Furthermore, connectivity between the left SMG/
ANG and right frontal cortices is detected with several meth-
ods to be higher during color tracking with RSP-PF, Hilbert-
R, Coh, and ICoh in the beta band. While these connections
also require additional investigation, the authors believe they
may reflect aspects of the novel task, which are more prom-
inent in color tracking than sound tracking.

This study tested the ability of various metrics to detect
connectivity between auditory and visual areas during audio-
visual integration. However, the role of some areas in audio-
visual integration, such as the primary visual cortex, is still
under debate (Alais et al., 2010). While a detailed report of
all significant connections is too vast in scope, the authors
mostly detected increased audiovisual connectivity between
higher-level visual cortices and primary/higher-level auditory
cortices, as well as with the multimodal inferior parietal lobule
(SMG/ANG). This indicates that audiovisual integration in
this task largely does not utilize lower-level visual cortices,
although this task is based in visual motion, so it is reasonable
that most visual connectivity differences were seen with V4/
V5. On the other hand, differences in local beta power are

FIG. 6. Power differences between sound
and vision tracking. Significant q < 0.05
differences were seen in the beta and alpha
bands. No significant differences were seen
in the theta and gamma bands, trends p < 0.05
are presented. Blue indicates power was
greater in the vision condition, while red
signifies higher power in the sound tracking
condition. Crosshairs in all Figures are cen-
tered on right auditory cortex (�41, 25, 8).
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detected throughout the visual cortex, which may indicate in-
volvement of the lower-level visual cortex.

Last, this study investigated what types of oscillatory corre-
lations were present during audiovisual integration and thus
the authors can apply these results to theories of how neurons
communicate through oscillations, particularly during binding
(Fries, 2005; Senkowski et al., 2008; Singer and Grey, 1995).
These findings are overall supportive of the notion that tempo-
ral relationships underlie neuronal connectivity, notably
detected here through power correlations. Interestingly, unlike
Coh, it remains unclear how power correlations between areas
impact communication between neurons (Siegel et al., 2012).
The authors feel further investigation into the neural mecha-
nisms, which underlie these relationships, is paramount to un-
derstanding this form of functional connectivity.

Conclusion

The authors believe that the brain has many complex and
separate ways of processing different types of information,
and these independent processing pathways likely manifest
in a variety of statistical relationships and frequencies be-
tween areas. While much remains unknown about these in-
teractions, these results show vast differences between
power and phase-based connectivity results. Finally, the au-
thors conclude that audiovisual integration when tracking an
object is strongly reflected by correlations of beta power.
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