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Abstract

Gjedde–Patlak graphical analysis (GPGA) has commonly been used to quantify the net 

accumulations (Kin) of radioligands that bind or are taken up irreversibly. We suggest an 

alternative approach (MLAIR: multiple linear analysis for irreversible radiotracers) for the 

quantification of these types of tracers. Two multiple linear regression model equations were 

derived from differential equations of the two-tissue compartment model with irreversible binding. 

Multiple linear analysis for irreversible radiotracer 1 has a desirable feature for ordinary least 

square estimations because only the dependent variable CT(t) is noisy. Multiple linear analysis for 

irreversible radiotracer 2 provides Kin from direct estimates of the coefficients of independent 

variables without the mediation of a division operation. During computer simulations, MLAIR1 

provided less biased Kin estimates than the other linear methods, but showed a high uncertainty 

level for noisy data, whereas MLAIR2 increased the robustness of estimation in terms of 

variability, but at the expense of increased bias. For real [11C]MeNTI positron emission 

tomography data, both methods showed good correlations, with parameters estimated using the 

standard nonlinear least squares method. Multiple linear analysis for irreversible radiotracer 2 

parametric images showed remarkable image quality as compared with GPGA images. It also 

showed markedly improved statistical power for voxelwise comparisons than GPGA. The two 

MLAIR approaches examined were found to have several advantages over the conventional 

GPGA method.
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Introduction

Parameter estimations using nonlinear least square (NLS) methods are not suitable for 

generating images of kinetic parameters (parametric images) from dynamic positron 

emission tomography (PET) data, mainly because of the high level of noise in the time–

activity curves of individual PET voxels. The extensive computation time required for 

iterative parameter estimation is another important reason for this unsuitability. Therefore, 

several graphical methods have been devised to estimate kinetic parameters based on linear 

regression analysis, and have been used to generate parametric images, because they are 

computationally simple and independent of any particular model structure (Gjedde, 1981, 

1982; Patlak et al, 1983; Logan et al, 1990, 1996; Yokoi et al, 1993).

However, these graphical approaches may provide biased estimates if there are regional 

differences between the times required to reach tissue–plasma equilibrium of radiotracer 

concentrations and/or noise levels in tissue time–activity curves are high (Carson, 1993; 

Slifstein and Laruelle, 2000). Although several methods have been proposed to reduce such 

bias and improve the accuracy of parameter estimations for radiotracers with reversible 

uptake or binding (Carson, 1993; Ichise et al, 2002, 2003; Logan et al, 2001; Varga and 

Szabo, 2002), little has been done to quantify kinetic parameters of irreversible tracers 

(Blomqvist, 1984).

In this study, therefore, we focused on the multiple linear analysis method to effectively 

calculate the net accumulation rate (Kin) of radiotracer with an irreversible specific binding 

and to generate its parametric images. Two different formulas (MLAIR: multiple linear 

analysis for irreversible radiotracers) were used for this purpose, which were derived from 

the differential equations for the irreversible two-tissue compartment model. The statistical 

properties of these methods were explored by Monte Carlo simulation. These methods were 

applied to the dynamic PET data of N1′-([11C]methyl)naltrindole (MeNTI) to assess the 

usefulness of these methods for volume of interest (VOI) analysis and parametric image 

generation. Their plausibilities for voxelwise statistical analysis based on Kin parametric 

images were also investigated. The properties of these methods were compared with those of 

the NLS method and Gjedde–Patlak graphical analysis (GPGA), the latter of which is most 

commonly used to estimate Kin for irreversible tracers. Finally, the results of the preliminary 

applications of these methods to [18F] flurodeoxyglucose ([18F]FDG) are presented.

Materials and methods

Theory

Compartment model—The three-compartment model (two-tissue compartment model) 

for irreversibly binding radiotracers was assumed. Each compartment represents the 

concentration of the unmetabolized radiotracer in plasma (Ca, μCi/mL), free or 

nonspecifically bound radiotracer (Cf, μCi/g), and specifically bound radiotracer (Cb, μCi/g), 

respectively. Differential equations for two-tissue compartments (Cf and Cb) with 

irreversible binding can be described by
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(1)

(2)

where the rate constants K1, k2, and k3 are defined as those of delivery (mL/min/g), washout 

(per minute), and forward uptake (i.e., phosphorylation of 18F-flurodeoxyglucose, forward 

receptor–ligand reaction for radioligands; per minute). The total tracer concentration in 

tissue VOI or region of interest can be obtained using the following equation:

(3)

where Va is the blood volume fraction in tissue (mL/g). It should be noted that the factor 

Ca(t) in the above equation stands for radiotracer concentration in whole blood, although 

Ca(t) in Equation (1) is the concentration of unmetabolized radiotracer in plasma. If the 

metabolite-corrected input function is used to determine the blood volume fraction, 

estimation errors associated with this simplification should be considered.

Gjedde–Patlak graphical analysis—Although the graphical methods are independent 

of particular model structures, if a model structure describes the transfer of a tracer, the 

slope of the linear equation may be related to combinations of model parameters (Logan, 

2000). Gjedde–Patlak graphical analysis is the most widely used conventional graphical 

method for irreversibly binding tracers (Gjedde, 1981, 1982; Patlak et al, 1983). In GPGA, 

the Equations (1) and (2) are rearranged as to yield:

(4)

Assuming that Cf(t) and Ca(t) reach equilibrium after some time (equilibrium time t*) 

following tracer injection, the second term on the right of the above equation is constant and 

Kin can be estimated from the slope of a straight line. One disadvantage of this method is 

that the time range for the line fitting must be determined to estimate Kin. This is especially 

undesirable when generating Kin parametric images for radiotracers, which have regional 

differences in terms of the time required to reach equilibrium.

Multiple linear analysis for irreversible radiotracer 1—Changes in tissue 

concentration, dCT(t)/dt, are given by adding (1), (2), and VadCa(t)/dt.

(5)

By rearranging Equation (5)
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(6)

Substituting Equation (6) into Equation (3) and differentiating yields

(7)

Therefore, Equation (2) can be written as Equation (8) by substituting Equation (6) and (7) 

into Equation (2)

(8)

By integrating the above equation twice, the following linear equation can be obtained 

(MLAIR1):

(9)

where the macro parameters P1~P4 are given by

(10)

This equation is an extended version of the linear equation developed by Blomqvist (1984). 

The incorporation of a vascular volume term in the above equation is an additional feature. 

The generalized version of this equation, which is applicable to both reversible and 

irreversible tracers, can be found in the literature (Evans, 1987; Feng et al, 1996; Gjedde, 

1995). The series of Equation (9) for each sampling time point (t1, t2,…, tn) can be arranged 

into the following matrix:

(11)

where y is a vector for the dependent variable, X the matrix for the independent variables, θ 

a vector for the parameters to be estimated, and ε is the equation error term.

(12)
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(13)

(14)

The estimate of θ based on the linear least squares criterion is given by the following 

equation:

(15)

The net accumulation rate Kin can then be acquired using the following equation:

(16)

The MLAIR1 Equation (9) has a desirable feature of ordinary least squares estimations 

because only the dependent variable CT(t) is noisy and the correlation of the noise in the 

independent variables is minimal.

Multiple linear analysis for irreversible radiotracer 2—Multiple linear analysis for 

irreversible radiotracer 1 would be a useful alternative to the GPGA because the 

determination of a linear interval is not necessary. However, the error propagation 

associated with the division calculation on the macro parameters (Equation (16)), to obtain 

Kin, is a possible limitation of MLAIR1 for the voxelwise estimations of Kin for the 

generation of parametric images because of the high noise level in the individual time–

activity curves of each voxel. Therefore, we also used a formula in which Kin could be 

directly estimated from the coefficient of an independent variable. By dividing both sides of 

Equation (9) by k2 + k3 and rearranging the equation, we obtained the following equation, 

which allows direct estimations of Kin from a macro parameter without unstable division 

calculation.

(17)

where the macro parameters are given by the following equations and can also be obtained 

by linear least squares estimation (MLAIR2).
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(18)

A general version of this formula for reversible tracers has been suggested, as outlined in an 

abstract by Blomqvist (1987), and derivations of similar equations have been published in 

book form (equation 7.221 in Gjedde, 2003). In the cases of MLAIR1 and MLAIR2, it is not 

necessary to determine the period of linear fitting (as is required for GPGA), because the 

entire dataset is used for parameter estimation. Although MLAIR2 has the desirable feature 

that the division calculation is not required to obtain Kin, it is questionable how accurate and 

precise Kin estimation by this method is, because one of the independent variables, CT(t), 

may be noisy. This should be avoided, if possible, because estimation by linear regression 

analysis requires that all independent variables be nonnoisy or nonrandom to obtain 

unbiased estimates. Therefore, considering the pros and cons of these methods, critical 

assessments of their statistical properties in the Kin estimation should be performed to 

understand the possible sources of erroneous results produced using these methods and 

misinterpretation of them, and to determine their possible application fields. The following 

computer simulations and applications to real PET data were performed for these reasons.

Computer Simulations

Noiseless total tissue time–activity curves (Equation (3)) were generated using the following 

analytic solution of the irreversible two-tissue compartment model.

(19)

A metabolite-corrected plasma input function obtained from a human [11C]MeNTI PET 

study involving intermittent arterial blood sampling for 90 mins was used. K1, k2, and Va 

were fixed at 0.24 mL/min/g, 0.028 per minute, and 5%, respectively. Binding parameter k3 

was varied between 0.5 and 1.5 times the value of k2 (Kin = 0.08 to 0.144 mL/min/g). Ratios 

of k3/k2 above 1.5 were not considered because the net uptake of radiotracer does not 

increase linearly with k3, the parameter of interest, and is proportional to K1 (Koeppe et al, 

1994). Gaussian noise with zero mean and following variance was added to the ith frame of 

CT in order to simulate noisy measurements (Feng et al, 1993; Logan et al, 2001; Lee et al, 

2005).

(20)

where CT(ti) and Δti are the radioactivity concentration (μCi/g) and the duration (second) of 

the ith frame, respectively. The scaling factor α that determines the noise level varied from 0 

(noiseless) to 1.0. For all possible pairs of k3 and α, 10,000 realizations of noisy CT were 

produced. Kin values were then estimated using NLS, GPGA, MLAIR1, and MLAIR2, 
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respectively, and coefficients of variation (CV), biases and errors of estimations were 

calculated. Coefficients of variation, bias, and error were defined as follows:

(21)

(22)

(23)

where K̂
in is an estimated parameter, Kin is a true value, K̄

in is the mean of estimates, and N 

is the number of realizations. The initial values for unknown variables in NLS were set 

equal to the true values of rate constants to provide the most favorable condition for the NLS 

estimation. Nonnegative constraints on estimates were also used for the NLS estimation. In 

the high noise condition, the division performed to obtain Kin in NLS and MLAIR1 

sometimes resulted in the physiologically irrelevant estimate (i.e., a negative or excessive 

value). Therefore, negative results were set to zero and values higher than 0.5 mL/min/g 

were set to 0.5 to reduce the adverse effects of values that deviated excessively from the 

relevant range when assessing general statistical properties.

Application to [11C]MeNTI Positron Emission Tomography Data

Positron emission tomography data acquisition and volume of interest 
analysis—To show the feasibility of the proposed method, 90-min dynamic [11C]MeNTI 

PET data were acquired from 15 extensively alcohol-dependent subjects (before and after 

naltrexone, a nonselective opioid receptor antagonist, treatment) and 8 healthy volunteers, as 

described in a previous study (Weerts et al, 2008), were retrospectively analyzed. 

[11C]MeNTI is a specific δ-opioid receptor agonist developed for PET imaging (Lever et al, 

1992; Madar et al, 1996), and it has been shown that the irreversible two-tissue 

compartment model is suitable for the kinetic modeling analysis of this radioligand (Smith et 

al, 1999). Arterial blood concentrations corrected for labeled metabolites were used as the 

input function for kinetic analysis (Smith et al, 1999; Weerts et al, 2008).

Regional time–activity curves for kinetic analysis were obtained using an automated VOI 

method (Lee et al, 2004; Lee and Lee, 2005). Static PET images were composed by 

summing all frames in dynamic data and were spatially normalized to the standard template 

of [11C]MeNTI PET (Weerts et al, 2008) using SPM2 (Statistical Parametric Mapping). To 

remove confounding effects caused by mismatched anatomical variations within subjects, 

PET data of same subjects were coregistered before spatial normalization and the spatial 

normalization parameters obtained from averaged coregistered images were applied 

identically. By applying the transformation parameters obtained using static images, all 
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dynamic frames were also spatially normalized into standard brain space. Predefined 

probabilistic VOIs on brain regions of interest with high or intermediate δ-opioid receptor 

density (basal ganglia, cingulate cortex, inferior and middle frontal gyri, superior temporal 

gyrus, angular gyrus, amygdala, hippocampus) and reference regions with low receptor 

density (thalamus, cerebellum) were applied to the dynamic images to extract regional time–

activity curves.

These curves were then analyzed using NLS, GPGA, MLAIR1, and MLAIR2 to estimate 

Kin values. Whole-frame data were used for NLS and MLAIR (MLAIR1 and MLAIR2), but 

only the data obtained after t* was used for GPGA. For GPGA, various t* values (10, 20, 

and 30 mins) were tried, and correlation analyses were performed to explore the 

relationships between these Kin values estimated using different methods. Regional 

distribution of Kin values estimated using each method was also compared.

Voxel-based statistical analysis—Parametric images of Kin were generated by the 

voxelwise applications of GPGA and MLAIR to dynamic PET data. The parametric images 

obtained were spatially normalized using the transformation parameters obtained above. 

Only Kin images by MLAIR2 were used for voxel-based statistical analysis, because 

MLAIR1 was not suitable for voxelwise computations, as shown in the next section. 

Voxelwise mean and percent CV of Kin parametric images of eight healthy volunteers were 

compared in terms of the image quality and magnitude of variance.

The plausibilities of voxelwise statistical analysis of Kin parametric images using GPGA and 

MLAIR2 were also compared in terms of their compatibility with the established results and 

statistical power to detect the changes of Kin. Spatially normalized parametric images were 

smoothed using an isotropic 3D Gaussian filter with a 16mm full width at half-maximum. 

To remove the effects of global differences in Kin among individuals, each voxel value of 

parametric images was normalized versus regional mean value in the thalamus or 

cerebellum, which showed the lowest specific biding of [11C]MeNTI PET (Smith et al, 

1999; Weerts et al, 2008). Changes in regional Kin after naltrexone treatment in alcohol-

dependent subjects were then assessed by voxelwise paired t-testing and compared with 

published results based on VOI analysis (Weerts et al, 2008).

Preliminary Application to [18F]FDG Positron Emission Tomography Data

To show the feasibility of the proposed method for [18F]FDG, the most commonly used 18F-

labed PET tracer, parametric images of Kin were generated from the dynamic brain PET data 

of a 22-year-old male volunteer acquired during our previous study (Kim et al, 2000).

Results

Computer Simulation

In Figure 1, the bias, error, and CV of the estimation of Kin for simulated noiseless and noisy 

tissue time–activity curves, with different levels of receptor availability (k3/k2 = 0.5~1.5), 

were plotted versus noise level (α = 0 to 1.0). As GPGA results were dependent on the 

assumed equilibrium time (or the range of line fitting), we used data that produced best 

results (fitting range: 10 to 90 mins).
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Generally, NLS (solid line in Figure 1) showed good statistical properties: almost no bias, 

smallest errors, and moderate CV levels. However, it should be noted that initial values for 

NLS estimation were set equal to true estimates to provide the most favorable condition for 

the NLS estimation. Thus, we focus on comparisons of simulation results for MLAIR and 

GPGA in the following paragraphs.

MLAIR1 (dotted line) showed almost no bias for Kin estimations for noiseless data (Figure 

1A). As the noise level increased, receptor density decreased and bias became larger in the 

negative direction. However, degree of bias was smaller than those of the other linear 

methods. Multiple linear analysis for irreversible radiotracer 2 (dashed line) showed positive 

bias, which also increased with noise level and decreased with receptor density. The degree 

of bias in the low noise condition was smaller than that for GPGA (dash-dot line), which 

showed a consistent negative bias regardless of noise level, but higher than that for GPGA 

under high noise conditions.

Both MLAIR1 and MLAIR2 showed negligible percent errors for Kin estimations for 

noiseless data (Figure 1B). Multiple linear analysis for irreversible radiotracer 1 had a 

smaller error than the other linear methods under low noise conditions, but this error 

increased rapidly as noise levels increased. Although MLAIR2 had lesser errors than the 

other linear methods for high receptor density, errors increased as receptor density 

decreased. Gjedde–Patlak graphical analysis showed relatively consistent errors regardless 

of noise level.

Coefficients of variation for Kin estimations were highest for MLAIR1 and lowest for 

MLAIR2 (Figure 1C). Coefficient of variationV values obtained by MLAIR2 were less than 

10% regardless of the receptor density and noise level, whereas those obtained by MLAIR1 

increased rapidly as the noise level increased.

Application to [11C]MeNTI Positron Emission Tomography Data

Volume of interest analysis—Figure 2 shows correlations between Kin values estimated 

using each linear method and using NLS for regional time–activity curves on 10 VOIs. All 

data obtained from healthy volunteers and alcohol-dependent subjects (before and after 

naltrexone treatment) were included to examine the consistencies of correlations across a 

wide range of Kin. Although Kin values estimated using GPGA were well correlated with 

NLS values (r = 0.92 to 0.97), the slope of the regression line was dependent on the duration 

of line fitting and increasing the start time of fitting diminished the correlation (Figure 2A).

Figure 2B shows that Kin values estimated using MLAIR1 were almost identical to those 

estimated using NLS (r = 0.99). This result shows that MLAIR1 can provide an unbiased 

solution relative to NLS estimations for data with low noise levels without requiring initial 

estimates of rate constants and without the risk of falling into the local minima of the cost 

function for parameter estimation. Although the correlation for NLS was poorer with 

MLAIR2 than with MLAIR1, correlation coefficient was similar to best GPGA results 

(Figure 2C). The small value of the y-intercept of the regression line (0.005mL/min/g) also 

shows that the bias of Kin in the low receptor density region was minimal.
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Figure 3 shows the regional distributions of the Kin estimates in the alcohol-dependent 

subjects before and after treatment. Higher regional Kin estimates by MLAIR2 than for the 

other methods were observed in all regions included in the VOI analysis. However, all 

methods led to identical findings, that is, Kin values were reduced by naltrexone, which 

reflected the displacement of δ-opioid receptors by naltrexone.

The ranking of mean regional Kin estimates using MLAIR1 across brain regions (Figure 3B) 

was almost identical to those using the NLS (BG >Cr >…> Th > Cerb; Figure 3A). 

Although MLAIR2 showed ranking alternations between some regions of intermediate 

receptor density (STg~MFg; Figure 3C), an identical trend was observed for GPGA (Figure 

3D). In addition, differences between the Kin values of these regions were not significant 

relative to variances in regional Kin values.

Parametric images—The parametric images of Kin values generated using GPGA or 

MLAIR are shown in Figure 4. Voxels with Kin values of < 0 or > 0.25 (much higher than 

those obtained by VOI analysis) were reset to marginal values that corresponded to 

physiologically relevant ranges. Gjedde–Patlak graphical analysis parametric images with 

different fitting ranges showed different image qualities (Figures 4A–4C). Figure 4D shows 

a MLAIR1 parametric image. Many voxels both inside and outside the brain showed 

extremely high Kin values, which resulted in significant salt-and-pepper noise in parametric 

images displayed using a relevant dynamic range of Kin. However, MLAIR2 parametric 

images (Figure 4E) showed remarkable image quality as compared with GPGA and 

MLAIR1 parametric images. No voxel showing an abrupt intensity change was observed 

and regional differences in Kin values shown by VOI analysis were illustrated well. 

Moreover, contrast between gray and white matter was also much better than those of the 

other methods.

The images in Figure 5 are voxelwise representations of mean (A: GPGA 10 to 90 mins, B: 

MLAIR2) and percent CV (C: GPGA, D: MLAIR2) of Kin parametric images obtained from 

eight healthy volunteers. Multiple linear analysis for irreversible radiotracer 2 data showed 

less noisy intensity distribution in mean image (Figure 5B) and lower levels of inter-subject 

variability (Figure 5D). These superior properties of MLAIR2 over GPGA were most 

distinct in the thalamus and cerebellum which have the low level of receptor density.

Voxel-based statistical analysis—The improved properties of MLAIR2 (shown in 

Figures 4 and 5) led to greater statistical power for voxelwise comparisons than the GPGA 

method. Figure 6 shows brain regions showing significant decreases of Kin after nalrexone 

in alcohol-dependent subjects in the voxelwise paired t-testing. The analyses were 

conducted using the Kin parametric images composed using GPGA (A) or MLAIR2 (B), 

respectively, and after normalization to the thalamus. Clusters of > 100 voxels at the level of 

P < 0.001 (uncorrected for multiple comparisons) and P < 0.05 (corrected based on 

familywise error) are illustrated in this figure. Multiple linear analysis for irreversible 

radiotracer 2 clearly shows a significant decrease of Kin in wide cortical regions even after 

applying the strict significant criterion. No voxel with significant increase after treatment 

was found with the same thresholds. Analyses using normalized parametric images to the 

cerebellum produced equivalent results.
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Application to [18F]FDG Positron Emission Tomography Data

Figure 7 shows the parametric images of Kin values of [18F]FDG data generated using 

GPGA and MLAIR2, and also shows the improved noise properties of MLAIR2 over 

GPGA.

Discussion

Graphical methods have been commonly used to generate parametric images because of 

their computational simplicity and model independence. Logan graphical analysis (Logan et 

al, 1996) is renowned for estimating distribution volumes or the binding potentials of 

reversibly binding radioligands. However, this method has a recognized problem concerning 

biased parameter estimations for noisy data (Logan et al, 2001), and resultantly, several 

approaches have been proposed to reduce this bias. These approaches include generalized 

linear least squares (Logan et al, 2001), total least squares (Varga and Szabo, 2002), linear 

integration (Carson, 1993), and multiple linear regression (Ichise et al, 2002). Another 

weakness of simple graphical analysis concerns the uncertainty of estimated parameters 

associated with arbitrary determinations of equilibrium periods. Considerations of the 

interindividual and interregional variabilities in equilibrium time (or period) are particularly 

irksome when calculating parametric images, because of the huge number of data sets that 

must be analyzed.

GPGA is the analog of Logan graphical analysis for the irreversibly binding radiotracers, 

and has similar limitations. However, few systematic investigations have been undertaken to 

overcome these limitations of GPGA, although various compensational approaches are 

available for Logan graphical analysis. Therefore, in this study, we used two MLAIR 

methods and investigated their properties and utilities, and we finally reached the conclusion 

that they have several strengths over GPGA.

As whole-data samples are used for MLAIR estimations, no equilibrium time or linear 

region must be imposed on data. They require similar amounts of computation time as 

GPGA, but have better bias properties than GPGA. By computer simulation, bias levels for 

Kin estimations using MLAIR1 for high or intermediate receptor density regions were 

compatible to those of NLS estimations performed with ideal initial values, although GPGA 

and MLAIR2 showed nonzero bias even with noiseless data. Biases for low receptor density 

regions also did not exceed 10%. In addition, MLAIR1 estimates for real PET data showed a 

strong correlation with NLS estimates (Figure 2B). This method has excellent bias 

properties mainly because all independent variables are almost noise-less (Ca and the single 

or double integrals of Ca and CT), and only the dependent variable (CT) is noisy (Equation 

(9)).

However, MLAIR1 showed a high level of uncertainty for Kin estimations for highly noisy 

data, mainly because a division operation on estimated macro parameters is required to 

obtain the Kin value. Therefore, we suggest that MLAIR1 is the method of choice for the 

VOI analysis of noiseless or low-noise data, but that it is inadequate for the analysis of noisy 

time–activity curves from individual voxels. In addition, it should be noted that MLAIR1 

can provide a parametric map of tracer delivery K1 if the blood volume fraction is negligible 
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(P2≈K1; Blomqvist, 1984). This information is valuable for many tracers, for example, 

labeled compounds with transport mechanism.

The results of this study indicate that MLAIR2 is more relevant for parametric image 

generation rather than MLAIR1, and that it has better statistical properties than the GPGA. 

The MLAIR2 equation (Equation (17)) was derived so that Kin is obtained directly from 

macro parameters estimated by multiple linear regression, which leads to a stable and robust 

estimation of Kin (in terms of its variability) even in noisy environments. In fact, its CV was 

< 6% even for highly noisy data from low receptor density regions in the computer 

simulation.

However, the inclusion of CT in independent variables could not be avoided in this 

modification (MLAIR2), which resulted in increased bias of Kin estimations. Nevertheless, 

despite this bias shown in computer simulations and real PET data, MLAIR2 estimates 

correlated well with NLS estimates (Figure 2C). Furthermore, the relative distributions of 

Kin values estimated using MLAIR2 under different conditions and across different regions 

were not different from those estimated using the other methods (Figure 3), indicating that 

MLAIR2 is a valid quantification method for comparative studies based on VOI data and/or 

parametric images.

The merits of the improved parametric images obtained using MLAIR2 were well illustrated 

by voxel-based statistical analyses. Regional changes of Kin values after naltrexone 

treatment in the alcohol-dependent subjects well matched the results obtained using VOI 

data. Multiple linear analysis for irreversible radiotracer 2 also showed much higher 

statistical power for voxelwise comparisons than GPGA (Figure 6). Further investigations of 

methods of regularization to improve the bias property of MLAIR2 without compromising 

its robustness for parameter estimation will undoubtedly augment the advantageous features 

of MLAIR2 when parametric images are used. A possible approach might be to use the total 

least squares method, which provides more consistent estimates in linear models, with the 

presence of errors in both dependent and independent variables than ordinary least squares 

(Varga and Szabo, 2002). Noise reduction in tissue time–activity curves using wavelet 

filtering or principle component analysis would also be useful (Millet et al, 2000; Joshi et al, 

2008).

Multicollinearity is a common problem when multiple linear analysis methods are applied to 

tracer kinetics, because all dependent and independent variables used are derived from the 

tissue time–activity curve or arterial input function. In this situation, some of these variables 

are so highly correlated that the reliable estimations of individual regression coefficients are 

difficult. Variances of parameter estimates are usually inflated by this linear dependency 

(Myers, 1990). Further investigations on the covariance structure of MLAIR methods and 

possible ways of overcoming this problem using sophisticated statistical methods, such as, 

ridge regression, are required (Hoerl and Kennard, 1970).

Although radiolabeled ligands that bind reversibly to certain receptors during scan periods 

are preferred for in-vivo receptor–ligand assay based on PET or single photon emission 

computed tomography (SPECT), irreversible [11C]MeNTI, which selectively binds to δ-
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opioid receptors, is currently the only approved PET tracer for human administration. 

[11C]MeNTI has a desirable property as an irreversible tracer concerning the simplicity of 

quantifying receptor–ligand binding, that is, the lumped parameter Kin is approximately 

proportional to k3 (Bmaxkon), the rate constant of primary interest when kinetics are 

irreversible, because it has moderate k3/k2 ratio (Koeppe et al, 1994; Smith et al, 1999). 

However, voxelwise calculations of Kin in [11C]MeNTI PET studies using conventional 

methods suffer from severe noise levels in parametric images (Figure 4), because of regional 

differences between times required to reach equilibrium and a short radioisotope half-life 

(Smith et al, 1999). Nevertheless, MLAIR2 showed much better properties than GPGA for 

voxelwise parameter estimations and statistical analyses using [11C]MeNTI PET data, and 

should be useful for investigations on central δ-opioid receptor systems.

Improvements in parametric image quality are not limited to noisy dynamic 11C PET data. 

Although we have not accumulated a sufficient amount of data yet, our preliminary studies 

on [18F]FDG brain (Figure 7) and 18F skeletal PET (Kim et al, 2007) data show that 

efficient and robust parametric imaging of glucose and fluoride influx rates is also possible 

using MLAIR2. Further investigations using other radiotracers with irreversible binding or 

uptake are warranted.

Although Kin is proportional to k3 given suitable k3/k2 ratios, it is also dependent on the 

blood–flow-mediated parameter K1. Therefore, direct assessments of k3 are also important 

for kinetic studies on irreversible tracers. Because the division operation must be performed 

to obtain k3 from both MLAIR1 and MLAIR2 macro parameters, there may be a similar 

problem of uncertainty concerning parameter estimations using the present versions of the 

MLAIR algorithms. Therefore, modification of the model equations for the direct 

measurement of k3 without the division operation should also be explored.

Wong et al (1986, 1997) presented a graphical means of estimating k3 for irreversibly 

binding dopamine D2 ligand 3-N-[11C]methylspiperone in a similar manner to GPGA. 

According to this approach, tissue and plasma ratios are fitted to a combination of linear and 

mono-exponential functions of normalized time integral of plasma input function. This 

approach has the advantage of using entire time–activity curves and of providing a graphical 

representation of binding rate, but requires nonlinear curve fitting and combinations of 

multiple parameters to obtain k3.

In summary, the characteristics of multiple linear analyses of radiotracers with irreversible 

kinetics were explored by simulation and using real PET data. The devised MLAIR1 and 

MLAIR2 methods were found to be computationally efficient and showed good correlations 

with parameters estimated using the standard NLS method. Multiple linear analysis for 

irreversible radiotracer 1 showed unbiased parameter estimations but high levels of 

uncertainty for noisy data, and thus, would be useful for VOI-based data analysis. In 

addition, we suggest that MLAIR2, which showed lowest parameter estimating variabilities, 

is suitable for voxel-based data analysis.
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Figure 1. 
Plots of (A) biases, (B) errors, and (C) coefficients of variation (CV) for the estimation of 

Kin versus noise level (α) from simulated time–activity curves for high (left column), 

intermediate (middle), and low (right) receptor density regions (k3/k2=1.5, 1.0, and 0.5, 

respectively). NLS: solid line; MLAIR1: dotted; MLAIR2: dashed; GPGA: dash-dot.
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Figure 2. 
Correlations between regional Kin values as determined using different methods and VOI 

data. (A) GPGA (GPGA10, GPGA20, and GPGA30: t*=10, 20, and 30 mins, respectively) 

versus NLS. (B) MLAIR1 versus NLS. (C) MLAIR2 versus NLS.
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Figure 3. 
Means and s.d. of regional Kin values of [11C]MeNTI estimated using the various methods: 

distribution across brain regions and comparison between different conditions. (A) NLS; (B) 

MLAIR1; (C) MLAIR2; (D) GPGA (range: 10 to 90 mins). BG: basal ganglia, Cr: cingulate 

cortex, STg: superior temporal gyrus, IFg: inferior middle frontal gyrus, Ag: angular gyrus, 

MFg: middle frontal gyrus, Amy: amygdala, HF: hippocampal formation, Thal: thalamus, 

Cerb: cerebellum.
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Figure 4. 
Kin parametric image of [11C]MeNTI obtained from a healthy volunteer using the various 

methods. (A) GPGA (range: 10 to 90 mins). (B) GPGA (range: 20 to 90 mins). (C) GPGA 

(range: 30 to 90 mins). (D) MLAIR1. (E) MLAIR2.
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Figure 5. 
Voxelwise representation of mean (A, B) and % coefficients of variation (C, D) of Kin 

parametric images of [11C]MeNTI obtained from eight healthy volunteers. (A, C) GPGA 

(range: 10 to 90 mins). (B, D) MLAIR2.
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Figure 6. 
Brain areas with decreased Kin of [11C]MeNTI during naltrexone treatment relative to 

baseline in alcohol-dependent subjects (n=15): voxelwise paired t-test (upper row: 

uncorrected P<0.001, lower row: corrected P<0.05). (A) GPGA (range: 10 to 90 mins). (B) 

MLAIR2.
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Figure 7. 
Kin parametric image of [18F]FDG of a healthy volunteer using (A) GPGA (range: 10 to 60 

mins), (B) GPGA (range: 20 to 60 mins), and (C) MLAIR2.
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