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Abstract

We develop a test statistic for testing the equality of two population mean vectors in the “large-p-

small-n” setting. Such a test must surmount the rank-deficiency of the sample covariance matrix, 

which breaks down the classic Hotelling T2 test. The proposed procedure, called the generalized 

component test, avoids full estimation of the covariance matrix by assuming that the p components 

admit a logical ordering such that the dependence between components is related to their 

displacement. The test is shown to be competitive with other recently developed methods under 

ARMA and long-range dependence structures and to achieve superior power for heavy-tailed data. 

The test does not assume equality of covariance matrices between the two populations, is robust to 

heteroscedasticity in the component variances, and requires very little computation time, which 

allows its use in settings with very large p. An analysis of mitochondrial calcium concentration in 

mouse cardiac muscles over time and of copy number variations in a glioblastoma multiforme data 

set from The Cancer Genome Atlas are carried out to illustrate the test.
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1 Introduction

In many applications it is desirable to test whether the means of high-dimensional random 

vectors are the same in two populations. Often, the number of components in the random 

vectors exceeds the number of sampled observations, the so-called “large-p-small-n” 

problem, and conventional test statistics become unviable. Given the steadily growing 

availability and interest in high-dimensional data, particularly in biological applications, test 

statistics that are viable for high-dimensional data are in increasing demand. The challenge 
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when p > > n is to model the structure of dependence among the p components without 

estimating each of the p(p + 1)/2 unique entries in the full covariance matrix. The classical 

test for equal mean vectors between two populations is Hotelling’s T2 test, but the test 

statistic is undefined when p is larger than the sum of the sample sizes (minus 2), because it 

involves inverting the p × p sample covariance matrix. Several procedures are available 

which circumvent full covariance matrix estimation. We acheive this in the important case 

in which the p components admit an ordering in time, space, or in another index, such that 

the dependence between two components is related to their displacement. When 

measurements are taken along a chromosome, for example, the location of each 

measurement is recorded, providing an index over which dependence may be modeled, 

affording gains in power. For concreteness, it is here assumed that the components admit a 

unidirectional ordering.

To fix notation, let X1, X2, . . .,  and Y1, Y2, . . .,  be independent 

identically distributed random samples from two populations having p × 1 mean vectors μ1 

and μ2 and p × p covariance matrices Σ1 and Σ2, respectively. The hypotheses of interest 

become H0 : μ1 = μ2 versus H1 : μ1 ≠ μ2.

There are some methods available for testing H0 : μ1 = μ2 versus H1 : μ1 ≠ μ2 in the “large-p-

small-n” setting. Srivastava (2007) presented a modification of Hotelling’s T2 statistic which 

handles the singularity of the sample covariance matrix by replacing its inverse with the 

Moore-Penrose inverse. Wu et al. (2006) proposed the pooled component test, for which the 

test statistic is the sum of the squared univariate pooled two-sample t-statistics for all p 

vector components, which they assumed to follow a scaled chi-square distribution. Bai & 

Saranadasa (1996) presented a test statistic which uses only the trace of the sample 

covariance matrix and performs well when the random vectors of each population can be 

expressed as linear transformations of zero-mean i.i.d. random vectors with identity 

covariance matrices. Each of these methods assumes a common covariance matrix between 

the two populations, that is that Σ1 = Σ2.

More recently, under a setup similar to that of Bai & Saranadasa (1996), but which 

accommodates unequal covariances, Chen & Qin (2010) introduced a method (hereafter 

called the Ch-Q test), which allows Σ1 ≠ Σ2 and sidesteps covariance matrix estimation 

altogether. Srivastava & Kubokawa (2013) proposed a method (hereafter called the SK test) 

for multivariate analysis of variance in the large-p-small-n setting, of which the high-

dimensional two-sample problem is an instance. Cai et al. (2014) presented a test (hereafter 

called the CLX test) based upon the supremum of standardized differences between the 

observed mean vectors, and offer an illuminating discussion about the conditions under 

which supremum-based tests are likely to outperform sum-of-squares-based tests, which 

include the Ch-Q and SK tests as well as the test we introduce in this paper. If the 

differences between μ1 and μ2 are rare, but large where they occur, i.e. the signals are sparse 

but strong, a supremum-based test should have greater power than a sum-of-squares-based 

test. The reason is that tests which sum the differences across a large number of indices will 

not be greatly influenced by a very small number of large differences. If, however, there are 

many differences between μ1 and μ2, but these differences are small, i.e. the signals are 

dense but weak, the supremum of the differences across all the indices will not likely be 
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extreme enough to arouse suspicion of the null. A sum-of-squares based test statistic, 

however, will represent an accumulation of the large number of weak signals, and will have 

more power. Dense-but-weak signal settings do exist, for example in the analysis of copy 

number variations, where mildly elevated or reduced numbers of DNA segment copies in 

cancer patients are believed to occur over regions of the chromosome rather than at isolated 

points (Olshen et al. (2004), Baladandayuthapani et al. (2010)). It is for such cases that our 

test is designed.

Section 2 describes the GCT test statistic and Section 3 gives its asymptotic distribution. 

Section 4 presents a simulation study of the GCT, comparing its performance with that of 

the Ch-Q, SK, and CLX tests in terms of power and maintenance of nominal size. Section 5 

implements the GCT as well as the Ch-Q, SK, and CLX tests on a copy number data set and 

a time series data set. Concluding remarks appear in Section 7 and the Appendix provides 

proofs of the main results. Full details for the proofs may be found in the Supplementary 
Material.

2 Test Statistic

The GCT statistic is computed as follows. Let , where

(1)

for j = 1, . . ., p, where X̄
nj and Ȳmj are the sample means of the jth vector component and 

and  are the sample variances of the jth vector component for the X and Y samples, 

respectively. Thus Tn is the mean of the squared unpooled univariate two-sample t-statistics 

 over all components j = 1, . . ., p.

The GCT statistic is a centered and scaled version of Tn defined as 

, where  and  are described below. The equal means 

hypothesis is rejected at level α when |Gn|> Φ–1(1 – α/2), where Φ(·) is the standard normal 

cumulative distribution function.

In what shall be called the moderate-p version of the test, , so that 

. For the large-p version, higher-order expansions suggest a 

centering of the form , so that

(2)

The quantities  and  are defined as  and 

, where  and  are obtained by plugging sample moments into 

the expressions given in Lemma 1 for cnj and dnj for each of the components j = 1, . . ., p.
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Though Tn is a mean of squared marginal two-sample t-statistics, the construction of the 

scaling will account for the dependence among them. In both the moderate- and large-p 

versions of the test statistic, the scaling  is the same. Let

(3)

which is the sample autocovariance function of the squared t-statistics. Then the scaling 

is defined such that

(4)

where w(x) is an even, piecewise function of x such that w(0) = 1, |w(x)|≤ 1 for all x, and 

w(x) = 0 for |x|> 1, and L is a user-selected lag window size.

The choices of the lag window w(·) considered here are the Parzen window

found in Brockwell & Davis (2009) and the trapezoid window

from Politis & Romano (1995), where [x] denotes the largest integer not exceeding x.

3 Main Results

Let , where 

and where for any σ-fields,  and ,

denotes the strong mixing coefficient between  and . Then the following conditions are 

assumed in deriving the asymptotic distribution of the test statistic Tn.

(C.1) For some δ ∈ (0, ∞), (i) , and (ii)  for all j 

= 1, . . ., p for some integer r ≥ 1.

(C.2) The limit  exists for all k > 0.
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(C.3)

i. max{E|X1j|16, E|Y1j|16, j = 1, . . ., p} = O(1).

ii. min{Var(X1j), Var(Y1j)} > c > 0.

The following theorem establishes the asymptotic normality of the test statistic under the 

appropriate centering and scaling.

Theorem 1 Suppose that p ≡ pn = o(n6) and (C.1)–(C.3) hold with r = 1 in (C.1). Then

where  and an = (cn1 + ··· + cnp)/p and bn = (dn1 + ··· + dnp)/p, 

where cnj and dnj for j = 1, . . ., p are as in Lemma 1 in the Appendix.

Remark 1 Theorem 1 shows that  Normal(0, 1) as n → ∞.

3.1 Technical Details

The choice of the centering quantity  comes from noting that ETn = 1+O(n–1) as n → ∞. 

This follows from the fact that tnj converges in distribution to Z, where Z ~ Normal(0, 1), for 

all j = 1, . . ., p, and EZ2 = 1. Thus , so that when , the 

expectation of the test statistic differs from zero by , restricting p to grow at a 

rate such that p = o(n2). When , the expectation of the test statistic is 

, allowing p = o(n6). Hence the “moderate-” and “large-p” designations. One 

may also consider an intermediate-p version of the test which uses only  in the 

centering correction, allowing p = o(n4), but its performance is not investigated here.

While the large-p test allows for p = o(n6), an advantage of the moderate-p test is its 

robustness to outliers. The centering correction in the large-p test involves high-order 

sample moments which are volatile when the data come from a very heavy-tailed 

distribution, in which case the centering value of 1 is preferable.

The formulation of  rests on the assumption that the p components admit a logical 

ordering such that their dependence is autocovarying and diminishing as components are 

further removed—that is, that the covariance between components may be described with an 

autocovariance function that decays sufficiently fast. In the proof of Theorem 1, the 

asymptotic variance of p1/2Tn under some regularity conditions is shown to be 

, which is equal to 2π times the spectral density f(·) of the sequence 

( ) evaluated at 0. Thus  provides the scaling 

in (4).
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3.2 Power of the Generalized Component Test

In order to compute the asymptotic power of the GCT, the expected value of 

 must be computed under the alternative H1 : μ1j – μ2j = δj for j = 

1, . . ., p where δj ≠ 0 for at least one j. Let  denote E(Tn|H1 true). Then the power of the 

GCT, which is , is equal to

Under conditions (C.1)–(C.3) we can invoke the asymptotic normality of 

 and the consistency of  for ζ and approximate the power with

so that it is a function of .

Given the tedium of computing 

to within O(n–3) of its true value as was done for  under the null hypothesis (cf. Lemma 

1), we replace  and  with their population values  and  and 

.

If we may replace n,  with , then 

the power may be expressed

From this expression we note that under p = o(n2)

For example, if δj = δp–1/2 for j = 1, . . ., p for some δ > 0 then the power will converge to 1, 

but if δj = δp–(1/2+ε) for j = 1, . . ., p the test will have “nonpower” above the significance 

level as n, p → ∞.
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4 Simulation Studies

The performances of the GCT, Ch-Q, SK, and CLX tests were compared in terms of size 

control and power under various settings. For the sample sizes (n, m) = {(45, 60), (90, 120)} 

with p = 300, two-sample data were generated such that for each subject the p components 

were (i) independent (IND), (ii) ARMA dependent, or (iii) long-range (LR) dependent. For 

each dependence structure, the innovations used to generate each subject series were (a) 

Normal(0,1), (b) skewed innovations, coming from a gamma(4, 2) distribution centered at 

zero, thus having mean zero and variance 4(2)2 = 16, and (c) heavy-tailed innovations from 

a Pareto(a, b) distibution with distribution function F(x) = 1 – (1 + x/b)–1/a where the density 

was shifted to the origin and reflected across the vertical axis to form a “double” Pareto 

distribution. Under this double Pareto distribution,

Once a zero-mean series was generated for each subject, it was added to the p × 1 mean 

vector μ1 or μ2, depending on the population to which the subject belonged. Under IND, the 

zero-mean series consisted of p independent identically distributed innovations from the 

chosen innovation distribution. For the ARMA dependence structure, p-length series from 

an ARMA process with AR parameters ϕ1 = {0.4, –0.1} and MA parameters θ1 = {0.2, 0.3} 

were used for both populations. Under the LR structure, realizations of zero-mean, long-

range-dependent processes with self-similarity parameter H1 = (1/2)(2 – 0.75) = 0.625 were 

used. The algorithm used for generating vectors of long-range dependent random variables 

is found in Hall et al. (1998).

At each sample size, dependence structure, and innovation distribution combination, a 

simulation was run in which Σ1 = Σ2 and in which Σ2 = 2Σ1, where the unequal covariance 

setting was imposed by scaling the zero-mean series for the population 2 subjects by √2.

For the CLX test, which features an equal-covariances and an unequal-covariances version, 

Cai et al. (2014) suggest first testing H0 : Σ1 = Σ2 using a test from Cai et al. (2013) and 

then choosing the version of the CLX test accordingly. Since in practice it is generally not 

known whether Σ1 = Σ2 holds, the test of H0 : Σ1 = Σ2 was performed in each simulation run 

to determine which version of the CLX test would be used. The CLX test requires an 

estimate for the precision matrix  or Ω = {Σ1 + (n/m)Σ2}–1 for the unequal-

covariances version. Of the two methods the authors suggest for estimating , that which is 

presented in Cai et al. (2011) and provided in the R package fastclime (Pang et al. (2013)) 

was chosen and implemented under default settings.

For power simulations, the alternate hypotheses were that μ1 = 0 and 

, where 1k was a k × 1 vector of ones, p was the number of 

components, and β ∈ [0, 1] was the proportion of the p components for which the difference 

in means was nonzero. The number of components p was fixed at 300 and the power was 
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simulated for β ∈ {0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1}. The difference or signal δ was chosen 

such that the signal to noise ratio δ/σ was equal to 1/8, where σ was the standard deviation of 

the innovations used to construct each series (each p-variate observation); thus δ = σ/8 was 

used.

Full factorial simulation results for {(45, 60), (90, 120)} × {IND, ARMA, LR} × {Normal, 

Skewed, Heavy-tailed} × {Σ1 = Σ2, Σ2 = 2Σ1} are given in the Supplementary Material 
and selected results are highlighted here. In addition to the factorial simulation, the tests 

were evaluated under heteroscedastic component variances and ultra-heavy tailed (infinite-

variance) innovations.

4.1 Performance under normality

Table 1 displays the simulated Type I error rates of the four tests under the sample sizes (n, 

m) = (45, 60), (90, 120) across the three dependence structures under Normal(0, 1) 

innovations and for Σ1 = Σ2. For the GCT, results are given for the Parzen and trapezoid lag 

windows at lag window sizes L = 10, 15, 20 for the moderate-p (upper panel) and the large-p 

(lower panel) choice of the centering. The Ch-Q, SK, and CLX Type I error rates are 

duplicated in the upper and lower panels as the moderate- and large-p versions of the GCT 

were applied to the same 500 simulated data sets.

The Ch-Q and SK tests maintained very close-to-nominal Type I error rates. The CLX test 

exhibited slightly inflated Type I error rates under the IND and LR dependence structures 

for the smaller sample sizes (n, m) = (45, 60), but maintained close-to-nominal rates for (n, 

m) = (90, 120). For the GCT, the Parzen window appeared to control the Type I error rate 

slightly better than the trapezoid window, and the Type I error rates were similar for the 

three choices of the lag window size.

Power simulation results under normal innovations appear in Figure S.6 of the 

Supplementary Material.

4.2 Effect of skewness

The results of the Type I error simulation with skewed innovations were similar to those in 

the Normal(0, 1) case and can be seen in Table S.3 of the Supplementary Material. For the 

power simulation, Figure 1 plots the proportion of rejections across 500 simulation runs 

against the proportion β of the p = 300 components in which μ1 and μ2 differed, where β ∈ 

{0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1}. The three panels show the power curves of the four tests 

under the IND, ARMA, and LR dependence structures, respectively, when the innovations 

came from the centered gamma(4, 2) distribution and when the sample sizes were (n, m) = 

(90, 120). The four tests exhibited similar performance under these settings, though under 

independence the size of the CLX test was somewhat inflated, yet its power increased more 

rapidly in β than that of the other tests under ARMA dependence.

4.3 Effect of heavy-tailedness

The results for the heavy-tailed simulation with innovations coming from the double 

Pareto(16.5, 8) distribution did not differ greatly from those of the normal- and skewed-
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innovations simulations. Full results may be found in the Supplementary Material. In 

order to assess the robustness of the GCT to violations of its moment conditions, ultra-heavy 

tailed data were simulated using innovations from a double Pareto(1.5, 1) distribution, which 

has infinite variance. Since the centering corrections  and  in the large-p GCT are 

computed using higher order sample moments, only the moderate-p GCT was here 

considered, as its centering of 1 gives it stability. Under these settings, the signal, which was 

set to δ = .5, is very weak relative to the noise, such that as the proportion β of non-null 

mean differences goes to 1, a dense-but-weak signal structure is simulated. The resulting 

power curves are shown in Figure 2, in which the Ch-Q test is seen to have much less power 

than the others; the CLX also suffers a reduction in power under ARMA and LR 

dependence. Under LR dependence, the size of the GCT was somwhat inflated, but it was 

very close to nominal for the IND and ARMA cases. In the ARMA case, the GCT exhibited 

greater power than the other tests across the range of alternatives.

4.4 Effect of heteroscedasticity

The effect of heteroscedasticity on the GCT may be anticipated by noting that  from (1) 

can be expressed

(5)

where δj = μ1j – μ2j, for j = 1, . . ., p. The second term is equal to zero under H0. Under H1, 

for a fixed difference δj, the variances  and  affect the magnitude of  such that very 

small values for  and  promote very large values of . Since th scaling  for Tn is a 

function of , the estimated autocovariance function of , , . . ., , as seen from (3) 

and (4), extreme values of  will pull  upward, shrinking Tn toward zero. Extreme values 

of  will tend to occur if  and  are very small when δj ≠ 0. Although smaller 

variances ought to ensure a greater likelihood of rejecting H0, if  is inflated by extreme 

values of , the GCT statistic will be close to zero, and the test will fail to reject, hence 

condition (C.3) (ii). Large values of  and  when δj = ≠ 0 will tend to reduce , but 

since it is bounded below by zero, extreme values will not occur. The size of the test should 

be robust to any scaling of the variances, as the second term in (5) will be zero when H0 is 

true.

To investigate the impact of heterscedasticity on the performance of the four tests, the 

standard deviations of the components were each scaled by a realization from the 

exponential distribution with mean 1/2 shifted to the right by 1/2 such that the average 

scaling was 1 and so that the scaled variances were bounded away from 0. The power 

simulation with centered gamma(4, 2) innovations was repeated under these heteroscecastic 

conditions with (n, m) = (45, 60). Figure 3 exhibits a dramatic reduction in the power of the 

Ch-Q test due to heteroscedasticity. The CLX test exhibited somewhat inflated size under 
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the IND and LR dependence structures, while the SK test and the GCT demonstrated 

robustness to the heteroscedstic variance scalings.

4.5 Effect of unequal covariance matrices

Of the four tests, the SK test is the only one which assumes a common covariance matrix for 

the two populations. Cai et al. (2014) suggest first testing H0 : Σ1 = Σ2 with a test from Cai 

et al. (2013) and implementing the equal or unequal covariances version of the CLX test 

accordingly. The Ch-Q and the GCT do not require any assumption or testing of equality 

between the covariance matrices. The SK is thus anticipated to perform more poorly than the 

others when the covariance matrices are unequal.

To impose inequality between Σ1 and Σ2, the zero-mean sequences for each subject from 

population two were scaled by √2 before the signal μ2 was added. This imposed the 

condition that Σ2 = 2Σ1.

Figure 5 displays results for a simulation in which the variances of the second population 

were scaled by two and in which the variances in both populations were heteroscedastic. The 

SK lost much of its power under these settings, which was expected given its assumption of 

a common covariance matrix in the two populations. The Ch-Q test exhibited low power as 

before owing to the heteroscedasticity, but performed none the worse for the unequally 

scaled variances. The GCT achieved the greatest power under the LR dependence structure, 

having less power than the CLX test in the ARMA case.

Lastly, under the ultra heavy-tailed innovation distribution with unequally scaled 

covariances between the two populations, the GCT exhibited superior power to the Ch-Q, 

SK, and CLX tests under all three dependence stuctures at the (n, m) = (90, 120) sample 

sizes. Although the size of the GCT was somewhat inflated under the LR dependence 

structure, it maintained the nominal Type I error rate in the ARMA case, under which it 

achieved roughly 60% power when β = 0.4 while the CLX test achieved only about 10% 

power.

5 Copy Number Variation Example

The GCT, Ch-Q, SK, and CLX tests were each applied to a data set from The Cancer 

Genome Atlas containing copy number measurements at chromosomal copy number 

locations in 92 long-term-surviving patients, who survived for more than two years after 

their initial diagnosis and 138 short-term-surviving patients, who survived for fewer than 2 

years after their initial diagnosis of a brain cancer called glioblastoma multiforme (GBM). 

Pinkel & Albertson (2005) suggest that the numbers of copies of certain DNA segments 

within a cell may be associated with cancer development and spread. It is thus of interest to 

identify regions along the genome in which high numbers of copies are associated with the 

incidence or severity of cancer, as such regions may harbor cancer-causing or tumor-

suppressor genes. In studies having relatively few patients, several thousand copy number 

measurements are taken along each arm of each chromosome, which makes identifying 

regions for which two patient groups have different mean copy number profiles a high-

dimensional problem. Additionally, it is believed that copy number variations between 
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patient groups will occur over stretches of the chromosome (spanning multiple probes) 

rather than at isolated points (singleton probe locations) (Olshen et al. (2004), 

Baladandayuthapani et al. (2010)), suggesting a serial dependence over the chromosome as 

well as the presence of a dense-but-weak rather than a sparse-but-strong signal structure.

We restricted our analysis to the q arm of chromosome 1, the longest chromosome, on which 

there are 8,895 copy number measurements. Each measurement is a log-ratio of the number 

of copies at each location over 2, where 2 is the number of copies found in normal DNA. 

Positive measurements thus indicate duplications and negative measurements indicate 

deletions. The measurements, in conformity with the assumption of the GCT that the 

components of interest admit a logical ordering, are recorded along with their locations 

given in the number of base pairs from the end of the DNA strand. For many of the 8,895 

components, there are a few missing values in either or both of the samples such that the 

average proportion of missing values per component is 0.0276 for the long-term survivors 

and 0.0273 for the short-term survivors. Prior to analysis, each missing value was replaced 

with the mean of the non-missing values for the same component in the same sample.

Although a test may reject H0 : μ1 = μ2 when μj is the 8895 × 1 vector of copy number 

means for j = 1, 2, a wholesale conclusion for the entire arm of the chromosome is of little 

use if it is desired to identify particular regions in which copy number differences lie. In 

order to break the chromosome arm into meaningful regions in which the equal means 

hypothesis is of interest, we performed a method of segmentation called circular binary 

segmentation (CBS) from Olshen et al. (2004). This procedure locates change points in the 

copy number sequence for a single sequence of copy number values, and is implemented in 

the R package DNAcopy (Seshan & Olshen (2013)). In order to segment the q arm of 

chromosome 1 for equal means hypothesis testing when multiple patients are observed, the 

CBS procedure was applied to the 8895 × 1 vector of differences in means X̄ – Ȳ using 

weights equal to  for j = 1, . . ., 8895. Before computing X̄, Ȳ, and  and  for j 

= 1, . . ., p, each series was smoothed using the function smooth.CNA() from the DNAcopy 

package. The CBS procedure provided 26 segments of varying lengths at the edges of which 

change points were detected in the vector of differences in means. As a set of 7 contiguous 

segments contained small numbers of markers (44, 14, 26, 39, 26, 21, 27) they were 

collapsed into a single segment having 197 markers, which left 20 regions within which the 

number of probes p ranged from 73 to 1811. Such splitting of the chromosome into windows 

or segments has been widely used in genome-wide association studies in searching for 

chromosomal regions in which genetic variants are associated with a continuous or 

dichotomous clinical outcome, as in Wu et al. (2011).

The large- and moderate-p GCT with lag window size L = (2/3)p1/2 and the Ch-Q, SK, and 

CLX tests were applied to each of the twenty segments identified by the CBS procedure to 

test H0k : μ1k = μ2k for k = 1, . . ., 20 (Though smoothing was used in identifying the 

segments, the analysis was carried out on the raw, unsmoothed data). Since the equal-means 

hypothesis was tested for twenty different regions simultaneously, the sets of p-values which 

each of the four tests generated were compared with the Benjamini & Hochberg (1995) 

discovery rate (FDR) threshold. For m tests of hypotheses, the m p-values are ordered p(1) ≤ 
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p(2) ≤ . . . ≤ p(m) and then the hypothesis to which p(i) corresponds is rejected if i ≤ k, where 

k = max{j : p(j) ≤ (j/m)q}. This procedure was originally shown to control the FDR at q for 

m independent hypothesis tests, though Benjamini & Yekutieli (2001) showed that for many 

common types of positive dependence among the m test statistics, the same procedure still 

adequately controls the FDR. The procedure was therefore applied to the twenty p-values 

computed from each test.

Figure 6 summarizes the analysis. The left panel displays the univariate two-sample t-

statistics, which are the tnj values for j = 1, . . ., 8895, against their locations in base pairs 

along the q arm of chromosome 1. The vertical line at zero marks the value around which 

the t-statistics would be centered under the null hypotheses, and the horizontal dotted lines 

delineate the CBS-selected segments of the chromosome arm. The numbers of copy number 

markers p within each segment appear on the right. Rejections acheived by the tests are 

marked with symbols appearing on the left, where rejections for each test are determined by 

the Benjamini & Hochberg (1995) FDR procedure.

The upper right panel of Figure 6 displays the estimated autocorrelation function of the 

squared two-sample univariate t-statistics, the  values for j = 1, . . ., 8895, along the q arm 

of chromosome 1. The 95% confidence bounds using the large-lag standard error described 

in Anderson (1977) are shown, which suggest that dependence decays in conformity with 

(C.1) (i).

The lower right panel of Figure 6 shows the results of the FDR procedure. The upward 

sloping line is given by y = (x/m)q, which is the Benjamini & Hochberg (1995) FDR 

rejection threshold. The p-values for all four tests are shown, but are ordered according to 

the ranking of the large-p GCT p-values (The rejection decisions were the same for the 

moderate- and large-p versions of the GCT). The SK and CLX tests did not achieve any 

rejections; the Ch-Q test achieved one rejection, and the GCT rejected equal means for 

fifteen of the twenty regions.

Figure 7 offers an explanation of the additional power demonstrated by the GCT. The upper 

and lower panels show the estimated standard deviation at each of the 8,895 copy number 

locations across the q arm of chromosome 1 for the 92 long-term and 138 short-term 

survivors, respectively. Both panels exhibit spikes at shared locations as well as prominent 

humps around 2.0 × 108 Mbps, suggesting that the variances are not constant across the 

chromosome; nor are the humps at equal heights for the two groups of patients. The 

boxplots of the 8,895 standard deviations for each group reveal significant right skewness, 

suggesting heavy-tailedness of some of the component distributions. The minimum 

estimated standard deviations for the long- and short-term survivors were 0.1314 and 

0.1123, respectively, indicating that the component variances are bounded sufficiently away 

from zero. The severe heteroscedasticity as well as the inequality of variances between the 

two samples appear to have attenuated the power of the Ch-Q and SK tests just as in the 

simulation.

None of the univariate two-sample t-statistics in the lefthand panel of Figure 6 are very 

extreme, the largest of their magnitudes being 3.607. This suggests that the difference 
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between the copy number profiles of short- and long-term survivors consists of smaller 

differences distributed over a larger number of components rather than larger differences 

over a smaller number of components. That is, the signals appear to be dense but weak 

rather than sparse but strong. In such a setting the CLX test will likely have low power.

It is worth discussing the computation time of the four tests. For this analysis, in which each 

test was implemented twenty times at various values of the dimension p, the moderate-p 

GCT finished in 1.75 seconds and the large-p GCT finished in 6.60 seconds. The Ch-Q and 

SK tests finished in 2.32 and 2.68 minutes, respectively, and the CLX took 2.79 hours to run 

on a MacBook Air with a 1.86 GHz Intel Core 2 Duo processor with 4 GB of memory. The 

SK procedure involves matrix operations which can be quite slow for large p, and the Ch-Q 

test involves a cross-validation type sum of inner products which becomes slow for large 

sample sizes. The CLX method must first test whether Σ1 = Σ2 and then directly estimate 

Σ–1 or {Σ1 + (n/m)Σ2}–1 under sparsity assumptions. Estimating these large matrices 

quickly becomes computationally burdensome. The GCT requires only a summation over p 

components and computation of the sample autocovariance function of a p-length series, 

making it very fast to compute.

6 Mitochondrial Calcium Concentration

Ruiz-Meana et al. (2003) subjected cells from cardiac muscles in mice to conditions which 

simulated reduced blood flow for a period of one hour. To a treatment group, a dose of 

cariporide was administered, which is believed to inhibit cell death due to oxidative stress. 

The investigators measured the mitochondrial concentration of Ca2+ every ten seconds 

during the hour. The experiment was run twice, once on intact cells and once on cells with 

permeabilized membranes. The data have been made available by Febrero-Bande & Oviedo 

de la Fuente (2012) in the R package fda.usc.

The mean percent increase of the calcium concentration over its initial value for the 

treatment and control in both the experiments is plotted against time in Figure 8, where the 

sample sizes for each curve are shown. The first 180 seconds of the data are removed, given 

the erratic behavior of the curves, leaving p = 342 time points. The four tests were applied to 

both the intact and permeabilized data to test for equality between the true treatment and 

control mean curves. The p-values for the four tests are given in Table 2.

For the intact cells, the Ch-Q test and the GCT strongly rejected the null, while the CLX 

test, after failing to reject equality of the covariance matrices, produced a p-value of 0.086 

under the equal covariances assumption, and the SK test failed to reject. For the 

permeabilized experiment the Ch-Q test and the GCT again strongly rejected the null. The 

CLX test again failed to reject equality of the covariance matrices, which is a dubious 

assumption for either the intact or permeabilized experiments given the plot in Figure 9 of 

 for j = 1, . . ., 342 for each set of data. In this plot the variance of the treatment group 

measurements for the intact cells is well over twice as high as in the control group for the 

first ten minutes (fluctuating wildly), and for the permeabilized cells the variance of the 

treatment group measurements remains at roughly twice that of the control group 
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measurements after half an hour has elapsed. The low power of the SK test apparently owes 

to the variance inequality depicted here.

The inability of the CLX test to reject what appears to be an implausible null hypothesis 

likely owes to a difference in mean functions which is characterized by gradual separation 

rather than by spikes in one function or the other. The large number of small differences are 

unable to produce a maximum which will exceed the CLX rejection threshold. However, the 

Ch-Q test and the GCT are able to register the large number of small differences 

cumulatively and reject the equal means hypothesis.

This example illustrates the applicability of our test in functional data contexts, in which 

each observation consists of a function observed at points over some domain. When it is of 

interest to compare the mean functions in two populations, the assumptions of the GCT are 

likely to apply.

7 Conclusions

The test we present for H0 : μ1 = μ2 versus H1 : μ1 ≠ μ2, called the generalized component 

test, was shown to be competitive in the p > > n setting when the p components admit an 

ordering allowing the dependence between two components to be modeled according to 

their displacement. Moderate- and large-p versions of the test were given for p = o(n2) and p 

= o(n6), respectively. The test requires very little computation time and is easily scalable to 

very-large p settings.

The moderate-p version of our test is robust to ultra heavy-tailedness, and both the 

moderate- and large-p versions are robust to heteroscedasticity and highly unequal 

covariance matrices. The Chen and Qin (Ch-Q) test lost most of its power in the presence of 

heavy-tailedness or heteroscedasticity; the Srivastava and Kubokawa (SK) test lost much of 

its power when the covariance matrices were unequally scaled. The Cai, Liu, and Xia (CLX) 

test performed well under a variety of settings, proving to be robust to heteroscedasticity and 

to unequally scaled covariance matrices; however, when the data were very heavy-tailed, 

which rendered the signals very weak, the CLX lost considerable power. Also, since the 

CLX test requires estimating the p × p precision matrix, it is computationally much slower 

than the other tests, requiring over 2.5 hours to complete the copy number data analysis 

which the SK and Ch-Q tests completed in under 3 minutes and the GCT in under 10 

seconds.

For the copy number analysis, the GCT exhibited superior power over the other three tests. 

This was likely due to heteroscedasticity in the component variances, under which the Ch-Q 

would lose power, unequally scaled variances between the two populations, under which the 

SK test would lose power, and likely to the presence of a dense-but-weak rather than a 

sparse-but-strong signal structure, under which the CLX test would have low power.

For the mitochondrial calcium concentration data set, only the Ch-Q test and the GCT were 

able to reject the equal means hypothesis. The SK test appears to have lost power due to 

unequal variances and the CLX supremum-based test was unable to detect the smooth 
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separation of the two mean functions over time, which was characterized by small 

differences in many components rather than by large differences in a few.

Software

We created the R package highD2pop for implementing the GCT as well as the Ch-Q, SK, 

and CLX tests. A source version, highD2pop.zip, is available for download. The package 

includes copy number data for the CBS-selected segment of the q arm of chromosome 1 

having p = 400 copy number probes. See package documentation in highD2pop-manual.pdf.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Proofs of main results

Proof 1 (Asymptotic Normality of Test Statistic) By an adaptation of the big-block-little-

block argument to the triangular array it can be shown that 

, where

(A.1)

where , k ≥ 0. To prove (A.1), use the 

moment and α-mixing conditions to show that for any M ≥ 1,

as M → ∞. Thus,
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where an and bn are bounded sequences such that

(A.2)

Lemma 1 provides cnj and dnj for j = 1, . . ., p such that an = (cn1 + ··· + cnp)/p and bn = (dn1 

+ ··· + dnp)/p satisfy (A.2).

Lemma 1 Let X1j, . . ., Xnj and Y1j, . . ., Ymj be independent identically distributed random 

samples with  and  and EX1j = EY1j for all j = 1, . . ., p. 

Assume that max{E|X1j|16, E|Y1j|16, j = 1, . . ., p} = O(1) and that  (The 

first moment condition may be reduced further by means of truncation, but this would 

considerably lengthen the proof. The discussion of heteroscedasitiy in Section 4.4 illustrates 

the importance of bounding the component variances away from zero). Let 

, where  and  are the two samples 

variances and let m ~ n as n → ∞. Then  for

(A.3)

and

(A.4)

where  and  and  are the kth central moments of X1j and Y1j, 

respectively.

Proof 2 (Proof of Lemma 1) For ease of syntax, ignore the subscript j, and, without loss of 

generality, assume that EX1j = EY1j = 0. Let  and let  be 

approximated by the expansion

(A.5)
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so that . An expression for the expected value  would thus involve 

the quantities  for k = 1, . . ., 5. These expectations must be 

computed such that they retain terms out to the order of O(n–3).

Let χ|B|({Xj : j ∈ B}) represent the joint cumulant of the random variables in the set {Xj : j ∈ 

B}, where |B| is the cardinality of B. Then the formula

(A.6)

from Leonov & Shiryaev (1959) gives the expected value of a product of random variables 

in terms of joint cumulants, where Σπ denotes summation over all possible partitions of 

{X1, . . ., Xk}, and ΠB∈π denotes the product over all cells of the partition π. Using (A.6) to 

compute  to within O(n–4) of their true values for k = 1, . . ., 5 involves 

the joint cumulants tabulated below, where Δ ≡ Δn, X̄ ≡ X̄
n, and Ȳ ≡ Ȳm.

If κ(i, j) denotes the ijth member of the table of joint cumulants, then (A.6) gives

(A.7)

(A.8)

(A.

9)

(A.10)
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(A.11)

after removing cumulant products of order smaller than O(n–4) and noting that κ(0, 1) = 0. 

Each cumulant is simplified using rules found in Brillinger (1981), and the formula

(A.12)

from Leonov & Shiryaev (1959) provides expressions for the simplified cumulants in terms 

of moments. Each cumulant is computed exactly or is approximated to within the order 

necessary for the cumulant products in (A.7)–(A.11) to lie within O(n–4) of their true values. 

Two examples are worked out below.

Once all the cumulant expressions are obtained, they may be plugged into (A.7)–(A.11). 

Then, adding and subtracting (A.7)–(A.11) according to the expansion in (A.5) and 

gathering terms out of which n–1 and n–2 can be factored yields cn from (A.3) and dn from 

(A.4), respectively, which completes the proof.
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Figure 1. 
Power curves at sample sizes (n, m) = (90, 120) for the moderate- and large-p GCT, Ch-Q, 

SK, and CLX tests against the proportion of nonzero mean differences β under IND, 

ARMA, and LR dependence (left to right) with centered gamma(4, 2) innovations and Σ1 = 

Σ2. Based on S = 500 simulations.
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Figure 2. 
Power curves at sample sizes (n, m) = (90, 120) for the large-p GCT, Ch-Q, SK, and CLX 

tests against the proportion of nonzero mean differences β under IND, ARMA, and LR 

dependence (left to right) with double Pareto(1.5,1) innovations and Σ1 = Σ2. Based on S = 

500 simulations.
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Figure 3. 
Power curves at sample sizes (n, m) = (45, 60) for the moderate- and large-p GCT, Ch-Q, 

SK, and CLX tests against the proportion of nonzero mean differences β under IND, 

ARMA, and LR dependence (left to right) with heteroscedastic centered gamma(4, 2) 

innovations and Σ1 = Σ2. Based on S = 500 simulations.
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Figure 4. 
Power curves at sample sizes (n, m) = (45, 60) for the moderate- and large-p GCT, Ch-Q, 

SK, and CLX tests against the proportion of nonzero mean differences β under IND, 

ARMA, and LR dependence (left to right) with heteroscedastic centered gamma(4, 2) 

innovations and Σ2 = 2Σ1. Based on S = 500 simulations.
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Figure 5. 
Power curves at sample sizes (n, m) = (90, 120) for the moderate-p GCT, Ch-Q, SK, and 

CLX tests against the proportion of nonzero mean differences β under IND, ARMA, and LR 

dependence (left to right) with double Pareto(1.5,1) innovations and Σ2 = 2Σ1. Based on S = 

500 simulations.
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Figure 6. 
(Left) Univariate t-statistics (tnj) plotted against base-pair location on q arm of chromosome 

1. Filled symbols denote rejections from FDR procedure for the GCT, Ch-Q, SK, and CLX 

tests. The number of components p within each CBS-selected chromosomal region is shown. 

(Upper right) Estimated autocorrelation function for squared univariate t-statistics along q 

arm of chromosome 1 with large-lag confidence bands. (Lower right) FDR results, 

hypotheses sorted by GCT p-values. FDR rejection threshold shown with filled symbols 

denoting rejections.
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Figure 7. 
Sample standard deviations of copy number at all 8,894 copy number locations for long- and 

short-term survivors with boxplots at right. Gaps occur at chromosomal locations where no 

copy number measurements were taken. Vertical dashed lines delineate the twenty CBS-

selected regions in which the equal means hypothesis was tested.
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Figure 8. 
Mean curves of the proportional increase in calcium concentration over initial value in intact 

and permeabilized cells from cardiac muscles in mice over one hour with and without 

cariporide treatment. First 180 seconds removed from analysis.

Gregory et al. Page 27

J Am Stat Assoc. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Ratios of the variances of the proportional increase in calcium concentration for the 

treatment versus control group plotted against time for the intact and permeabilized data 

sets.
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Table 2

The p-values produced by the four tests for equality between the treatment and control calcium concentration 

curves in the intact and permeabilized experiments.

Ch-Q SK CLX mod-p GCT lg-p GCT

Intact 0.000 0.118 0.086 0.000 0.000

Permeabilized 0.001 0.358 0.817 0.000 0.000
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