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ABSTRACT

Objective: We investigated white matter lesion load and global and regional brain volumes in rela-
tion to domain-specific cognitive performance in the stroke-free Northern Manhattan Study
(NOMAS) population.

Methods: We quantified white matter hyperintensity volume (WMHV), total cerebral volume (TCV),
and total lateral ventricular (TLV) volume, as well as hippocampal and cortical gray matter (GM)
lobar volumes in a subgroup. We used general linear models to examine MRI markers in relation
to domain-specific cognitive performance, adjusting for key covariates.

Results: MRI and cognitive data were available for 1,163 participants (mean age 70 6 9 years;
60% women; 66% Hispanic, 17% black, 15% white). Across the entire sample, those with
greater WMHV had worse processing speed. Those with larger TLV volume did worse on episodic
memory, processing speed, and semantic memory tasks, and TCV did not explain domain-specific
variability in cognitive performance independent of other measures. Age was an effect modifier,
and stratified analysis showed that TCV and WMHV explained variability in some domains above
age 70. Smaller hippocampal volume was associated with worse performance across domains,
even after adjusting for APOE e4 and vascular risk factors, whereas smaller frontal lobe volumes
were only associated with worse executive function.

Conclusions: In this racially/ethnically diverse, community-based sample, white matter lesion load
was inversely associated with cognitive performance, independent of brain atrophy. Lateral ven-
tricular, hippocampal, and lobar GM volumes explained domain-specific variability in cognitive
performance. Neurology® 2015;85:441–449

GLOSSARY
EMEM 5 episodic memory; EXEC 5 executive function; GM 5 gray matter; NC 5 neurocognitive; NOMAS 5 Northern
Manhattan Study; PS 5 processing speed; SMEM 5 semantic memory; SVD 5 small vessel disease; TCV 5 total cerebral
volume; TIV 5 total intracranial volume; TLV 5 total lateral ventricular; WMHV 5 white matter hyperintensity volume.

With the aging of the US population,1 there is increasing interest in cognitive aging, a complex
process that includes the effects of neurodegenerative and cardiovascular processes prevalent in
older adults. Data regarding region-specific brain volumes and domain-specific cognitive per-
formance from racially/ethnically diverse studies are limited.

Measures of global brain atrophy, such as ventricular enlargement and total cerebral volume
(TCV), have correlated with worse cognitive performance and an increased risk of stroke and
dementia.2–6 Lobar and hippocampal volumes have also been observed to decrease variably over
the lifespan.7 Frontal and temporal atrophy have been associated with deficits in executive
function and memory, whereas hippocampal atrophy is a risk factor for cognitive decline in
cognitively normal people.6,8 Cerebral small vessel disease (SVD) is common in older adults and
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has been associated with worse cognitive per-
formance and decline in cognitively normal
individuals and a greater risk of stroke, demen-
tia, and mortality.9–11

Associations of these imaging markers with
domain-specific cognitive performance are not
well-understood on a population-based level,
especially among middle-aged and older His-
panics and blacks. We hypothesized that imag-
ing markers of global cerebral and ventricular
volumes and cerebral SVD would explain var-
iability in cognitive performance in this diverse
population-based sample. Also, because vascu-
lar damage and Alzheimer disease are the most
prevalent causes of cognitive decline in older
adults, we hypothesized that cerebral SVD
would predominantly affect frontal lobe func-
tion, resulting in worse executive function,
whereas brain atrophy would affect cognitive
function more broadly.

METHODS Participants. The Northern Manhattan Study

(NOMAS) is a prospective population-based cohort study. The

general recruitment, design, and demographics of NOMAS

have been previously described in detail.12 Eligible participants

were stroke-free, were.40 years old, and resided.3 months in a

Northern Manhattan household with a telephone. We enrolled

3,298 participants using random digit dialing between 1993 and

2001. All participants underwent a baseline evaluation of

demographic characteristics, health behaviors, and health status,

including comprehensive medical history, physical/neurologic

examination, medical record review, and fasting blood samples.

Standardized questions were adapted from the Centers for

Disease Control and Prevention Behavioral Risk Factor

Surveillance System.

Standard protocol approvals, registrations, and patient
consents. All participants signed informed consent and the insti-

tutional review boards of Columbia University and the University

of Miami approved the study.

Neurologic testing and cognitive domain scores. From

2003 to 2008, 1,290 stroke-free participants eligible for MRI

(including 199 newly enrolled NOMAS household members

meeting above entry criteria) completed a neurocognitive

(NC) battery in English or Spanish based on language spoken

at home. To assign cognitive domain labels, we explored

interrelationships among individual NC test scores with factor

analysis and used a Scree plot of eigenvalues to determine the

number of constructs (domains). We computed composite

scores for each domain by averaging individual z scores

transformed from raw test scores, as previously described13–15:

episodic memory (EMEM): subscores from a 12-word 5-trial

list-learning task (total, delayed recall, and delayed recognition);

executive function (EXEC): time to complete Color Trails

2 minus Color Trails 1 and the sum of Odd-Man-Out

subtests 2 and 4; processing speed (PS): nondominant hand

Grooved Pegboard times, Color Trails 1 time, and Visual-

Motor Integration test scores16; semantic memory (SMEM):

picture naming (modified Boston Naming), category fluency

(Animal Naming), and phonemic fluency (C, F, L in English

speakers and F, A, S in Spanish speakers).

Brain MRI measurements. During the initial MRI study, we

focused on cerebral volumes and did not include infratentorial

structures or brainstem. Brain MRI scans were obtained from

2003 to 2008 on the same day as the NC battery. We used a

1.5T Philips Intera scanner (Philips, Best, the Netherlands) at

Columbia University Medical Center. Images were transferred

electronically to University of California, Davis for morpho-

metric analysis of TCV, total lateral ventricular (TLV) volume,

and white matter hyperintensity volume (WMHV) using T1

and fluid- attenuated inversion recovery sequences, as previ-

ously described.16–18 Briefly, nonbrain elements were manually

removed from the image by operator-guided tracing of dura

mater within the cranium, including the middle cranial fossa

but excluding the posterior fossa and brainstem. The resulting

measure was defined as total intracranial volume (TIV). TCV

was computed as the sum of whole brain volume voxels from

the T1 segmentation process. After segmentation into brain

matter and CSF, voxels belonging to the CSF class within the

region of interest were summed to quantify TLV volume.

WMHV was calculated as the sum of voxels $3.5 SDs above

the mean image intensity multiplied by pixel dimensions and

section thickness. We expressed TCV, TLV volume, and

WMHV as proportions of TIV to correct for individual

differences in head size. For consistency with prior publications

we do not use Standards for Reporting Vascular Changes on

Neuroimaging, as previously described.e1

Volumetric segmentation of lobar gray matter (GM) volumes

and hippocampal volumes was performed with high-quality data

sets using the publicly available FreeSurfer image analysis suite

(Version 5.1) (http://surfer.nmr.mgh.harvard.edu/).19,20 All

T1-weighted MRIs underwent motion correction, skull stripping,

and transformations into Talaraich space before segmentation,

identification of gray/white matter boundaries, automated

topology correction, and surface deformation.21,22 Through

3-dimensional segmentation methods, neuroanatomic labels for

regional white matter and cortical GM parcellations were assigned

to each voxel using a probabilistic atlas and Bayesian classification

rule.19 FreeSurfer provides an estimate of hippocampal volume, and

68 cortical GM parcellations were summed to estimate frontal,

temporal, occipital, and parietal lobe GM volumes using recom-

mended methods.20,23 All regional GM volumes were expressed as

ratios of TCV to account for relative differences in brain size (rather

than head size, as was done for the global measures) in order to

examine the relative importance of regional GM volumes.

APOE genotyping. DNA samples were extracted from periph-

eral blood white cells using HhaI digestion and amplified by

PCR, as previously described.24 APOE e4 carriers were identified

as individuals with a genotype of APOE e4/e2, APOE e4/e4, and
APOE e4/e3.

Statistical analyses. To evaluate the association of brain volu-

metric measures with domain-specific cognitive performance, we

built a series of models to adjust for potential confounders: age,

sex, race/ethnicity (non-Hispanic white, non-Hispanic black,

Hispanic, non-Hispanic other), education, body mass index,

waist-to-hip ratio, smoking (never, former, and current),

reported moderate alcohol intake (1 drink per week to # 2

drinks per day vs other), reported moderate leisure-time

physical activity (vs inactive),25 antihypertensive medication

use, antidiabetic medication use, lipid-lowering medication

use, systolic and diastolic blood pressure, glucose, low-density

lipoprotein, high-density lipoprotein, and triglycerides. The
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primary analysis used general linear models and adjusted for age,

sex, race/ethnicity, education, and TIV (or TCV for regional

analyses) for the association between each brain volumetric

measure and performance in a domain. As secondary analyses,

additional adjustments were made for APOE genotype and for

all MRI variables simultaneously to ensure that any effect of one

brain measure was independent of the others. In sensitivity

analysis, regional volume associations were also evaluated

using the proportion of TIV (instead of TCV). Finally, joint

effects of brain morphologic parameters and potential

interactions with other covariates were assessed with models

that included multiple significant morphologic predictors and

their interaction terms. We did stratified analyses for

interactions with p values ,0.1. We used SAS version 9.3

(SAS Institute, Cary, NC).

RESULTS Participant characteristics are summarized
in table 1. Half the sample was above age 70, with
an average of 10 years of education. The majority of
participants were women, were of Hispanic/Latino
origin, reported taking blood pressure medication,
and reported moderate to heavy leisure-time physical
activity. Total cerebral and regional brain volumes are
summarized in table 2. Global cognition was high
(mean Mini-Mental State Examination score 5

26.7 6 3.3), in keeping with our prior estimate
of ,5% cognitive impairment at baseline.26

Examining the whole sample, larger TCV was not
significantly associated with variability in cognitive
performance in any domain after adjusting for age,
sex, race/ethnicity, and education. This remained true
after adjusting further for lifestyle and vascular fac-
tors, APOE genotype, and other brain measures
(table 3). In contrast, those with larger TLV volume
and WMHV had worse EMEM, PS, and SMEM
performance after adjusting for age, other sociodemo-
graphic and vascular risk factors, APOE e4 allele
status, and TCV. Those with larger WMHV showed
worse EXEC performance after adjusting for socio-
demographic, lifestyle, and vascular risk factors, but
this attenuated slightly after adjusting for APOE e4
status and did not reach significance after adjusting
for other brain measures (p 5 0.09, table 3). Both
TCV and WMHV interacted with age in relation to
EMEM and SMEM performance, and there was a
weaker interaction between TCV and age in relation
to PS (table 4), whereas TLV volume did not interact
with age. We therefore stratified at median age and
found that smaller TCV was associated with worse
memory and PS, whereas greater WMHV was asso-
ciated with worse performance in EMEM and
SMEM, in those older than age 70 after adjusting
for vascular factors, APOE e4 status, and other brain
measures (table 4).

Regional GM volumes explained some variability in
domain-specific cognitive performance among 813
participants with available data (tables 2 and 5). Those
with smaller hippocampal volumes showed worse

performance across cognitive domains, especially
EMEM, after adjusting for sociodemographic and vas-
cular risk factors and APOE genotype (table 5). Those
with smaller frontal GM volumes performed signifi-
cantly worse in the EXEC domain. Participants with
smaller temporal lobe and parietal lobe GM volumes
performed worse in EMEM and EXEC domains with
a trend for worse performance in the SMEM domain,
and smaller temporal lobe GM volumes contributed to
worse performance in the PS domain. Occipital lobe
GM volumes did not explain variability in domain-
specific cognitive performance (table 5).

Several lobar GM volumes and hippocampal vol-
umes interacted with age in relation to domain-
specific cognitive performance (table 4). Age was an

Table 1 Sample characteristics (N 5 1,163)

Characteristic N (%)

APOE e4 noncarrier 878 (76)

Race/ethnicity

White 173 (15)

Black 193 (17)

Hispanic 770 (66)

Other 27 (2)

Smoking

Never 560 (48)

Former 501 (43)

Current 102 (9)

Physical activity 658 (57)

Moderate alcohol drinker 390 (34)

Blood pressure medication 705 (61)

Diabetes medication 234 (20)

Lipid-lowering medication 357 (31)

Characteristic Mean (SD)

Age, y 70 (9)

Education, y 10 (5)

Mini-Mental State Examination score 26.7 (3.3)

BMI, kg/m2 29 (5)

Height, cm 161 (10)

WHR 0.9 (0.1)

BS, mg/dL 100 (33)

LDL, mg/dL 115 (35)

HDL, mg/dL 53 (17)

TG, mg/dL 124 (73)

SBP, mm Hg 137 (18)

DBP, mm Hg 78 (10)

Abbreviations: BMI 5 body mass index; BS 5 blood sugar;
DBP 5 diastolic blood pressure; HDL 5 high-density lipo-
protein; LDL 5 low-density lipoprotein; SBP 5 systolic
blood pressure; TG 5 triglycerides; WHR 5 waist-to-hip
ratio.
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effect modifier such that those with smaller hippo-
campal volumes showed worse EMEM performance
across the age range, especially among older partici-
pants. In addition, older, but not younger, partici-
pants with smaller hippocampal volumes performed

worse in the EXEC and SMEM domains. Finally,
smaller frontal lobe, temporal lobe, and parietal lobe
GM volumes were associated with worse performance
in the EXEC domain only among those younger than
70. Neither race/ethnicity nor sex acted as effect
modifiers of associations between MRI markers and
cognitive performance. We did not find significant
interactions for any other covariates.

DISCUSSION In this community-based sample of
older adults free of clinical stroke, we observed that
participants with a greater burden of white matter
lesions and those with larger lateral ventricles
exhibited worse performance across several domains.
We found region-specific differences in a subset of
participants, as hippocampal volumes were a strong
indicator of performance across all cognitive
domains, especially episodic memory, and smaller
frontal lobe volumes were associated with worse
executive function. Our findings did not vary
significantly by race/ethnicity, suggesting consistency
across this urban sample. We did find interactions
with age such that variability in cognitive
performance explained by the MRI markers was
evident mostly in those 70 years or older. However,
smaller hippocampal volumes were associated with

Table 2 Summary of total cerebral, cortical lobar, and hippocampal volumes

Global cerebral volume measurements
(N 5 1,163) Measure in cm3 Measure in % TIV

TIV, mean 6 SD 1,154.6 6 123.2 —

TCV, mean 6 SD 837.0 6 100.0 72.5 6 4.2

Total lateral ventricular volume,
mean 6 SD

37.7 6 19.3 3.2 6 1.6

White matter hyperintensity volume,
mean 6 SD

7.5 6 9.4 0.7 6 0.8

Regional brain measurements
(N 5 813) Measure in cm3 Measure in % TCV

Hippocampal volume, mean 6 SD 7.3 6 1.0 0.9 6 0.1

Lobar volumes, mean 6 SD

Frontal 144.8 6 16.9 17.4 6 1.4

Temporal 82.4 6 10.4 9.9 6 1.0

Occipital 41.8 6 5.8 5.0 6 0.5

Parietal 108.3 6 13.1 12.8 6 1.1

Abbreviations: TCV 5 total cerebral volume; TIV 5 total intracranial volume.

Table 3 Association of white matter hyperintensity volume and total brain volumetric measure ratiosa with cognitive performance by domain
(N 5 1,163)

Parameters

Episodic memory Executive function Processing speed Semantic memory

b 6 SE p b 6 SE p b 6 SE p b 6 SE p

TCV, per 1 SD increase

Model A 0.029 6 0.029 0.33 0.000 6 0.029 0.97 0.063 6 0.029 0.03 0.025 6 0.029 0.41

Model B 0.029 6 0.029 0.34 20.063 6 0.029 0.82 0.042 6 0.029 0.15 0.038 6 0.029 0.19

Model C 0.034 6 0.029 0.31 20.050 6 0.029 0.86 0.046 6 0.029 0.13 0.038 6 0.029 0.19

Model D 20.008 6 0.034 0.79 20.008 6 0.034 0.76 0.021 6 0.034 0.52 0.017 6 0.029 0.63

TLV volume per 1 SD increase

Model A 20.139 6 0.030 ,0.001 20.034 6 0.027 0.21 20.122 6 0.029 ,0.001 20.090 6 0.027 0.001

Model B 20.142 6 0.030 ,0.001 20.027 6 0.027 0.32 20.110 6 0.029 ,0.001 20.093 6 0.027 ,0.001

Model C 20.142 6 0.030 ,0.001 20.027 6 0.027 0.32 20.110 6 0.029 ,0.001 20.093 6 0.027 ,0.001

Model D 20.122 6 0.034 ,0.001 20.016 6 0.030 0.59 20.078 6 0.032 0.02 20.070 6 0.030 0.02

WMHV per 1 SD increase

Model A 20.119 6 0.027 ,0.001 20.060 6 0.024 0.01 20.134 6 0.026 ,0.001 20.090 6 0.025 ,0.001

Model B 20.114 6 0.027 ,0.001 20.051 6 0.024 0.03 20.113 6 0.026 ,0.001 20.077 6 0.025 0.002

Model C 20.109 6 0.027 ,0.001 20.046 6 0.024 0.05 20.109 6 0.026 ,0.001 20.075 6 0.025 0.003

Model D 20.078 6 0.029 0.01 20.042 6 0.025 0.09 20.090 6 0.027 ,0.001 20.058 6 0.026 0.03

Abbreviations: HDL-C 5 high-density lipoprotein cholesterol; LDL-C 5 low-density lipoprotein cholesterol; TIV 5 total intracranial volume; TLV 5 total
lateral ventricular; WMHV 5 white matter hyperintensity volume.
Model A: adjusted for age, sex, race/ethnicity, and education; model B: model A adjusted further for smoking, moderate alcohol use, leisure-time physical
activity, body mass index, waist-to-hip ratio, systolic and diastolic blood pressure, use of antihypertensive medications, fasting glucose, use of diabetes
medications, LDL-C, HDL-C, triglycerides, and use of lipid-lowering medications; model C: model B additionally adjusted for APOE genotype; model D: model C
additionally adjusted for other brain measures.
a All volumes expressed as a percentage of TIV.
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worse memory across the full age range, and frontal
lobe GM volume was a marker of executive function
in younger participants.

Other studies, some of which were population-
based, have reported relationships between total
brain or cerebral volumes and cognitive perfor-
mance.3,6 Unlike these other studies, TCV was not
associated with overall cognitive performance in this
diverse sample until we examined older participants
separately. This is perhaps unsurprising since cere-
bral volume is less important than other factors such
as efficiency of network connections and synaptic
complexities that we are unable to assess using struc-
tural imaging. These differences could be due to
methodologic differences across studies, as some
studies used different measures of cerebral volume
losses, such as visual rating scales, instead of quan-
titative measures of TCV. Also, some studies
excluded those with dementia, thereby selecting older
participants with more normal cognition, and
others included participants from memory clinics,
thereby selecting participants with greater cognitive
disability.6 Because we excluded participants with
clinical stroke but not those with cognitive disorders
or dementia and the average age was 70, it is likely
that we included both younger people at low risk of
neurocognitive disorders and older people in whom
these processes may have been active. The prevalence
of cognitive impairment is estimated to be less than
5% in our cohort at the time of these assessments.
Thus, TCV may not have been as strongly related to
cognitive performance in our overall sample because
of this heterogeneity, explaining why TCV was asso-
ciated with memory and processing speed in older
participants after stratifying at median age. Our data
suggest that larger cerebral volumes could be protec-
tive in older age, and some prospective data support
this idea.6

In this study and others, MRI-defined SVD was
associated with worse cognition across domains.2,9,27

Small vessel damage caused by exposure to potentially
modifiable vascular risk factors such as hypertension
can cause arteriolosclerosis and cerebral hypoperfu-
sion, resulting in demyelination or complete necrosis
of white matter, which can, in turn, globally compro-
mise cognition.28 In addition, we found that those 70
years or older with greater WMHV performed worse
in episodic and semantic memory domains. This
finding may be driven by the cumulative effects of
cardiovascular risk factors or subclinical Alzheimer
pathology on cerebrovascular integrity in this mixed
sample, both of which may synergize with age in rela-
tion to cognitive performance. Cerebral amyloid angi-
opathy may underlie some white matter lesions29 in
older participants and has been associated with
Alzheimer disease in autopsy studies.30
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We found 2 population-based studies reporting
ventricular enlargement to be associated with worse
executive function and processing speed, but they
did not include Hispanic/Latino participants.2,31

TLV volume was more strongly associated with epi-
sodic and semantic memory than executive function
in our cohort. TLV volume is a measure of central
atrophy, and greater TLV volume may be a more
sensitive marker of damage that affects cognition than
TCV4 in this sample. Because TLV volume did not
interact with age in relation to cognitive performance,
TLV volume may serve as a marker of processes less
dependent on aging itself. This finding is consistent
with longitudinal studies showing that ventricular
enlargement is a marker of dementia progression
and may implicate neurodegenerative processes.4

Hippocampal volume has been associated with
memory,32 but some, though not all, cross-sectional
data have also shown that greater hippocampal

volumes can correlate with better executive func-
tion.6,33 In this community-based sample unselected
for cognitive status, smaller hippocampal volumes
served as a marker of worse performance across all
cognitive domains, reflecting the importance of the
hippocampus in successful aging.34 That hippocam-
pal volumes interacted with age in relation to memory
function in both younger and older age groups sug-
gests that hippocampus volumes are a general indica-
tor of memory ability in late middle age as well as old
age. Hippocampal volume also interacted with age in
relation to executive function and semantic memory
performance, and those 70 years or older with smaller
hippocampal volumes had worse performance. This is
most likely due to the later involvement of these cog-
nitive domains as cognitive disorders advance.

Temporal and parietal lobe GM volumes were
associated with performance in multiple domains,
including memory and executive function. Perhaps

Table 5 Association of lobar brain volume measure ratiosa with cognitive performance by domain (N 5 813)

Parameters

Episodic memory Executive function Processing speed Semantic memory

b 6 SE p b 6 SE p b 6 SE p b 6 SE p

Hippocampal volume per
1 SD increase

Model A 0.208 6 0.032 ,0.001 0.088 6 0.029 0.003 0.088 6 0.032 0.006 0.066 6 0.030 0.03

Model B 0.201 6 0.032 ,0.001 0.091 6 0.029 0.002 0.094 6 0.031 0.003 0.062 6 0.030 0.04

Model C 0.199 6 0.032 ,0.001 0.089 6 0.029 0.002 0.091 6 0.031 0.004 0.062 6 0.030 0.04

Frontal lobe GM volume per
1 SD increase

Model A 0.059 6 0.032 0.07 0.069 6 0.028 0.01 0.048 6 0.031 0.12 0.031 6 0.028 0.28

Model B 0.056 6 0.032 0.09 0.063 6 0.028 0.03 0.042 6 0.029 0.16 0.021 6 0.028 0.45

Model C 0.049 6 0.032 0.13 0.057 6 0.028 0.04 0.034 6 0.031 0.26 0.020 6 0.029 0.48

Temporal lobe GM volume per
1 SD increase

Model A 0.110 6 0.032 ,0.001 0.089 6 0.028 0.002 0.089 6 0.031 0.003 0.061 6 0.029 0.04

Model B 0.107 6 0.033 0.001 0.076 6 0.028 0.007 0.077 6 0.031 0.01 0.056 6 0.029 0.05

Model C 0.104 6 0.033 0.002 0.073 6 0.028 0.01 0.073 6 0.031 0.02 0.055 6 0.029 0.06

Occipital lobe GM volume per
1 SD increase

Model A 0.017 6 0.029 0.56 0.031 6 0.026 0.24 20.027 6 0.028 0.33 0.006 6 0.027 0.82

Model B 0.016 6 0.029 0.59 0.028 6 0.026 0.27 20.029 6 0.028 0.29 0.002 6 0.026 0.95

Model C 0.015 6 0.029 0.62 0.027 6 0.026 0.29 20.031 6 0.028 0.25 0.001 6 0.026 0.97

Parietal lobe GM volume per
1 SD increase

Model A 0.084 6 0.032 0.009 0.081 6 0.028 0.004 0.058 6 0.031 0.06 0.062 6 0.029 0.03

Model B 0.078 6 0.033 0.02 0.072 6 0.028 0.01 0.051 6 0.030 0.09 0.052 6 0.029 0.07

Model C 0.072 6 0.033 0.03 0.067 6 0.029 0.02 0.043 6 0.030 0.16 0.052 6 0.029 0.07

Abbreviations: GM 5 gray matter; HDL-C 5 high-density lipoprotein cholesterol; LDL-C 5 low-density lipoprotein cholesterol; TCV 5 total cerebral volume.
Model A: adjusted for age, sex, race/ethnicity, education, and TCV; model B: model A additionally adjusted for smoking, moderate alcohol drinking, leisure-
time physical activity, body mass index, waist-to-hip ratio, systolic and diastolic blood pressure, use of antihypertensive medications, plasma glucose, use of
diabetes medications, LDL-C, HDL-C, triglycerides, and use of lipid-lowering medications; model C: model B additionally adjusted for APOE genotype.
a All volumes expressed as a percentage of TCV.
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unsurprisingly, frontal lobe GM volume was
only associated with executive function. Other
community-based studies with more homogeneous
samples found that smaller frontal and temporal lobe
volumes were associated with worse general cognitive
performance.33 However, we were unable to find
community-based studies that explicitly analyzed
the relationship between parietal lobe volumes and
cognition. Nonetheless, other studies have shown
that executive performance is affected by processing
speed and age-related memory performance.35 Also,
free recall of noncontextual verbal information (list
learning), which dominated our memory testing, re-
quires some executive control.36 Some lobar volumes
were associated with performance in several cognitive
domains, but domain-specific constructs are some-
what artificial and the cognitive processes they repre-
sent are distributed. However, it is of interest that our
stratified analysis showed that lobar GM volumes
were markers of executive performance among those
,70 years, whereas smaller TCV was associated with
worse performance only in older participants. Since
the TCV measure represents both gray and white
matter structures in both hemispheres, it is likely to
be a marker of a wider array of insults, whereas GM
volume variability is more likely to be a marker of
aging and neurodegeneration.

Strengths of the present study include our large
ethnically and racially diverse population-based
cohort that represents an urban US community. Lon-
gitudinal studies have reported that greater WMHV
and smaller hippocampal volumes are related to
greater risk of dementia or stroke, but few samples
have been in clinically stroke-free or ethnically and
racially diverse cohorts.3,5,10,34 One cross-sectional
study investigated differences in brain morphology
between Hispanics/Latinos, African Americans, and
Caucasians but did not evaluate associations with cog-
nitive performance.37 Another study that included
Hispanics/Latinos examined the relationship of white
matter lesions and cognition in the context of cogni-
tive reserve,38 but we did not find studies examining
regional GM volumes and domain-specific cognitive
performance. Many studies with diverse cohorts had
small samples or relatively young participants.11,39

Another strength of this study is our use of volumetric
measures of SVD that are more reliable than visual
rating scales.40

We cannot determine causality between brain
morphology and cognitive performance because this
study is cross-sectional. Residual confounding is likely
in studies of this type. Also, since we did not identify
cognitive disorders, we cannot tie our findings to spe-
cific causes. In addition, some of our analyses may
have been underpowered, especially our interaction
and regional brain volume analyses. Also, there may

have been ceiling effects since half our sample is youn-
ger than 70 and both brain atrophy and cognitive dys-
function are less prevalent in this age group. Finally,
the sample under study here survived and remained
stroke-free until evaluation and is therefore healthier
than the original cohort, but this should underesti-
mate any associations between imaging markers and
cognition compared with the whole sample.

In this urban community-based US population,
central atrophy and SVD contributed to variability
in cognitive performance, and smaller lobar GM vol-
umes were related to worse cognitive performance in
late middle age. Markers of brain atrophy and cerebral
SVD may provide important information about
underlying processes that affect cognition in older
adults, and this requires further study.
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