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NanoCAGE-XL and CapFilter: an approach
to genome wide identification of high
confidence transcription start sites
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Abstract

Background: Identifying the transcription start sites (TSS) of genes is essential for characterizing promoter regions.
Several protocols have been developed to capture the 5′ end of transcripts via Cap Analysis of Gene Expression
(CAGE) or linker-ligation strategies such as Paired-End Analysis of Transcription Start Sites (PEAT), but often require
large amounts of tissue. More recently, nanoCAGE was developed for sequencing on the Illumina GAIIx to
overcome these difficulties.

Results: Here we present the first publicly available adaptation of nanoCAGE for sequencing on recent ultra-high
throughput platforms such as Illumina HiSeq-2000, and CapFilter, a computational pipeline that greatly increases
confidence in TSS identification. We report excellent gene coverage, reproducibility, and precision in transcription
start site discovery for samples from Arabidopsis thaliana roots.

Conclusion: nanoCAGE-XL together with CapFilter allows for genome wide identification of high confidence
transcription start sites in large eukaryotic genomes.
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Background
Accurate identification of transcription start sites (TSS)
for RNA polymerase II (pol-II) genes is critical for deter-
mining promoter location, which in turn facilitates ac-
curate determination of functional sequence control
elements [1–3]. While standard RNA-Seq methodologies
can provide some insight into the nature of full-length
transcripts, a heavy 3′ bias in data outcomes must be
addressed with a 5′ cap-trapping strategy. Several overall
strategies have been published for application to animal
tissues and cell lines; these are well-characterized by
three protocols. The Paired-End Analysis of Transcrip-
tion start sites (PEAT) protocol [4] enriches for capped
transcripts in two steps: an initial dephosphorylation
of uncapped transcripts, followed by the ligation of a
short “tag” sequence to the 5′ ends of capped transcripts.
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The Cap Analysis of Gene Expression (CAGE) method
[5] actively “traps” the 5′ N7-Methylguanosine-
triphosphate (7mG-p-p-p-N) modification common to
all pol-II generated transcripts, known as the “cap”,
with streptavidin beads. Both PEAT and CAGE have
been widely employed in animal studies [4, 6, 7], and
recently we have successfully applied the PEAT strat-
egy to plant tissues [3]. The nanoCAGE protocol aims
to reduce the required amount of total RNA from the
50 to 150 μg necessary with PEAT and CAGE to the
level of nanograms by using a combination of template
switching and semi-suppressive PCR, and has been re-
ported to have a level of sensitivity 1000 times higher
than that of CAGE [8, 9].
In contrast to PEAT and CAGE, nanoCAGE does not

use restriction enzymes or linker ligation, and is there-
fore not influenced by restriction enzyme inefficiency,
competition for naturally occurring restriction sites, or
sequence biases resulting from ligation inefficiency of
the 5′ linker. Additionally, nanoCAGE, like PEAT and
CAGE, uses random primers as opposed to polyA prim-
ing, increasing the chance of 5′ end capture in the case
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of long transcripts. Challenges remain for broad use in
current applications to plant and animal organisms with
tens of thousands of genes, as the nanoCAGE protocol
was developed for the Illumina GAIIx platform and it is
reported to yield approximately one million raw reads
per library for multiplexed libraries [8, 9]. NanoCAGE
also generates false TSSs due to premature template
switching before reaching the very 5′ end of transcripts
[9]. While it has not yet been widely applied in published
data outcomes, the strategy has demonstrated strong po-
tential for reducing the quantity of input total RNA if se-
quencing depth and template-switching artifacts can be
addressed. Currently, one published study [10] has used
the nanoCAGE protocol [8, 9] on the Illumina HiSeq-
2000, but little was presented on the methodological dif-
ferences as the sequencing was done commercially.
In this study using RNA from Arabidopsis roots we

present the first publicly available adaptation of nanoC-
AGE for sequencing libraries on the powerful Illumina
HiSeq-2000 platform, thus increasing sequencing depth
and achieving excellent genome coverage. These samples
are ideal for protocol development, as they present a
challenging case where both rRNA removal and sequen-
cing depth are critical for appropriate data coverage of a
large eukaryotic genome. We develop and analyze a
series of important protocol changes, and provide infor-
mation on barcode effects on library performance. Add-
itionally, we develop an annotation-free computational
filter based on identification of TSS peaks (read clusters)
derived from capped mRNAs that greatly increases con-
fidence in TSS discovery. Importantly, this computa-
tional filter does not require removal of sequenced reads
in pre-processing, and therefore allows the end-user to
balance sensitivity with precision based on experimental
needs. We provide a complete experimental protocol
[Additional file 1], an analysis of gene coverage and pre-
cision of TSS identification, and description of the com-
putational procedure with software implementation for
the identification and removal of false TSSs.

Results
Linker sequence and template input in nanoCAGE
introduce important trade-offs in sequencing outcome
To assess the viability of the nanoCAGE protocol with
different sequencing strategies, we prepared a total of 10
libraries over three separate experiments using both sin-
gle and barcoded library formats, with or without a
linker – a short six-nucleotide sequence introduced in
the template switching (TS) oligo to normalize barcode
biases in library preparations [9] – for sequencing on the
HiSeq-2000 platform (Table 1). While the original proto-
col was developed using total RNA as template [8, 9], we
found that using plant total RNA resulted in “spiky”
libraries suggestive of very high read redundancy, which
was overcome by depleting the rRNA content of our
samples [Additional file 2: Figure S1]. The first library
sequenced was prepared using the single library format
[8], which did not include a barcode or linker sequence
in the TS oligo (Table 1). Although replicates are essen-
tial for the assessment of method repeatability, our goal
with this first experiment was to determine a baseline
outcome from the maximal profiling of an individual
Arabidopsis library. In experiments 2 and 3, we tested
barcode combinations in multiplexed libraries including
and excluding the linker in the TS oligo respectively
(Table 1).

Read mappability
For all experiments, analyses focused on protein coding
genes representing ~27,000 genes in Arabidopsis. In ex-
periment 1, ~67 % of the raw reads (Table 1) could be
mapped to unique loci associated with over 25,000 genes
(Fig. 1), providing a large number of reads that could be
further used in TSS peak calling. In experiment 2 we used
barcodes selected from [9] with the linker present for
three separate libraries (Table 1), in order to test the via-
bility of multiplexing data on the Hi-Seq 2000 platform. It
was previously reported that the introduction of a low-“G”
linker sequence in the TS oligo or the use of an in silico
post-alignment filter could reduce barcode-specific biases
resulting from strand invasion artifacts [9] – that is, reads
produced from premature template switching caused by
the TS oligo “invading” the growing cDNA strand due to
sequence complementarity. To test whether this was the
case in our data, we used a similar in silico approach to re-
move strand invasion artifacts by examining the genomic
complementarity of each TS oligo as described in [9]. We
found a generally small effect of strand invasion, although
libraries without the linker sequence had slightly more
than twice as many reads with evidence of strand invasion
(~0.9 % of all reads on average for libraries prepared with-
out the linker compared to ~0.4 % of all reads for libraries
prepared with the linker). However, the introduction of
both a barcode and a linker sequence came at a dramatic
cost to read mappability: an approximately three to four-
fold reduction in the percent of mappable reads as com-
pared to experiment 1 (Table 1). The presence of a linker
sequence that is identical for all reads markedly reduces
read diversity resulting in dramatically lower sequencing
accuracy, a well-documented problem on Illumina se-
quencers ([8]; Update to Article]. The number of genes as-
sociated with mapped raw reads was also reduced in
experiment 2 (20,000-21,000 genes per library) as com-
pared with experiment 1 (~25,000 genes) (Fig. 1). The
numbers of genes per library with high-confidence TSS
read clusters (peaks) obtained after filtering, however,
were very good as compared to experiments 1 and 3
(Table 1); this point is discussed later in results.



Table 1 Summary of sequencing and alignment results

Samplesa Adaptor Sequenceb Number of Raw
Reads (×106)

Uniquely Mapped
Readsc (×106)

% rRNA
Readsd

Redundancye Average # of Genes
with TSS Peaks (×103)f

Average # of
Peaks per Geneg

Exp. 1

S1BALA GGG 183 123 0.29 3.73 10 1.23

Exp. 2

S2BPLP ATCGTGGCTATAGGG 61 17 2.90 2.08 15 1.3

S3BPLP GATCGAGCTATAGGG 26 5 2.15 1.93 12 1.13

S4BPLP TCGAGCGCTATAGGG 37 6 2.44 1.98 13 1.18

Exp. 3

S5BPLA CAGATCGGG 18 14 16.05 2.84 7 1.13

S6BPLA CCGTCCGGG 15 12 22.80 4.31 10 1.29

S7BPLA CGATGTGGG 17 13 24.91 3.21 8 1.18

S8BPLA CTTGTAGGG 16 12 24.01 4.23 10 1.3

S9BPLA GCCAATGGG 26 22 27.23 5.58 14 1.5

S10BPLA TGACCAGGG 24 20 23.89 3.76 11 1.29
aSamples are formatted with the sample id (S#) followed by either BA (barcode absent) or BP (barcode present), and end with either LA (linker absent) or LP (linker present)
bSequence from the template switching oligo present at the start of reads: barcodes are in bold, linker in italic, the 3G-tail is underlined
cNumber of reads that map to unique genomic loci
dPercent of reads that mapped to ribosomal RNA (rRNA)
eCalculated as (number of uniquely mapped reads)/(number of unique read sequences)
fCalculated as the number of protein coding genes with at least one transcription start site (TSS) peak (after G’-filtering)
gCalculated as the average number of G’-filtered TSSs found per gene for genes in column ‘f’
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In experiment 3, we adapted the Illumina TruSeq bar-
codes and used them as per Illumina’s TruSeq sample
pooling guide [11]. We selected barcodes containing as
few “G”s as possible in order to avoid barcode biases
caused by strand invasion [9], and pooled six different
Fig. 1 Percent of genes with the majority of reads mapping within
each gene quartile. All identified protein coding genes were divided
into four even quartiles numbered from 5′ - > 3′ position relative to
the gene sequence. The number of reads whose 5′ most base resided
in a given quartile (x-axis) was counted, and the percent of genes
(y-axis) with the majority of reads in a given quartile was plotted. The
total number of genes analyzed was: 25842, 21804, 20552, 20909,
20567, 19095, 20438, 19432, 19733, and 20785 for samples S1BALA,
S2BPLP, S3BPLP, S4BPLP, S5BPLA, S6BPLA, S7BPLA, S8BPLA, S9BPLA,
and S10BPLA respectively, with 22468 and 22223 genes analyzed for
samples in experiment 2 and 3 combined, respectively. Bracketed bars
with a ‘*’ symbol denotes libraries prepared with a linker sequence in
the template switching oligo
libraries to increase sequence diversity and address the
low mappability observed in experiment 2. The linker was
removed in order to evaluate whether using Illumina-
recommended barcodes would improve read mappability.
As expected, read mappability improved: a slight increase
in percent of mapped raw reads was observed as com-
pared to experiment 1, and a four to five-fold increase as
compared to experiment 2 (Table 1). Experiment 3 had a
comparable number of mapped genes to experiment 2
(Fig. 1).

Read distribution
While high read mappability is desirable, a representa-
tive genomic read distribution is also essential. If too
many reads are generated from strand invasion or other
artifacts (i.e., noise), then the number of true TSS reads
needed to produce identifiable TSS peaks (read clusters)
will not be sufficiently large even with high read mapp-
ability. To further explore this relationship, we used a
peak calling algorithm developed for TSS-Seq reads [4]
to analyze the distribution of reads along the length of
annotated genes without filtering any of the peaks called.
In experiment 1, we found that because of greater se-
quencing depth, the number of genes with an identifi-
able peak within 500 bases of the TAIR10 [12] annotated
TSS or in the 5′ untranslated region (5′ UTR) was
slightly greater than with libraries that were multiplexed:
15,000 genes for experiment 1, as compared to 13,000
and 11,000 genes on average for experiments 2 and 3 re-
spectively (data not shown). Additionally, in all experiments



Fig. 2 Total genes with at least one high-confidence transcription
start site (TSS) after random subsampling. For each library individually
(Panel a) or for all libraries within each experiment combined (Panel b),
from 10 to 70 % of reads were randomly subsampled in increments
of 10 %. The number of reads (in millions) subsampled for each
library/experiment was plotted (x-axis). The reads in each subsample
were then mapped to the genome, and the total number of genes
with at least one high-confidence TSS peak was computed (y-axis)
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we found an inconsistent average number of peaks per gene
prior to peak filtering: 1.9 for experiment 1, 1.2-1.5 for ex-
periment 2, and 1.5-1.7 for experiment 3. To assess the
source of this variation in average peak number, we plotted
the read distribution along the normalized length of a gene
within each library (Fig. 1). We found that those libraries
which incorporate a linker sequence (experiment 2) and
utilize more input template in their preparation display a
much greater bias for reads towards the 5′ ends of genes.
At the same time, while these libraries with more template
have a 5′ read bias, they also have fewer peak calls at the 5′
ends of genes. This is one indicator that fewer false posi-
tives are identified in these libraries, which is confirmed in
further analyses discussed in the “CapFilter” section below.
Overall, our analysis illustrates that inclusion of the low-
“G” linker sequence and use of more template together
served to reduce the number of reads resulting from strand
invasion and other artifacts.

Genome coverage
As expected, the overall sequencing depth in experiment
1, which sequenced one library in one lane, was greater
than in experiments 2 and 3 based on the total number
of genes with mappable reads (Fig. 1). However, when
peaks were filtered in order to identify the most
confident TSS peaks, we found that libraries in experi-
ment 2, which utilized the low-“G” linker plus the opti-
mal template input, performed best. On average, we
identified 10,000 - 11,000 genes with a high confidence
TSS peak per library in experiments 1 and 3, as com-
pared to 13,000 genes in experiment 2 (Table 1). Experi-
ment 3 libraries, which were prepared with less mRNA
input and had higher rRNA content in the template due
to the presence of total RNA, also had higher rRNA
contamination in the library (16 % to 27 %), apparently
contributing to a reduction of the number of productive
reads and an increase in read redundancy. This is in
contrast to much lower contamination level overall for
experiments 1 and 2 (0.29 % and 1.93 - 2.08 % respect-
ively) (Table 1).
To fully illustrate the sequencing depth achieved with

the nanoCAGE-XL protocol, and the differences be-
tween the three experiments, we randomly subsampled,
aligned, and called peaks for the reads produced by each
library individually (Fig. 2a) as well as for all reads within
each experiment combined (Fig. 2b). For individual
libraries, we observed a clear correlation between each
barcode’s performance and its “G” content and/or “G”
proximity to the 3G-tail of the TS oligo (Table 1), with
library S9BPLA performing best and libraries S5-7BPLA
and S1BALA performing worst (Fig. 2a). In combined li-
braries, experiment 2 (less mRNA input) began to level off
in the number of new genes identified with a high-
confidence peak at 60 million reads, whereas experiments
1 and 3 leveled off closer to 80–90 million reads. The
number of genes associated with a high confidence peak
in combined data within experiments that were multi-
plexed (experiments 2 and 3) was slightly higher than for
individual libraries (Table 1) within the same experiment
(experiment 2: 11,000 to 14,000 individually and 16,000
combined, experiment 3: from 7000 to 13,000 individually
and 15,000 combined). This last observation is especially
important, since combined datasets began to reach satur-
ation at 15,000 to 16,000 genes, which is at least 2000 to
3000 more genes than were covered using PEAT; 5000 to
6000 more genes were covered than using PEAT when
only considering high confidence PEAT peaks filtered
based on the criteria used in [3]. Clearly this coverage
could not be achieved on the older GAII platform, which
generates on average only ~20 million reads per lane.
Moreover, the sampling depth showed no barcode bias
for experiment 2, which was performed with the linker
added; this is in contrast to the significant differences
between sampling depth biases for different barcodes in
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experiment 3, in agreement with previous findings [9].
Overall we find that libraries prepared without the low-
“G” linker sequence provided greater read mappability
and gene coverage genome-wide. However, this came at
the cost of a suboptimal read distribution along the
length of the gene for some of the barcodes, e.g., in librar-
ies S5BPLA and S7BPLA, generating fewer genes with a
high confidence TSS peak (read cluster) (Table 1).

Cap signature identifies high confidence TSS peaks
Because of the ability of the reverse transcriptase (RT)
enzyme to transcribe the cap structure [13], many se-
quenced reads which are derived from capped mRNAs
will begin with an unencoded “G”, a “cap signature”
which has been previously reported in both CAGE and
nanoCAGE data sets [9, 14, 15]. In nanoCAGE, unen-
coded “G”s will be incorporated when the TS oligo an-
neals to cytosines beyond the cap-derived cytosine that
have been added by the RT’s template free activity
(Fig. 3a). Assuming an equal distribution of all four
bases in the genome sequence immediately upstream of
the start of such reads, only ~25 % of the cap-derived
“G”s will align to “G”s encoded in the genome. These
artifactually encoded “G”s will be indistinguishable from
all other reads starting with an encoded “G” (Fig. 3a). In
comparison, false TSS peaks resulting from uncapped or
truncated mRNAs starting with a genome-encoded “G”
(a non-cap “G”), may also show a bias for reads starting
with a “G”– but most of these non-cap 5′ “G”s will
match the reference genome (Fig. 3b, c).
Because of this cap signature, namely the presence of

unencoded 5′ “G”s, many reads derived from capped mRNA
may fail to align to the genome, potentially resulting in a loss
of the most informative reads. In agreement with this ex-
pectation, for all reads that began with a “G”, in ~37 % of
these cases the “G” was unencoded. This is in contrast
to reads beginning with any other base where collect-
ively an average of ~4 % of those cases began with unen-
coded instance of that base [Additional file 2: Figure S1
and Additional file 3: Table S1]. This average dropped to
~2 % for all libraries at the second nucleotide, regardless
of base [Additional file 2: Figure S1 and Additional file
3: Table S1]. This indicated that a “C” complementary to
the 5′ cap was frequently incorporated and converted
into a “G” during the second strand synthesis in reads
derived from capped mRNA, with additional nucleo-
tides much less likely to be incorporated. The percent-
age of unencoded “G”s was on average higher for the
libraries in experiment 2 (~66 %) as compared to exper-
iments 1 and 3 combined (~24 %) [Additional file 2:
Figure S1 and Additional file 3: Table S1], suggesting
that using the low-“G” linker in addition to having a
more optimal mRNA template input increases the
chances of the TS-oligo to anneal to the cap-derived
cytosine (see Fig. 1). To overcome the potentially lower
mappability of reads derived from capped mRNAs, we
removed the first base from each read prior to align-
ment, while keeping track of the removed base. When
examining read alignments relative to their position
along the length of genes, a bias was observed toward
reads mapping to the 5′-most portion of the gene re-
gardless of their beginning base (Fig. 3d). This was likely
due to the TS oligo annealing directly to the cap-derived
cytosine (Fig. 3a). However, the bias for reads starting
with a “G”, either encoded or unencoded, was remark-
ably pronounced within the 5′-most portion of the gene.
Thus, reads beginning with this “cap signature” display
this strong “G”-bias, and are more likely to be true TSSs.
This observation allows for the development of filtering
approaches for the elimination of potential false positives
and other background noise in downstream analyses.

CapFilter: a software program to provide G’-filtering of
peaks allows for annotation-free TSS identification
An important feature of TSS-Seq reads is that they do
not originate from one or even a few nucleotides, but
“cluster” together in distinct peaks or “initiation pat-
terns”, which can then be used to identify the most
strongly preferred TSS locations for a gene [3, 9, 16].
Using a peak calling procedure developed in [4], we
identified peaks in regions near gene start sites as anno-
tated in TAIR10 [12]. However, many reads in our data
also formed peak-like clusters within other annotated
portions of the gene, indicating that some peaks could
be false positives generated from artifacts (Fig. 4a). The
in silico filtering mechanism provided in [9], intended to
eliminate strand invasion artifacts arising from genomic
complementarity of the TS oligo used in library con-
struction, still left the distribution of peaks called along
the length of the gene virtually unchanged in our data.
This was true even when relaxing the parameters of the
procedure to allow for more than 5 mismatches (data
not shown). To achieve a reliable selection of TSS peaks
derived from capped mRNA, we developed a new filter-
ing mechanism implemented in our CapFilter software
that identifies and filters peaks based on the “cap signa-
ture”, which we refer to as “G’-filtering”. The procedure
for G’-filtering is straightforward: it calculates the per-
cent of reads within a peak that begin with an unen-
coded “G”, and selects the high-confidence TSS peaks
based on this percentage. We found that as we increased
the minimum percent of unencoded “G”s required to
pass the G’-filter beyond 15 %, the overall distribution of
peaks trended markedly toward annotated locations cor-
responding to the 5′ portions of genes (Fig. 4a, b). Since
the peak calling program [4] used by CapFilter takes a
cut-off at 10 reads per peak, all identified peaks contain
a sufficient number of reads for applying G’-filtering.



Fig. 3 Template switching (TS) overview and layout of read
distribution based on read start base. Panel a: Canonical expectation
– the reverse transcriptase (RT) transcribes the cap structure as an
unencoded cytosine, adds one to two additional cytosines beyond
the cap structure, and switches templates. When the 3”G” tail of the
TS oligo anneals to these additional cytosines, many of the resulting
reads will start with a “G” that does not map to the genome. Some
of the unencoded “G”s will artificially appear as encoded if they
align to genome-encoded “G”s. Letters colored in red represent
bases not found in the genome, letters in blue or black represent
encoded nucleotides. An arrow indicates the position of the peak
mode, i.e., the most-frequently sequenced starting nucleotide. Panel
b: Non-canonical expectation – template switching in which an
uncapped RNA starting with a regular “G” is used. Panel c: Diagram
of strand invasion that occurs as a result of RNA complementarity to
the TS oligo. Panel d: All identified genes were divided into four
even quartiles numbered from 5′ - > 3′ position relative to the gene
sequence. The number of reads whose 5′-most base resided in a
given quartile was counted, and the percent of genes with the
majority of reads aligning to that gene quartile was plotted. As
expected, more reads mapped toward the 5′ end of genes, particularly
reads that began with a “G” either encoded (G), or not encoded in the
genome (G’)
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When we tested a stringent cutoff of 50 %, those peaks
most likely to be spurious (i.e., within the coding region,
an intron, or 3′ UTR) dropped from 70 to 80 % of all
peaks to no more than 5-10 % for all samples in all three
experiments, indicating that this cutoff would provide
a simple and reliable filter for identifying confident
TSS candidates derived from capped mRNA (Fig. 5a;
Additional file 2: Figure S2). The estimated false nega-
tive rate, i.e., the percent of rejected TSSs at true 5′ lo-
cations, ranged from 7 to 11 % across all samples
(Additional file 4: Table S2). Furthermore, we applied
G’-filtering to an unrelated set of mammalian raw data
obtained via the classical cap-trapping CAGE protocol
available in the literature [17], and also observed im-
provement in the TSS peak locations (Additional file 2:
Figure S3).
As an additional measure for testing the precision of

our G’-filtering approach, we generated sequence logos
using Web Logo 3 [18] from the nucleotides surrounding
the peak mode, the genome coordinate most commonly
sequenced in a peak, to identify enriched nucleotides at
the most-preferred TSS positions. Previous research has
shown that in plants there is a preference for a pyrimidine
(Y: C or T) at the −1 nucleotide, i.e., the nucleotide imme-
diately upstream of the TSS, and a purine (R: A or G) at
the +1 position, which is referred to as the “YR rule” [19].
We found that prior to G’-filtering, the +1 and +2 nucleo-
tides were enriched primarily for a “GG” motif (Fig. 5b).
This occurred even when using the in silico filter for
strand invasion artifacts developed in [9], indicating that
the presence of “C”-rich regions alone in mRNA without
additional complementarity to the TS oligo may be suffi-
cient for promoting strand invasion. After G’-filtering, the



Fig. 4 Illustration of the procedure of G’-filtering. Panel a: A GBrowse
[39] snapshot of a representative location showing filtered and
unfiltered TSS-Seq data. The track labeled “Reads” displays individual
reads mapped to the genome, with those beginning with a “G” in
red, those that begin with a “G” that does not match the reference
genome (unencoded) in black, and all other reads in blue. The track
labeled “Peak Calls” shows all peaks called using all reads from the
“Reads” track. The track labeled “Read Distribution” shows a histogram
of all reads found in the “Reads” track, while the “Filtered Peak Read
Distribution” track shows a histogram of the reads belonging to peaks
that passed G’-filtering. The “Genes” track shows genome annotation
for the gene (AT1G01010). Panel b: Representative distribution of TSS
peak calls along the length of genes based on percent of reads starting
with unencoded “G”s. The percent of reads in each peak that began
with a “G” that did not match the reference genome was calculated
and peaks were filtered based on having a minimum of 0 to 100 % of
reads beginning with an unencoded “G” (x-axis). All peaks passing the
G’ filter were then categorized based on the gene part to which they
aligned: promoter =≤3000 bp upstream from TAIR10 annotated TSS,
TSS = peak overlaps TAIR10 TSS, 5′ UTR = peak begins in the 5′
untranslated region, CDS = peak begins in the coding portion of a
gene, Intron = peak begins in an intron of the gene, 3′ UTR = peak
begins in the 3′ untranslated region. The percent of peaks annotated
for each category with the minimum percent of reads beginning with
an unencoded “G” was then totaled and plotted (y-axis)
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primary bases enriched at the −1 and +1 nucleotide posi-
tions were “T,C” and “A,G”, respectively, consistent with
the “YR rule” [19], indicating that G’-filtering was indeed
capturing peak modes that were high confidence TSSs in
our data set. In summary we find that the use of CapFilter
greatly enriches for peaks composed predominantly of
true TSSs. These CapFilter results include a non-
negligible portion of low-coverage peaks (10–20 reads),
highlighting its ability to capture true TSS peaks re-
gardless of coverage.

NanoCAGE-XL is highly reproducible after G’-filtering
Reproducibility is an important metric for the quality of
TSS-seq. To address the reproducibility of our nanoCAGE-
XL data, we examined the correlation in read coverage for
individual peaks, the consistency between TSS peak modes
(the position most commonly sequenced in a read cluster)
of biological replicates, and the consistency between
nanoCAGE-XL peak modes and those in a PEAT data set
generated using the same sample type [3].

Correlation analysis
For the read coverage correlation analysis, we used a
similar approach to that in [9] to perform pair-wise
comparisons for all of our data sets [Additional file 2:
Figure S1 and Additional file 5: Table S3]. Briefly, the
number of reads per million (RPM) was calculated for
each peak in one library of our data set, and this number
was compared to the RPM of the corresponding peak in
a separate library using a Spearman’s rank correlation
analysis. Peaks were considered to be corresponding
based on the overlap of their start/end genomic coordi-
nates. The average Spearman’s rho of 0.67 showed a
moderate level of positive correlation, a value in agree-
ment with previous levels of correlation reported for
nanoCAGE [9]. This value was even greater for compari-
sons between libraries using the common linker se-
quence (average Spearman’s rho of 0.88) [Additional file
2: Figure S1 and Additional file 5: Table S3], indicating
that the common linker reduced biases based on bar-
code difference, consistent with results reported in [9].

Peak mode analysis
To evaluate how consistently TSS peak modes were
identified across nanoCAGE-XL libraries, and how they
compared to PEAT data obtained in [3], we first identi-
fied the corresponding peaks between data sets. We then
calculated the median and average distances between
corresponding peak modes for all pair-wise comparisons.
We include both the median and average calculations to
more accurately describe the distribution of peak mode
differences in each pair-wise comparison. While the
average distance uses a summation of all values for its
calculation, it is more strongly affected by outliers than
the median. In contrast, the median provides a single
data point to represent the maximum and minimum
value of the lower and upper 50 % of the data respect-
ively. For any given pair-wise comparison, this accounted
for 8000 to 14,000 genes with peaks prior to G’-filtering



Fig. 5 Peak call distributions and word logos at peak modes showing the effect of G’-filtering. Panel a: Distribution of peak calls for nanoCAGE
before (left) and after G’-filtering (right), and for unfiltered PEAT peak calls (bottom). Presented are results for library S1BALA (experiment 1).
Promoter =≤3000 bp from TAIR10 transcription start site (TSS), TSS = overlapping TAIR10 TSS, 5’ UTR = 5′ untranslated region, CDS = Exons minus
untranslated regions, Intron = intronic regions, 3′ UTR = 3′ untranslated region, Intergenic = peaks > 3000 bp from a TSS or > 1000 bp from 3′
portion of gene. Panel b: WebLogo 3 [18] was used to produce word logos at the peak modes for all peaks (top) or only those peaks that passed
filtering (bottom). An arrow indicates the position of the read peak mode
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or 4000 to 12,000 genes with peaks post G’-filtering
(data not shown), indicating that most genes had at least
one peak that overlapped in each pair-wise comparison
both before and after filtering. The median distance cal-
culated was between 0 and 2 nucleotides for all pair-
wise comparisons within nanoCAGE-XL data sets; this
median distance dropped to zero when employing G’-fil-
tering, indicating that for most peaks the same peak
mode was called. The average distance between peak
modes ranged from 5 to 18 nucleotides, which dropped
to 3 to 7 nucleotides after applying G’-filtering; at least
95 % of peak modes found were within ~30 nucleotides
of each other in our nanoCAGE-XL data (Fig. 6a). When
comparing nanoCAGE-XL to PEAT, we found that the
median distance between peak modes ranged from 3 to
6 nucleotides, with 2 to 5 nucleotides after applying G’-
filtering (Fig. 6b). The average distance between peak
modes ranged from 12 to 17 nucleotides, with 10 to 12
nucleotides after G’-filtering. For PEAT data compari-
sons, we used only those peaks located within 500 bp of
the TSS or within the 5′ UTR as in [3], since the PEAT
protocol removes the 5′ cap prior to library construction
preventing G’-filtering of the obtained peaks. Thus
nanoCAGE-XL shows remarkably high reproducibility at
single base resolution across biological replicates, and
produces TSS peaks and peak modes comparable to
those of PEAT despite a very different technical
approach.

Discussion
Correct identification of where transcription begins is a
critical factor in studying both the process of transcrip-
tion itself as well as its regulation. For example, due to
the degenerate nature of transcription factor binding
sites, identifying their precise genomic locations is espe-
cially difficult without first correctly identifying their
corresponding TSSs [2, 3]. Our previous work has dem-
onstrated the feasibility of this task using bioinformati-
cally selected PEAT data sets combined with logistic
regression models that incorporate spatial sequence in-
formation for well characterized transcription factors
and their respective binding sites [2, 3]. However, the
use of PEAT TSS-Seq data precludes the analysis of
samples where limited tissue is available due to the high
RNA input requirement for this protocol. Additionally,
the PEAT protocol removes the 5′ cap before library
construction, which prevents noise filtering based on the
presence or absence of a cap signature. NanoCAGE



Fig. 6 Representative sample of distribution of peak mode differences.
Peaks were identified and filtered for all reads in experiment 2 and
experiment 3 of the nanoCAGE samples (Panel a) or experiment 2 and
PEAT (Panel b). Similar results were found for all other comparisons.
The peak modes were compared for peaks whose start and end
coordinates overlapped. A kernel density plot is used to depict the
proportion of genes (y-axis) whose peak modes were within “X”
nucleotides of each other (x-axis). The shaded area under the plot
represents 95 % of all peak modes that were compared

Cumbie et al. BMC Genomics  (2015) 16:597 Page 9 of 13
dramatically reduces the amount of input RNA needed
to interrogate transcription start sites genome wide, al-
though this comes at the expense of low sequencing
depth and genome coverage [8, 9]. We were able to ad-
dress these caveats in the nanoCAGE-XL protocol, and
to show that nanoCAGE-XL is appropriate even for
plant samples, a notorious technical challenge due to
high rRNA content. All raw sequencing data and TSS
peak calls are publicly available in the Short Read Arch-
ive (SRA) [20]. By upscaling library preparation, using
rRNA-depleted templates, and selecting appropriate bar-
codes, we were able to prepare libraries suitable for se-
quencing on Illumina’s HiSeq-2000 platform while
achieving excellent genome coverage in Arabidopsis root
samples. Commensurate with RNA-Seq studies [21] and
microarray studies [22] in developing whole Arabidopsis
root samples, as summarized in [3], our nanoCAGE-XL
libraries covered ~20,000 of the ~27,000 total protein
coding genes in the Arabidopsis genome; over 16,000 of
these genes have a high confidence TSS peak. Import-
antly, using the cap signature common in nanoCAGE
reads that are derived from capped mRNAs allowed us
to develop a new bioinformatic filtering methodology for
the identification of true TSSs.
We found that considerations related to library

barcoding must be taken into account when preparing
nanoCAGE libraries for HiSeq-2000. In the non-
barcoded libraries, the presence of a 3G-tail at the start
of each read generates low read diversity that is detri-
mental for HiSeq-2000 sequencing, as compared to se-
quencing on the older GAIIx platform originally used by
nanoCAGE [8]. Introducing inline barcodes, increasing
the number of differentially barcoded libraries per lane,
and using Illumina-recommended barcode combinations
overcomes this problem and increases the number of
mappable reads generated. A potential further improve-
ment is to use indexing that incorporates the barcode
sequences at the end of reads and requires a separate se-
quencing step, which has recently been introduced in a
number of Hi-Seq 2000 applications. However, such an
approach would also require the design of a custom se-
quencing primer that would anneal over the 3G-tail of
the TS oligo. Generally, primers with high G/C content
at their 3′ end do not perform well in PCR-based appli-
cations. Therefore, such an approach has not yet been
tested.
During the RT step employed in generating first strand

cDNA in nanoCAGE, two events occur: 1) the RT enzyme
incorporates a cytosine nucleotide complementary to the
5′ cap of capped mRNA [13], and 2) one to two additional
cytosine bases are commonly added beyond the 5′ cap by
the enzyme’s template-free activity [13, 23–25]. In both
nanoCAGE and CAGE, the unencoded “C”s are converted
into “G”s in the final sequenced reads, creating a “cap sig-
nature” [9, 14–16]. This is in contrast to the PEAT proto-
col, which removes the cap prior to library construction
[3, 4]. In agreement, we found that nearly 40 % of our raw
reads started with a “G” that did not match the reference
genome. While a small portion of this unencoded “G” bias
may arise from sequencing error, the fact that the
remaining portion of the same reads matched the refer-
ence genome suggests that the majority of these “G”s rep-
resent the “cap signature”. We took advantage of this
easily identifiable marker that distinguishes reads gener-
ated from capped mRNA products to develop a computa-
tional approach that selects for true TSS peaks. While it
may be intuitive to simply select for reads starting with an
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unencoded “G” and disregard all other reads, we found
that a large number of peaks located near the 5′ ends of
TAIR-annotated genes also had a high proportion of reads
that began with encoded “G”s. For these encoded “G”s it
is impossible to determine whether they are cap-derived
or instead arise from artifacts such as strand invasion.
Therefore, instead of selecting for reads beginning with
unencoded “G”s, we based our filtering approach on
selecting for TSS peaks that are marked with a high pro-
portion of reads starting with unencoded “G”s.
We also investigated a threshold that could be used to

efficiently filter for high-confidence TSSs by examining
the proportion of reads with unencoded “G”s which
mapped within annotated genes. We determined that a
cutoff of 50 % of such reads within a peak was stringent
enough to identify high confidence TSS peaks and was
sufficient to eliminate artifactual peaks. Using this cap-
signature filter is especially effective because 1) it does
not require a priori genome annotation, and 2) it applies
to all peaks, regardless of coverage or position along a
gene’s sequence. This second point is especially import-
ant since some of the TSS peaks identified within our
data sets after G’-filtering, as well as those reported for
PEAT samples [3] or other organisms as diverse as hu-
man [14, 16], Drosophila [26] and zebrafish [7], map to
unexpected gene regions (e.g., the 3′ UTR or the coding
sequence) or outside of genic regions entirely. In all of
these cases, the presence of novel or unexpected tran-
scription starting sites is an open question. The simple
procedure of G’-filtering that we report here should pro-
vide an unbiased approach for examination and filtering
of genuine TSSs in many organisms as long as the ex-
perimental protocol preserves the cap signature, as in
nanoCAGE [8] and CAGE [16]. The stringency of this
filter can be modified depending on experimental needs.
For example, stringency can be lowered to allow for in-
creased gene coverage or higher representation of non-
canonical TSS locations, bearing in mind the trade-offs
with increased false positive risk.

Conclusions
In this paper we introduced the first publicly available
protocol adapting nanoCAGE for the HiSeq-2000 se-
quencing platform, making TSS sequencing of low input
samples practical where significant depth of coverage is
required. Using CapFilter, we were able to demonstrate
that the reproducibility of nanoCAGE-XL TSS peak calls
was very high, with identical peak mode positions found
for a substantial portion of all peaks. All cases of non-
identical peak mode positions fell within a short distance
of each other, indicating that nanoCAGE-XL with
CapFilter achieves truly nucleotide level resolution for
identified TSS peaks genome wide. Not only is this
method precise and internally reproducible, but peak
comparisons show a robust cross-platform reproduci-
bility with the PEAT protocol for peaks with moderate
to high coverage, although PEAT does not allow for
G’-filtering. For loci with low coverage, our analysis
suggests that CapFilter provides an advantage in
detecting peaks predominantly composed of capped
transcripts. When combining nanoCAGE-XL libraries
within a given experiment, we find that nanoCAGE-XL
reaches saturation at a higher number of genes than
PEAT, highlighting the possibility for greater coverage
with nanoCAGE-XL for low input samples.

Methods
Plant material and growth conditions
Roots of 9 day-old Col-0 plants grown on vertically ori-
ented agar plates were used in all experiments. Seeds
were surface-sterilized in 20 % commercial bleach for
30 min, and rinsed four times for 10 min with sterile
water. Sterilized seeds were planted on media containing
1X Murashige and Skoog basal medium with vitamins
[27], 1 % sucrose, 10 mM MES buffer pH 5.7 and 0.8 %
agar. Plates were incubated at 4 °C for 2 days to ensure
even germination after which plants were grown at 21 °C
under continuous light conditions with light intensity of
26 μE m−2 s−1.

Library construction, quantification and sequencing
Tissue was ground in liquid N2 and RNA extracted with
TRIzol reagent [28]. Total RNA (RIN 9.0 to 9.6) was
treated with 1X RNA Secure Reagent [29] at 65 °C for
10 min, treated with DNase I [29] for 10 min at 37 °C,
and purified with RNAeasy kit [30] following the manu-
facturer’s instructions. rRNA was depleted with Ribo-Zero
Magnetic kit (Plant Seed/Root) [31] following the manu-
facturer’s instructions. Purity and concentration of the
resulting mRNAs was determined using Bioanalyzer [32].
RT was performed as in [8] except that either 40 μl re-

actions with ~200 ng mRNA (experiments 1 and 3), or
20 μl reactions with 50 ng mRNA + 100 ng total RNA
(experiment 2) were performed. Reactions were purified
with Agencourt RNAClean XP kit [33] as per the manu-
facturer’s instructions, and first strand cDNA eluted
from the beads with 80 μl H2O. The optimal number of
semisuppressive PCR cycles, usually between 17 and 25,
required for second-strand synthesis were determined by
quantitative real-time PCR as in [8]. No-template con-
trols were included at this step to test for potential con-
taminants. Next, for each library, 400 μl semisuppressive
PCR reactions were performed using 60 μl of first strand
cDNA and the selected number of cycles, after which
the reactions were purified with Agencourt AMPure XP
kit [33]. Concentration of PCR products was determined
with Qubit dsDNA HS Assay kit [34], and products di-
luted to 10 ng/μl. For each library, addition of sequencing
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adaptors was performed in 700 μl PCR mixtures. At this
step, the ExTaq polymerase was replaced with Phusion
Hot Start II High-Fidelity DNA Polymerase [35] in order
to generate blunt cDNA ends. The cycling conditions
were: 1) 98 °C for 1 min, 2) 1 cycle of 98 °C for 15 s, 55 °C
for 10 s, 68 °C for 2 min, 3) 9 cycles of 98 °C for 15 s,
65 °C for 10 s, 68 °C for 2 min. After completion of the
PCR, remaining primers were purified by Exonuclease I
digestion as in [5]. Namely, 5 μl of Exo I (20 U/ μl) [36]
was added per 700-μl PCR mixture and the mixtures in-
cubated at 37 °C for 30 min. Each 700 μl PCR mixture
was then mixed with 3.5 ml (5 V) of PB buffer, purified by
running through a single column of QIAquick PCR purifi-
cation kit [30], and each library eluted with 25 μl H2O.
Library concentrations were determined with Qubit

dsDNA HS Assay kit [34], and library molecular size
distributions determined using Bioanalyzer. The optimal
amounts of libraries were then determined as per the
Illumina qPCR quantification guide [11], and libraries
sequenced at concentrations of 1.3 to 2.3 nM.

Sequence processing and alignment
All alignments were made against the TAIR10 version of
the Arabidopsis genome [12]. Prior to alignment, all
reads within a library had the TS oligo sequence removed.
For experiment 1, only reads starting with “GGG” were
accepted, and the “GGG” sequence was removed before
alignment. For libraries that were barcoded (experiments
2 and 3) and often had mismatches in the barcode portion
of the read, a custom Perl script was used to assign a
barcode to a library only if 1) the barcode had the fewest
mismatches compared to any other barcode, and 2) no
more than three mismatches total were found [37]. Once
a barcode was identified, both the adapter with the
barcode, and the following “GGG” portion of the adapter
was removed before alignment. For experiment 1, which
sequenced 101 nucleotides as opposed to 51 nucleotides
in experiments 2 and 3, the last 41 nucleotides were
trimmed prior to alignment in order to make sequence
lengths more comparable across samples. rRNA reads
were removed, and only uniquely mapped reads were used
for analyses. CapFilter, described below, was used to pre-
process all sequence files prior to alignment, but after
adapter removal. After applying CapFilter, all reads were
aligned to the TAIR10 reference genome, using Tophat
version 2.0.12 [38], with the parameter settings ‘–bowtie1
-N 2 -i 50 -I 5000’ and the ‘–segment-length’ option set to
half the length of the aligned read for those libraries where
reads were < 51 nucleotides.

Strand invasion filtering
Strand invasion artifacts were removed post-alignment
using the same procedure outlined in [9] with some
minor modifications. Briefly, the nine nucleotides
directly upstream of the mapped reads were pulled
from the reference genome and this sequence was
compared to the last nine nucleotides of the TS oligo
used for preparing the library. The last three nucleo-
tides of the reference genome sequence had to have no
less than two of the three “G”s present in the TS oligo
tail, and no more than two mismatches overall. This
same alignment requirement was then applied to sub-
sequences one to three nucleotides upstream and
downstream of the read alignment start position, and if
at least one subsequence matched the last 9 nucleo-
tides of the TS oligo, then the read was considered as
showing evidence of strand invasion.

Quartile plotting
All annotated protein coding genes were partitioned into
four evenly spaced quartiles, relative to the orientation
of the gene, starting at 100 bp upstream of the TAIR10
TSS and ending at the TAIR10 annotated end of the gene
[12]. Quartiles were ordered from the most 5′ (quartile 1)
to the most 3′ (quartile 4). The total number of reads
whose 5′-most base resided within a given quartile was
then calculated, and the percent of genes with the majority
of reads found within a quartile was plotted.

Peak identification and G’ filtering with CapFilter
CapFilter is a two-step process used to identify high con-
fidence peaks. The first step pre-processes reads prior to
alignment by trimming the first nucleotide of a given se-
quence and modifying the FASTQ identifier to keep
track of this nucleotide. This FASTQ file is then aligned
against the reference, and the subsequent BAM file pro-
duced by TopHat [38]. This BAM file is then filtered for
strand invasion artifacts, and peak identification is per-
formed using a previously developed peak calling pro-
gram [4]. CapFilter then takes as input the BAM file, the
generated peak file, and the reference genome sequence,
and generates as output a final peak file containing high
confidence TSS peaks. For this, CapFilter enumerates
the percent of reads within a peak that had a 5′ unen-
coded “G” removed (based on the nucleotide identified
in the “qname” field of the SAM alignment). CapFilter
then creates a final peak file with high confidence peaks
and adds an additional “%-Capped” column to the output
to denote the percent of reads which had a 5′ unencoded
“G”. Each unencoded “G” was identified by comparing the
first base of the FASTQ file (which was removed prior to
alignment) to the reference genome nucleotide that was
one base pair upstream of the mapped read.

Read correlation analysis
The total number of reads assigned to each peak was
calculated using the same procedure outlined above for
G’-filtering, and these totals were normalized to the
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number of reads per million (RPM) found within a given
library. For all pairwise comparisons, all peaks were then
paired based on overlapping coordinates; only those
peaks that could be paired uniquely between libraries
were compared. A Spearman’s rank correlation analysis
was then performed for all peaks that could be paired
between each library.

Peak mode analysis
For all pairwise comparisons, all peaks were paired based
on overlapping start/end coordinates. Only those peaks
which could be paired uniquely were used, and the me-
dian and average distance between the identified peak
modes was calculated. For those peaks in nanoCAGE-
XL that were comparable to PEAT peaks (overlapping),
only peaks within 500 bases of the TAIR10 annotated
TSS or within the 5′ UTR were used for this comparison
based on the criteria for PEAT peak selection [3]. For all
comparisons within nanoCAGE-XL data uniquely paired
peaks from all regions were used prior to filtering. After fil-
tering, only uniquely paired peaks that had at least
50 % of reads beginning with an unencoded “G” were
considered.

Availability of supporting data
A detailed experimental protocol for nanoCAGE-XL is
provided in Additional file 1. All raw sequencing data
and TSS peak calls (made for each library individually
and for each experiment combined) supporting the
results of this article are available at Short Read Archive
in [http://www.ncbi.nlm.nih.gov/sra] with accession
[PRJNA270670]. The Perl script for assigning barcodes is
publicly available as an open source command-line tool at
[37]. The CapFilter program for identifying high confi-
dence peak calls is publicly available as an open source
command-line tool [37].

Additional files

Additional file 1: Step by step description of the entire nanoCAGE-XL
protocol.

Additional file 2: Figure S1. Effect of rRNA depletion on nanoCAGE librariy
profile. Panel a: Library constructed with total RNA as template. Panel b: Library
constructed with Ribo-Zero depleted RNA as template. Figure S2: Examples of
nanoCAGE TSS peak distribution before and after G’-filtering for experiments 2
and 3. Figure S3: Examples of CAGE TSS peak distributions before and after
G’-filtering.

Additional file 3: Table S1. Percent of reads with mismatch at the 1st

base (% X1) and 2nd base (% X2).

Additional file 4: Table S2. Summary of Peak Locations when applying
G’ Filtering at a 50 % Cutoff.

Additional file 5: Table S3. Spearman’s Rho for pairwise comparisons
of peak RPMs.
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