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Introduction
Medical imaging has been ranked as one of the most important 
medical developments of the past 1,000 years.1 Over the last 10 
years, tremendous amounts of medical image data have been 
captured and recorded in a digital format during daily clinical 
practice, medical research, and education.2–5 These data repre-
sent a rich source of information that is invaluable for diagno-
sis, treatment, recovery, rehabilitation, etc. This is particularly 
true for cancer-related research and clinical practice: with the 
advancement of medical imaging,6 health providers are able to 
not only investigate inside the body but also see deep within the 
chaos of cancer cells.6 For example, medical imaging is used to 
screen, diagnose, and stage cancer; to guide cancer treatments; 
to monitor cancer recurrence; and to support cancer research, 
such as drug discovery and therapeutic innovation.

Advancing the appropriate use of information technology 
in medical imaging as the newest frontier of medical imag-
ing promises to contribute greatly to improving the quality of 

cancer care for each individual patient with lower cost. Common 
information technology and computational tasks related to medi-
cal imaging include image acquisition, image manipulation, 
image management, and image integration.7 Medical image 
retrieval is one of the few computational components that cover 
a broad range of tasks, including image manipulation, image 
management, and image integration. The goal of medical image 
retrieval is to find the most clinically relevant images in response 
to specific information needs represented as search queries.

Text-based information retrieval techniques are well 
researched. However, they are limited by the quality and 
quantity of the textual annotations of the images. Effective 
and efficient content-based approaches can be used in con-
junction with text-based methods to improve the accuracy and 
completeness of the search results. Motivated by the impor-
tant potential clinical benefits, content-based medical image 
retrieval (CBMIR) has become a very active research area over 
the last decade.8–13
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Among many state-of-the-art techniques of CBMIR 
research, one of the most promising directions is to correlate 
multimodal information (eg, text and image) or to use the 
combinations of textual and visual analysis techniques for 
more effective and efficient CBMIR.14–19 In this paper, we 
focus on two modalities that are widely available in real-world 
clinic practice: visual information of a medical image and the 
corresponding text annotation of the medical image.

While substantial amount of research has been conducted 
in the area of medical image retrieval, real-world tools and 
applications that can access the medical image data by their 
content are rare in clinical practice.20–23 One of the major bar-
riers we have identified is that the semantic gap exists between 
the low-level features (eg, low-level visual and textual features) 
and the high-level medical concepts. The key to addressing 
these issues is to develop new semantic meaningful features 
from multimodal information to bridge the semantic gap and 
to enable effective and efficient CBMIR. Another challenge 
is that the real-world data are very noisy and some modality 
information (eg, text annotation) may be missing from input. 
To address the missing modality issue, new algorithms that 
can derive the missing modality information from the exist-
ing known modality (eg, deriving missing text annotation 
from known visual content) are needed for making the system 
usable in clinical practice.

The goal of our research in this paper is to develop, eval-
uate, and demonstrate new image and textual analysis tech-
niques for scalable semantic medical image content analysis 
and retrieval. In order to overcome the limitations introduced 
in the previous paragraph, our focus in this paper is to gener-
ate semantic features. Our new approach has great potential 
to substantially improve the performance of medical image 
retrieval. It also has good potential to be applied in clinical 
practice and healthcare applications. Our approach is inspired 
by recent advancement in statistical graphic models24,25 and 
deep learning.26 Specifically, we first develop a new extended 
probabilistic Latent Semantic Analysis (pLSA) model to inte-
grate the visual and textual information from medical images 
to bridge the semantic gap. The proposed pLSA model is 
able to generate a representation space with the desired fea-
ture (eg, similarity in this feature space implies similarity in 
the corresponding medical concepts). While the proposed 
pLSA model is very good at bridging the semantic gap, we 
are still facing some additional issues when employing this 
model in real-world applications. In real-world clinical appli-
cations, the situations where some modalities are missing and 
are noisy happen frequently. We plan to develop our second 
model to address these issues. Specifically, we develop a new 
deep Boltzmann machine (DBM)-based27 multimodal learn-
ing model to learn the joint density model from multimodal 
information. The proposed DBM-based model can derive the 
missing modality information from known modality informa-
tion. The combination of these two models, both of which are 
trained with a large volume of real-world medical image data, 

will enable us to search the most relevant images for a given 
query. Experimental results with large volume, real-world 
medical images have shown that our approach is a promis-
ing solution for the next-generation medical imaging indexing 
and retrieval system.

Motivations
As medical imaging is becoming an essential component for 
cancer care and research, many departments of cancer care and 
research would benefit directly from research efforts on mul-
timodal CBMIR. Medical imaging is becoming even more 
important over the last ten years. One of the reasons behind 
this is the so-called big data in medical imaging: tremendous 
amounts of medical image data, in the last few years, are cap-
tured and recorded in a digital format during the daily clinical 
practice, medical research, and education. Driven by the aging  
population and technology advancements, the global diagnos-
tic imaging market is expected to increase to $26.6 billion by 
2016.2 In 2010, over 5  billion medical imaging studies had 
been conducted worldwide.3 In 2011, the number of US medi-
cal imaging procedures surpassed the 800 million mark.4 At 
Mayo Clinic’s Campus in Jacksonville, FL, USA, a radiologist 
viewed 1,500 cross-sectional images per day in 1994 compared 
to 16,000 images per day in 2004.5 The Radiology Depart-
ment at University Hospital of Geneva, Geneva, Switzerland, 
produced over 12,000 images per day in 2004, 40,000 images 
per day in 2006, 70,000 images per day in 2007, and over 
117,000 images per day in 2009.13 Images are ubiquitous in 
cancer care and research. The image viewers play a central role 
in many aspects of modern cancer care. These data provide an 
unprecedented opportunity for making smart and optimized 
cancer care decisions with improved outcomes while reducing 
costs.

Common computational tasks related to medical imaging 
include image acquisition, image manipulation, image man-
agement, and image integration.7 Medical image retrieval, 
with the goal of finding the most clinically relevant images in 
response to specific information needs represented as search 
queries, is one of the few computational components that cover 
a broad range of medical imaging computational tasks. Despite 
text-based information retrieval methods being both mature 
and well researched, they are limited by the quality of image 
annotations. Among other important limitations facing tradi-
tional text retrieval techniques are the fact that image anno-
tations are subjective and context sensitive, and can be quite 
limited in scope or even completely absent. Manually annotat-
ing images is also label intensive and can be very error-prone. 
Image annotations are quite noisy if they are automatically 
extracted from the surrounding text using natural language 
processing techniques, and there is much more information 
in an image than can be extracted using a limited number of 
words. Effective and efficient content-based approaches can be 
used in conjunction with text-based methods to improve the 
accuracy and completeness of the search results.
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Related Work
The related work to this paper falls under three categories. The 
first category is CBMIR research. The second category is mul-
timodal fusion-based image retrieval research. The third cat-
egory is deep learning research. We will introduce these three 
categories in more detail in the following paragraphs.

The first category, CBMIR, has been a very active field 
in recent years. CBMIR is rooted from content-based image 
retrieval (CBIR), which is any technology that in principle 
helps to organize digital picture archives by their visual con-
tent.28 CBIR has grown tremendously since 2000, and we 
refer interested readers to read the survey paper by Datta 
et  al.28 to gain more detailed understanding for CBIR. 
CBMIR research, which is motivated by huge potential ben-
efits and is one of the major applications of CBIR, has wit-
nessed a large number of publications and explorations over 
the last decade.9–13 In Ref. 8, a database of computed tomog-
raphy (CT) images of the chest called automated search and 
selection engine with retrieval tools was developed. Image 
retrieval in medical applications10 was a project that aims 
to develop high-level methods for CBIR with prototypical 
application to medical diagnostic tasks on a radiologic image 
archive. The medical GNU image finding tool (MedGIFT) 
project29 included several axes around the retrieval of medical 
images from a variety of databases and image types as well 
as several applications. Greenspan and Pinhas30 presented a 
representation and matching framework for image categori-
zation in medical image archives. Napel et al.31 developed a 
system to facilitate radiologic image retrieval that contains 
similar-appearing lesions. System evaluation was performed 
with a CT image database of liver and an external standard 
of image similarity. In Ref. 32, Rahman et  al proposed a 
unified medical image retrieval framework integrating 
visual and textual keywords using a novel multimodal query 
expansion. Quellec et al.33 introduced a content-based het-
erogeneous information retrieval framework. In this paper, 
they proposed a Bayesian network to recover missing infor-
mation. The Medical Imaging Resource Center34 project was 
initiated by the RSNA Radiology Informatics Committee 
to construct a library of medical information globally acces-
sible to the imaging community over the Internet. An exam-
ple of evaluation projects is ImageCLEF Medical Image 
Retrieval Task,35 which is a task to benchmark and compare 
the performance of participating systems for medical image 
retrieval. Recently, researchers from US National Library of 
Medicine/National Institutes of Health (NLM/NIH) (36–38 
developed new computer-aided techniques to identify and 
annotate the region of interests for a given medical image 
to facilitate biomedical document and image retrieval. Some 
medical image search prototypes, such as GoldMiner,39 were 
also developed. Kumar et al.40 presented a review of the state-
of-the-art medical CBIR approaches in five main categories: 
(1) two-dimensional image retrieval, (2) retrieval of images 
with three or more dimensions, (3) the use of non-image data 

to enhance the retrieval, (4) multimodality image retrieval, 
and (5) retrieval from diverse data sets. Our system is dif-
ferent from the state-of-the-art medical CBIR approaches 
because our proposed statistic graphic model and deep learn-
ing model make it possible to develop semantic features for 
bridging the semantic gap.

The second category of related work is called multi-
modal fusion-based image retrieval. The research in this area 
is rooted in information fusion. Existing literature on multi-
modal retrieval can roughly be classified into two categories: 
feature fusion and retrieval fusion. The first strategy (feature 
fusion strategy) generates an integrated feature representa-
tion from multiple modalities. For example, in Ref. 24, the 
features from different modalities were normalized and con-
catenated to generate the feature vectors. Then, the latent 
semantic analysis (LSA) was applied on these features for 
image retrieval. Lienhart et al.25 proposed a multilayer pLSA 
to solve the multimodal image retrieval problem. The second 
strategy (retrieval fusion) refers to the techniques that merge 
the retrieval results from multiple retrieval algorithms. Our 
approach belongs to the first category (feature fusion). Our 
technique is different from Pham et  al.24 in that we do not 
simply concatenate the features from different modalities. 
Instead, we represent the features from different modalities as 
a multidimensional matrix and incorporate these feature vec-
tors using an extended pLSA model. Our method is also dif-
ferent from Lienhart et al.25 since we use a single pLSA model 
instead of multiple pLSA models.

The third category of related work, deep learning,26,41 
aims to learn multiple levels of representation and abstraction 
that help infer knowledge from data such as images, videos, 
audios, and text. In the last five years, deep learning is mak-
ing astonishing gains in computer vision, speech recognition, 
multimedia analysis, and drug designing. The impact of deep 
learning is far reaching on applications in medical, social, and 
commercial domains.42–44 In 2013, deep learning made MIT 
Technology Review’s list of top 10 breakthroughs of the year. 
Briefly speaking, there are two main classes of deep learn-
ing techniques: purely supervised learning algorithms (eg, 
convolutional neural network45,46) and unsupervised and 
semi-supervised learning algorithms (eg, denoising autoen-
coders,47,48 restricted Boltzmann machines (RBMs),49,50 and 
DBMs27). Since this paper employs RBM and DBM heavily, 
we will mainly introduce these two techniques. RBM was first 
proposed as a significant improvement of Boltzmann machines 
(BMs).51 In the following introduction, we will follow the 
terms and conventions introduced in prior research.27,49–51 
BM is a stochastic recurrent neural network, and it is named 
after the Boltzmann distribution in statistical mechanics. BM 
is a network of units with energy defined for the network. It 
also has binary units, but unlike Hopfield nets, BM units are 
stochastic. BM is a network of symmetrically coupled stochas-
tic binary units. It includes a set of visible nodes v ∈ {0,1}D 
and a set of hidden nodes h ∈ {0,1}P. The state {v,h}’s energy 
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is defined as follows: E v h v Lv h Jh v WhT T T, ; ,θ( ) = − −
1
2

1
2

 
where θ = {W,L, J} are the parameters of the model. W, L, and 
J indicate visible-to-hidden, visible-to-visible, and hidden-to-
hidden symmetric interaction terms, respectively. In theory, 
the RM model is a general computational model that is suit-
able for many applications. However, in practice, learning in 
general BM is very inefficient. As a result, RBMs were pro-
posed with a fast learning algorithm. Different from BM, 
RBM model does not allow visible-to-visible connections 
and hidden-to-hidden connections. In another word, in the 
energy model, we will set both L = 0 and J = 0. By setting 
both of them as zero, we can remove every intralayer con-
nection. The inference in RBM is exact, which is also dif-
ferent from general BM’s inference. While exact maximum 
likelihood learning in RBM is intractable, new learning 
algorithms, such as contrastive divergence, has been pro-
posed to carry out the learning process very efficiently. When 
one RBM is trained, we can treat the activities of its hidden 
nodes as inputs for a higher-level RBM. By stacking multiple 
RBMs together, we could train many layers of hidden units 
efficiently. This method of stacking RBMs will produce a new 
learning algorithm called DBMs. Among the state of the art 
of DBM techniques, the findings presented by papers52,53 are 
most similar to our proposed approach. In Ref. 52, the authors 
proposed a semi-supervised learning method for multimodal 
learning. The proposed model can use both labeled and unla-
beled training data. Their work showed that learning model 
could be improved with unlabeled image data. It also showed 
that providing associated text tags may be incorporated as 
another modality to improve the performance. Most recently, 
Srivastava and Salakhutdinov53 presented a method utilizing 
a DBM to accomplish image recognition tasks for MIR Flickr 
data set54 using images and associated tags. In their paper,53 
they demonstrated vast potential for DBMs and their com-
petency for multimodal learning. In our paper, we will focus 
on developing new semi-supervised learning algorithms using 
DBMs.27,49,50 Our proposed solution is an extended model of 
DBM, which is a learning system through layers of binary 
stochastic variables. These layers are interconnected, but have 
no connections between nodes on the same layer. This allows 
for much faster processing of information than standard BMs, 
which are entirely interconnected.

Our Multimodal Approach
In this section, we will introduce our proposed multimodal 
approach in more detail. To the best of our knowledge, how 
to generate effective and efficient semantic features for large-
scale medical image sets remains a challenging and unsolved 
problem. In this paper, we will focus on the development and 
evaluation of new semantic analysis techniques by investigat-
ing and evaluating innovative visual and textual modeling 
and analysis techniques for generating the semantic features. 
These semantic features have potential to bridge the semantic 
gap. Specifically, we develop two types of statistical graphic 

models that can fuse the distinct modalities to generate the 
semantic features. The newly generated semantic features are 
capable of capturing the real-world medical concepts effec-
tively and efficiently. Furthermore, the proposed approach is 
able to handle the missing modality reliably. The semantic fea-
tures are a new representation space with the following desired 
features: (1) the similarity in this representation space implies 
the similarity of the corresponding real-world medical con-
cepts and (2) the representation space can be generated reli-
ably even in the situations where there are missing and noisy 
modalities. In the following section, we will first introduce 
the proposed extended pLSA model to fuse the multimodal 
information (section Step 1: fusing the multimodal informa-
tion). Then we will introduce our proposed DBM model (sec-
tion Step 2: deriving missing modalities), which can be used 
to derive the missing modality. Lastly, we will discuss how we 
will utilize the two proposed models from Steps 1 and 2 for 
medical image retrieval (section Step 3: retrieval).

Step 1: fusing the multimodal information. Figure  1 
depicts an overview of the first step. Our goal in this step is to 
build the graphic model and to generate the latent topic rep-
resentation for each image in the database. Given the images 
and their associated textual descriptions, our algorithms will 
generate a latent topic representation for each image.

We use an extended pLSA model to encode the visual 
and textual information for each image. The original pLSA 
method is based on an aspect model, which is a latent variable 
model for general co-occurrence data (eg, document-word fre-
quency matrix). It models the distribution of words in the doc-
ument as a mixture of a few aspects. It was recently employed 
by the computer vision community to solve the problems of 
image retrieval and object class recognition. We extend the 
pLSA model by employing two random variables to represent 
the visual and textual features, respectively. Please note, in 
our research, we employ the concept of visual bag-of-words 
(VBoW) model to extract the initial visual features from an 
image. In this VBoW model, an image is represented as a visual 
document composed of visual elements (a.k.a. visual words). 
This model has been very popular in the last few years55–60 
because of its simplicity and scalability. Specifically, we first 
apply scale-invariant feature transform (SIFT)-based interest-
ing point detection methods61 to identify the potential salient 
points from the image. For each interesting point identified by 
the SIFT method, we will extract the SIFT descriptor, which 
is a 128-dimensional vector. We then run k-means cluster-
ing algorithm for all the SIFT descriptors collected from each 
training image. The k centroids of the k-means algorithm are 
the visual words that can be used for late processing. For each 
image, we compare the SIFT interesting point and its SIFT 
descriptor with each visual word and find out the closet visual 
word. By this way, we can generate a histogram of visual words 
as a feature representation for each image. For textual feature 
extraction, we employ existing open source natural language 
processing package, Stanford NLP package,62 to extract 
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textual features. Specifically, we employ the textual bag- 
of-words (BoW) model and a vocabulary of the 1,000 most 
frequently used medical terms. In the following description, 
we present the proposed extended pLSA model following the 
terms and conventions introduced in prior research.24,25,63

Suppose we have D (D  =  {d1 … dN}) images where di 
represents the ith image that contains both visual and textual 
information. We use two random variables wv and wt to rep-
resent the visual and textual words, respectively. We assume 
that the visual vocabulary is represented as WV  =  {wV_1, … 
wV_M}, while the textual vocabulary WT  =  {wT_1, … wT_K}. 
The corpus of the image database can be summarized in a 
three-dimensional co-occurrence matrix N , whose degree is 
M × K × N. The entries n(wV_m, wT_k, dn) in this matrix repre-
sent how often the term wV_m and wT_k occurred in image dn. 
A latent topic variable z is used to associate the occurrence of 
words wV and wT to image d. The joint probability model over 
WV × WT × D is represented by the following equation:

	     P w w d P d P w w dV T V T, , ,( ) = ( ) ( )| 	 (1)

From equation (1), we can perform further derivation by 
importing the latent variable

	  
P w w d P z P d z P w w z

z Z
V T V T, , ,( ) = ( ) ( ) ( )

∈
∑ | | 	 (2)

We employ the expectation–maximization (EM) algo-
rithms for training. EM alternates two steps: (1) an expecta-
tion (E) step, where posterior probabilities are computed for 
the latent variables and (2) a maximization (M) step, where 
parameters are updated. In the final stage of the training 
component, we compute the value of P(zl|di) for each image di  
(l ∈ (1,L), where L is the number of latent topics). More spe-
cifically, in our extended pLSA model, the E-step equation is 
listed as follows:

	 
P z w w d

P z P d z P w w z

P z P d z P w w z
z

|
| |

| |V T
V T

V T

, ,
,

,
( ) =

( ) ( ) ( )
′( ) ′( ) ′( )

′∈∈
∑

Z

	 (3)

The formulas for the M-step are listed as follows:

	 
P w w z n w w d P z w w d

z Z
V T V T V T, , , , , ,| |( ) ∝ ( ) ( )

∈
∑ 	 (4)

	 
P d z n w w d P z w w d

w Ww W
| |( ) ∝ ( ) ( )

∈∈
∑∑ v t v t
t Tv V

, , , , 	 (5)

Medical images and thier associated text descriptions

Visual
feature

extraction

Textural
feature

extraction

Image
representation

Latent topic modeling for images

Codebook
generation

Codebook dictionary

Figure 1. Overview architecture of the proposed model in Step 1.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Cao et al

130 Cancer Informatics 2014:13(S3)

	 
P z n w w d P z w w d

w Ww Wd D
( ) ∝ ( ) ( )

∈∈∈
∑∑∑ v t v t
t Tv V

, , , ,| 	 (6)

During the retrieval stage, similar operations are per-
formed to the query image. More details are provided in the 
section Step 3: retrieval. Our proposed extended pLSA model, 
compared with the existing pLSA model, employs a three-
dimension array. Therefore, compared with the original pLSA 
model, the number of parameters to be estimated during the 
EM algorithms is also increased. However, as indicated by 
equations (3)–(6), the increasing of parameters will not cause 
the computation intractable. Finally, we use a histogram inter-
section (or potentially other distance measures) to measure the 
similarity between the query image and the images in the 
database.

Step 2: deriving missing modalities. While our model 
(extended pLSA model) proposed in the first step is able to 
generate a representation space with desired characteristics 
(eg, similarity in this feature space implies the similarity in 
corresponding medical concepts), we are still facing some 
additional issues if employing this model in real-world appli-
cations. More specifically, in real-world clinical applications, 
the situations where some modalities are missing and noisy 
happen frequently. We plan to develop our second model to 
address these issues. Our proposed approach is rooted from 
the recent advances in deep learning.26,64,65 The main innova-
tion in this step is to learn a joint probability density model 

from the visual and textual information with the capacity of 
filling in missing modalities.

As shown in Figure  2, the novel part of our proposed 
approach is that of utilizing multimodal inputs for analysis. 
This joint model is accomplished by training two separate 
DBMs, with the top hidden layers connected to a combined 
hidden layer to act as a joint representation for the associated 
learning. As shown in Figure 2, we first extract both visual  
and textual features from the images. Then we train a visual-
based DBM, as shown in the middle left of Figure  2. We 
also train a text-based DBM, as shown in the middle right of 
Figure 2. Both the DBMs have two hidden layers. In order to 
fuse the multimodal information, we add one additional layer 
on top of these two DBMs as the joint representation of mul-
timodal data, as shown in the bottom of Figure 2.

As shown in Figure 2, our approach utilizes multiple lay-
ers of hidden variables, each layer connected to the neighbor-
ing layers through each and every node. One layer represents 
the visible data (in the case of image training, the image pixel 
data), and all subsequent layers are hidden. The connections 
between nodes are weighted according to a probability func-
tion to be evaluated during the training sessions.27 In order 
to derive the missing modality, we will first learn a joint den-
sity model from multimodal information using the proposed 
DBM. Specifically, the proposed DBM includes a set of vis-
ible nodes v ∈ {0,1}D. It also includes several layers of hidden 
nodes h h hF F L FL1 20 1 0 1 0 11 2∈{ } ∈{ } ∈{ }, , , , , , .…  Please note, 

Medical images and thier associated text descriptions

Visual
feature

extraction

Textural
feature

extraction

Joint representation modeling from both visial text information

Visual-based DBM Text-based DBM

Figure 2. Overview architecture of the proposed model based on DBM.
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the basic building block of DBM is RBM, which is a special 
case of BM. In RBM, the connections exist only between 
nodes from different layers and there is no connection between 
nodes within the same layer. The joint distribution over the 
visible and hidden units is defined as P{v,h;θ) =  {1/Z(θ))exp 
(–E(v,h;θ)), where Z(θ) is defined as the partition function and 
E(v,h;0) is the state {v,h}’s energy. Since there is no connection 
between the same layer, the state {v,h}’s energy is defined as 
follows: E v h v Wh b v a hT T T, ; ,θ( ) = − − −

1
2

 where θ = {W,L,J} 

are the parameters of the model. W, L, and J indicate visible-
to-hidden, visible-to-visible, and hidden-to-hidden symmetric 
interaction terms sample the hidden modality from the con-
ditional distributions, given the observed modalities. While 
there are many sampling algorithms that can obtain observa-
tions from probability distribution, we choose to employ the 
Gibbs sampling technique,66 used by recent deep learning 
research.27,67,68

Step 3: retrieval. Once the two models (extended pLSA 
model shown in Fig. 1 and the DBM model shown in Fig. 2) 
are trained, we will represent the visual and textual informa-
tion using the trained models. Specifically, we will determine 
the distribution of the visual–textual words over the latent 
topic generated from the new pLSA model. We will also gen-
erate the missing data using conditional distribution over the 
observed data.

To obtain the visual features, we employ a BoW model.63,69 
Textual features are extracted from the text annotations asso-
ciated with the images. We apply the existing vector-space 
model to the textual annotations. Some necessary preprocess-
ing (eg, removing stop words and stemming) is performed. 
Now, each image is represented by a two-dimensional matrix, 
which indicates the co-occurrence of the visual–textual words 
in this image. Therefore, a three-dimensional matrix repre-
sents the entire training data. Then we apply the EM algo-
rithm to this three-dimensional co-occurrence table and 
obtain the model parameters.

The last step is to perform retrieval. The goal is to com-
pute the similarity score between the database images and the 
query image. The first step is to extract the visual and textual 
features from the query image. Based on the features and the 
codebook (which is generated during the training stage), we 
could project the query image on the simplex spanned by the 
P(wV,wT|z), which is the visual–textual word distribution over 
a latent topic. Given a query image dq, we need to calculate the 
p(zk|dq) (k ∈ (1,L)), where L is the number of latent topics. To 
calculate p(zk|dq), we apply Bayes’ rule to generate the follow-
ing equation:

	   
P z d

P d z P z

P dk
k k

|
|

q
q

q

( ) =
( ) ( )

( )
•

	 (7)

In order to obtain the likelihood and the prior in Equa-
tion (7), an EM algorithm that is similar to the one used in the 

training stage is employed. Different from the EM method 
for training, which is introduced in section Step 1: fusing 
the multimodal information, the value of P(wV,wT|z) is fixed 
during the EM execution, and this value is obtained from the 
training stage, which is introduced in section Step 1: fusing 
the multimodal information. Once each p(zk|dq) is calculated, 
we generate a histogram representation for the query image by 
concatenating each p(zk|dq) value.

Distance metrics such as the histogram intersection are 
employed to compute the similarity between the query image 
and the database images. Finally, the database images are 
ranked based on the similarity score.

Experimental Results
In this section, we will introduce the data sets used in our 
experiments (section Data sets), the list of performance metrics 
(section List of definitions for performance metrics), as well as 
the detailed implementation and experimental results (section 
System implementation and detailed results). In the section 
Data sets, we introduce the characteristics of two data sets: 
ImageCLEF 2009  medical retrieval challenge and Image-
CLEF 2013 medical retrieval challenge. Then we introduce 
the list of definitions of performance metrics at the section 
List of definitions for performance metrics. Some sample met-
rics, such as precision, recall, mean average precision (MAP), 
and ret_ret, used in our experiments are introduced in this 
section. Finally, we introduce our system implementation and 
present the experimental results with detailed analysis in the 
section System implementation and detailed results.

Data sets. We employ two data sets that have been widely 
used in medical image retrieval research. 

The first data set is medical images from the ImageCLEF 
2009 medical retrieval challenge. It contains 74,902 radiologi-
cal images from two leading peer-reviewed journals (Radiology 
and RadioGraphics). These images are linked with their existing 
textual annotations (the captions of the images) extracted from 
the journal papers. Therefore, this image collection represents a 
wide range of medical knowledge. The ImageCLEF challenge 
also provides 25 realistic search topics. Each search topic con-
tains both the textual keywords and the query images. In our 
implementation, we use these realistic search topics as our que-
ries. Figure 3 illustrates some sample queries, including both 
textual keywords and the query images, used in this data set.

The second data set is medical images from the Image-
CLEF 2013  medical image retrieval challenge. Similar to 
the ImageCLEF 2009 retrieval challenge, the images from 
2013 challenge are also retrieved from open access biomedi-
cal literature. Instead of limiting the literature to the two 
radiology journals used in 2009 challenge, the 2013 chal-
lenge expands the literature to many other radiology jour-
nals in the PubMed Central. As a result, the 2013 retrieval 
challenge contains 305,000 medical images, which represent 
one of the largest medical image collections available to the 
research community. Similar to the 2009 challenge, the 2013 
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retrieval challenge also provides ad hoc image-based retrieval 
examples. The examples include 30 textual queries with two 
to three sample images for each query. We use these examples 
for our validation. Figure 4 illustrates some sample queries, 
including both textual keywords and the query images, used 
in this data set.

As shown in Figures 3 and 4, the number of keywords in 
most of the search topics in the ImageCLEFmed data sets is 
between 3 and 5. For example, sample query 1 in Figure 3 has 
three keywords – breast, cancer, and mammogram – and sam-
ple query 1 in Figure 4 (images from ImageCLEFmed 2013) 
has three keywords – osteoporosis, X-ray, and images.

Considering the total number of images (74,902 images 
from ImageCLEF 2009 and 305,000 images from Image-
CLEF 2013) available in our data sets, the total number of 
queries (25 queries from ImageCLEF 2009 and 30 queries 
from ImageCLEF 2013) is relatively small. This is a normal 
setting for every participant in ImageCLEF 2009 and 2013.

List of definitions for performance metrics. In order to 
evaluate the results, we need to employ a sequence of metrics 
(a.k.a. performance measurements) to determine whether the 
returned results are relevant to a given query. The following 
performance measurements are used in our experiments: Pre-
cision, Recall, Average Precision, MAP, bpref, P5, P10, P30, 
and rel_ret.

Precision is defined as relevant_doc retrieved_doc
retrieved_doc

∩ , 

where relevant documents are the returned results for this 
query from the ground truth and retrieved documents are 
the returned results for this query from the search algorithm. 
Therefore, precision is the number of elements in the array 
containing the intersection of ground truth results to our 
results divided by the number of elements in the array con-
taining our results.

Recall is defined as relevant_doc retrieved_doc
retrieved_doc

∩ , where 

relevant documents and retrieved documents have the same 
meaning as defined in the precision calculation (in the previ-
ous paragraph). Therefore, recall is equal to the number of ele-
ments in the array containing the intersection of ground truth 
results to our results divided by the number of elements in the 
array containing ground truth results.

Average precision is defined as ∑ ( ) ( )( )=r
N P r r1

| |

*
,

rel
relevant_doc

 

where relevant documents have the same definition as in 
precision and recall, r is the rank, N is the number retrieved,  
P(r) is the precision of result at rank r, and rel(r) is the relevance 
of result at rank r. In other words, to calculate average preci-
sion, at each result, if the current result is relevant, we calculate 
the precision for every result up to the current result. Then we 
divide that number by the amount of results so far. After we 
have performed this calculation for every retrieved document, 
we divide it by the number of relevant documents to obtain 
average precision for that query. Average precision is useful 
because it places more weight on relevant documents since 
irrelevant documents are considered zero in the calculation. To 
determine MAP, we calculate average precision for several dif-
ferent queries and then divide by the number of queries.

bpref is the number of times that non-relevant docu-
ments are retrieved before relevant documents. bpref is equal  

to 1
1

| |
R Rr∑ −

num_ranked_higher_than_r , where r is the rel-

evant retrieved documents, R is the relevant documents, and n 
is a member of the first R irrelevant retrieved documents.

Precision after 5, 10, and 30 retrieved results are repre-
sented by P5, P10, and P30, respectively. Performing these 

Figure 3. Sample queries (textual; keywords and the query images) from 
data set 1 (ImageCLEF 2009 medical retrieval challenge).

Figure 4. Sample queries (textual; keywords and the query images) from 
data set 2 (ImageCLEF 2013 medical retrieval challenge).
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calculations illustrates how much weaker our returned results 
become as the rank decreases.

Finally, the rel_ret measure is simply another name for 
the number of relevant documents in the retrieved documents 
according to the ground truth. This is the same number used 
in precision and recall.

System Implementation and Detailed Results
Since both the first data set (ImageCLEF 2009 challenge) 
and the second data set (ImageCLEF 2013 challenge) provide 
sample queries (25 queries and 30 queries from 2009 challenge 
and 2013 challenge, respectively), we use them as the ground 
truth in our experiments. This ground truth is determined by a 
group of biomedical domain experts. Using the ground truth, 
we could measure the accuracy of the results of the 55 queries 
in our system.

For the purpose of training the retrieval model, following 
the experimental setting in the state of the art,35 we choose 
25% of the images from ImageCLEF 2009 and 2013 data set, 
respectively, as the training data set. This means that the total 
number of images used for model training is around 100,000.

For visual features extraction, we follow the traditional 
VBoW approach. Briefly speaking, we first extract SIFT61 
interesting point of the image and its corresponding SIFT 
descriptors from the 100,000 training images. We then apply 
the k-means clustering algorithm to all the SIFT descriptors. 
We experiment with different k values, and we choose k as 
3,000 from the experimental results. Please note, based on the 
literature research28,40,70 and our own experiments, an optimal 
k value is largely application dependent. Next, we generate a 
histogram for each image. The number of the bins for the his-
togram is equal to the number of centroids from the k-means 
algorithm (in our context, the number of centroids is 3,000). 
The histogram is generated by comparing the SIFT interest-
ing point and its SIFT descriptor with each centroid and iden-
tifying the closet centroid.

For textual feature extraction, we employ Stanford NLP 
package62 (an open source natural language processing pack-
age). Traditional textual BoW model was employed, and there 
were 1,000 most frequently used medical terms.

Our implementation run in a server equipped with 
128 GB RAM, an eight-core Intel Xeon E5–2600 v2 Series 
CPU, and 2 NVIDIA K-40 GPU. The most time-consuming 
part is the training of DBM model. In our implementation, it 
took around 3 days to train the model. This is consistent with 
the state-of-the-art deep learning implementations, which 
usually take one week to train a deep model. The time for fea-
ture extraction, k-means clustering, and VBoW generation 
is relative short. For example, the average time for extracting 
visual feature for one image is around 50 milliseconds in our 
server.

Table 1 illustrates the results of the proposed approach 
when applied to the two data sets. The numbers in these 
tables are generated with the standard tool71 used by the Text 

REtrieval Conference (TREC) community for evaluating an 
ad hoc retrieval run, given the results file and a standard set of 
judged results. The overall performance is encouraging with 
an MAP at 0.2909. Other numbers, such as bpref, P_5, P_10, 
and ret_ret, are also equivalent or better than the results from 
the state-of-the-art. More detailed performance comparison 
between the proposed approach and the state-of-the-art is 
introduced in the next few paragraphs.

For performance comparison, we implemented other 
retrieval algorithms with single modality. The first compared 
algorithm, defined as algorithm A, used similar visual features 
and learning framework as our approach. It did not use the tex-
tual information. In fact, algorithm A is a standard technique 
for CBIR using SIFT VBoW since the visual features used in 
algorithm A are based on SIFT feature extraction algorithms. 
The second algorithm being compared, defined as algorithm B,  
only used textual features. As shown in Table 2, the average 
MAP of algorithms A and B are 0.01 and 0.21, respectively. 
These experiments show that the proposed method is more 
effective because of the integration of both visual and textual 
features.

We further compared the proposed approach with the 
state-of-the-art. The first compared algorithm, defined as 
algorithm C, was developed using similar multimodal features 
and learning framework as introduced in Ref. 24. The second 
compared algorithm, defined as algorithm D, used similar 
multimodal features and learning framework as introduced in 
Ref. 25. The last compared algorithm, defined as algorithm E, 
was developed by researching and simulating the techniques 
used by the ImageCLEF medical retrieval challenge 2013 
participant.72,73 We carefully researched paper from the best 
performer73 (in terms of MAP) and tried to simulating their 
proposed approach. The best performer in ImageCLEF 2013 
is the ITI (Image and Text Integration Project) group from 
the Communications Engineering Branch of the Lister Hill 
National Center for Biomedical Communications. The Lister 
Hill National Center is a research division of the US National 

Table 1. Results of the proposed approach for multimodal retrieval 
using the two data sets.

rel_ret map gm_map Rprec Bpref recip_rank

1902 0.2909 0.2019 0.3101 0.3206 0.6421

P_5 P_10 P_15 P_20 P_30 P_100

0.5620 0.5510 0.5309 0.5270 0.4647 0.3281
 

Table 2. Performance comparisons between the proposed approach 
and the image retrieval techniques with single modality.

Techniques proposed  
multimodal  
approach

Algorithm A  
(only using visual  
modality)

Algorithm B  
(only using  
textual modality)

MAP 0.2909 0.0101 0.2013
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Library of Medicine. Table 3 shows the results (MAP) from 
different techniques. As shown in this table, our proposed 
approach outperforms algorithm C. This means that our pro-
posed feature fusion techniques based on the extended pLSA 
model are more suitable than feature normalization and con-
catenation (which were used in algorithm C). The results of 
our proposed approach are only slightly better than the results 
from algorithm D. However, we should keep in mind that our 
proposed approach used a single pLSA model, but algorithm 
D employed multiple pLSA models. Therefore, the implemen-
tation of our proposed approach is much simpler than algo-
rithm D. The average MAP in our approach is only slightly 
worse than algorithm E (best performer in the ImageCLEF 
medical retrieval challenge 2013). One of the possible reasons 
is the usage of the medical ontology (eg, Unified Medical 
Language System) by the best performer in the ImageCLEF 
challenge. We believe that further improvements can be 
achieved by employing a medical ontology. This will be one of 
our future works.

One additional advantage of our approach, compared 
with the existing methodology, is able to derive the missing 
modality using the models we developed (as shown in the 
section Step 2: deriving missing modality). In order to verify 
the performance of the proposed model for deriving missing 
modality, we purposely removed part of the textual informa-
tion. Specifically, we conducted the evaluation when 10%, 
15%, 20%, 25%, and 30% of the textual information were 
missing from the training data set while keeping all the other 
conditions unchanged. The average MAP we received under 
these settings is listed in Table 4. In this table, the first row is 
the percentage of missing textual information. The second row 
in this table shows the results (MAP) under different missing 
rates. As shown in this table, the MAP values under differ-
ent missing rates are just slightly worse than the MAP values 
with all the date sets ready. This verifies the effectiveness of 
our approach.

Conclusions
Our research aims to develop effective and efficient CBMIR 
systems for cancer clinical practice and research. This is 
very important because medical imaging is becoming a vital 
component of war on cancer. Direct applications of existing 
CBIR techniques to the medical images produced unsatisfac-
tory results, because of the unique characteristics of medical 
images. In this paper, we developed a new multimodal medi-
cal image retrieval approach based on the recent advances 
in statistical graphic model and deep learning. We have 
investigated a new extended pLSA model to integrate the 
visual and textual information from medical images. We also 
developed a new DBM-based multimodal learning model 
to learn the joint density model from multimodal informa-
tion in order to derive the missing modality. To verify the 
effectiveness of the proposed approach, we validated our sys-
tem with a large volume of real-world medical images. The 
experimental results have shown that the proposed approach 
is a promising solution for next-generation medical imag-
ing indexing and retrieval system. In the future, we plan to 
refine our proposed approach with larger data sets and to 
include medical ontology into our approach. We also plan  
to explore the possibility of integrating our proposed 
approach into clinical practice.
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