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Abstract

The identification of the genetic structure of populations from multilocus genotype data has 

become a central component of modern population-genetic data analysis. Application of model-

based clustering programs often entails a number of steps, in which the user considers different 

modeling assumptions, compares results across different pre-determined values of the number of 

assumed clusters (a parameter typically denoted K), examines multiple independent runs for each 

fixed value of K, and distinguishes among runs belonging to substantially distinct clustering 

solutions. Here, we present CLUMPAK (Cluster Markov Packager Across K), a method that automates 

the post-processing of results of model-based population structure analyses. For analyzing 

multiple independent runs at a single K value, CLUMPAK identifies sets of highly similar runs, 

separating distinct groups of runs that represent distinct modes in the space of possible solutions. 

This procedure, which generates a consensus solution for each distinct mode, is performed by the 

use of a Markov clustering algorithm that relies on a similarity matrix between replicate runs, as 

computed by the software CLUMPP. Next, CLUMPAK identifies an optimal alignment of inferred clusters 

across different values of K, extending a similar approach implemented for a fixed K in CLUMPP, and 

simplifying the comparison of clustering results across different K values. CLUMPAK incorporates 

additional features, such as implementations of methods for choosing K and comparing solutions 

obtained by different programs, models, or data subsets. CLUMPAK, available at http://

clumpak.tau.ac.il, simplifies the use of model-based analyses of population structure in population 

genetics and molecular ecology.

Corresponding authors: Naama M Kopelman & Itay Mayrose, Department of Molecular Biology and Ecology of Plants, Tel Aviv 
University, Tel Aviv 69978, Israel. Phone: +972-3-640-7212. naamakop@post.tau.ac.il, itaymay@post.tau.ac.il. 

DATA ACCESIBILITY
CLUMPAK is freely available for online use and for download at http://clumpak.tau.ac.il. The microsatellite data of Kopelman et al. 
(2009) used in the empirical example are available at https://rosenberglab.stanford.edu/datasets.html.

AUTHOR CONTRIBUTIONS
N.M.K. and I.M conceived and supervised the study, with advice from M.J. and N.A.R.; J.M. and N.M.K. coded and tested the 
software; N.M.K., I.M., and N.A.R. wrote the manuscript.

HHS Public Access
Author manuscript
Mol Ecol Resour. Author manuscript; available in PMC 2016 September 01.

Published in final edited form as:
Mol Ecol Resour. 2015 September ; 15(5): 1179–1191. doi:10.1111/1755-0998.12387.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://clumpak.tau.ac.il
http://clumpak.tau.ac.il
http://clumpak.tau.ac.il
http://https://rosenberglab.stanford.edu/datasets.html


Keywords

Admixture; ancestry; clustering; population structure

INTRODUCTION

Model-based identification of population structure from individual multilocus genotypes is 

of great importance for the study of genetic relationships among individuals and 

populations. In diverse organisms, population structure inference provides a basis for 

interpreting patterns of extant genetic variation, serving as a foundation for the study of 

evolutionary history (Rosenberg et al. 2002; Parker et al. 2004; Whitfield et al. 2006; 

Driscoll et al. 2007; Zhao et al. 2013). In association mapping of complex traits, inference 

of population structure can assist in avoiding the false-positive genotype–phenotype 

associations that structure can generate (Pritchard and Donnelly 2001; Thornsberry et al. 

2001; Hoggart et al. 2003; Breseghello and Sorrells 2006). In conservation genetics and 

molecular ecology, population structure inferences are regularly used to investigate such 

topics as population boundaries, population connectivity, and gene flow, aiding the 

understanding and management of natural populations (Manel et al. 2005; Gompert and 

Buerkle 2013).

A particularly important family of methods for investigating population structure examines 

multi-locus genotypes of individuals using model-based cluster analysis (Pritchard et al. 

2000; Dawson and Belkhir 2001; Corander et al. 2003; Falush et al. 2003; Corander et al. 

2004; Guillot et al. 2005; Tang et al. 2005; François et al. 2006; Pella and Masuda 2006; 

Chen et al. 2007; Falush et al. 2007; Gao et al. 2007; Huelsenbeck and Andolfatto 2007; 

Corander et al. 2008a; Corander et al. 2008b; Guillot 2008; Alexander et al. 2009; Durand 

et al. 2009; Hubisz et al. 2009; Shringarpure and Xing 2009; Alexander and Lange 2011; 

Huelsenbeck et al. 2011; Frichot et al. 2014). These methods, the most widely-used of 

which is STRUCTURE (Pritchard et al. 2000; Falush et al. 2003; Falush et al. 2007; Hubisz et al. 

2009), classify individuals into a prespecified number of populations, disregarding 

predefined labels for the sampled individuals and therefore performing “unsupervised” 

clustering. In typical uses, STRUCTURE, like many other clustering programs, views each 

individual as a distinctive mixture of a set of inferred statistical populations or clusters, each 

characterized by distinct allele frequencies. Coefficients of membership of each individual 

in the various clusters, summing to 1 across clusters, are estimated in an iterative procedure. 

The various “STRUCTURE-like” (Weiss and Long 2009) programs, which consider both mixed-

membership models that view individuals as mixtures of the clusters, and assignment 

models in which membership coefficients represent probabilities of membership in the 

clusters, approach the same conceptual problem with a variety of choices of modeling 

assumptions and various alternative computational strategies. They enable rich and complex 

data analyses, allowing the user to modify a wide variety of parameters and to examine 

different models—for instance, supervised models, in which the predefined population 

labels are used to assist the inference process. For most programs, users have considerable 

choice in model assumptions, and they are advised to test different assumptions as well as a 

range of predefined values of the number of clusters, K.
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STRUCTURE-like algorithms typically involve stochastic simulations, and therefore can produce 

different outcomes in replicate analyses. For this reason, it is important to perform several 

independent assessments of the same data set using the same modeling assumptions and free 

parameters (Rosenberg et al. 2001a; Gilbert et al. 2012). Differences among solutions tend 

to arise from two phenomena (Jakobsson and Rosenberg 2007). The first is “label-

switching,” caused by the arbitrary way in which inferred clusters are labeled, resulting in 

unmatched labels between replicate runs even when the same membership coefficients are 

produced. The second type of difference is “genuine multimodality,” in which data analyses 

result in two or more truly distinct solutions, or modes. To distinguish label-switching from 

genuine multimodality, Jakobsson & Rosenberg (2007) developed CLUMPP (Cluster Matching 

and Permutation Program), which computes a pairwise similarity score between pairs of 

runs with the same K, identifying an optimal alignment of the replicate runs that eliminates 

label-switching so that genuine multimodality can be detected. A matrix of similarity scores 

produced by CLUMPP for pairs of aligned runs can be used to identify groups of runs that 

produce nearly identical solutions and can be said to fall into the same mode. For example, 

Wang et al. (2007) and Jakobsson et al. (2008) identified as modes all sets of replicates for 

which the pairwise similarity score for each pair of runs exceeded a specific threshold. This 

approach amounts to identifying fully connected subgraphs of a graph, or cliques, where 

vertices represent runs and edges indicate occurrences of pairwise similarity scores above 

the threshold. Once distinct modes are identified, users can choose a single run from each 

inferred mode, or they can alternatively average runs in each mode by a second application 

of CLUMPP only on those runs within the mode. A drawback of this approach is that 

determination of modes is often highly dependent on the exact threshold chosen. Moreover, 

cliques found by this approach can have a high percentage of overlap, and therefore might 

not necessarily represent truly distinct solutions.

In addition to eliminating label-switching and identifying distinct modes for a single K, 

users often compare clustering modes for a range of K values. As CLUMPP aligns only those 

runs with a fixed value of K, however, automated alignment of runs across multiple K values 

has not been possible. This challenge is particularly noticeable in cases in which 

simultaneous examination of multiple modes at multiple K values is of interest, such as 

when the clustering pattern in the most frequently occurring mode for a given K does not 

provide a refinement of the corresponding solution for a smaller choice of K (Wang et al. 

2007). Additional tasks, including comparisons of results obtained for multiple model 

choices, subsets of data, or different programs altogether, have also required that 

computations be performed external to CLUMPP and other cluster post-processing software such 

as DISTRUCT (Rosenberg 2004) and STRUCTURE HARVESTER (Earl and Vonholdt 2012). From the end-

user perspective, performing a thorough STRUCTURE-like analysis can be a tedious task.

To overcome these difficulties in identification of modes, alignment of runs across K values, 

and automation of additional post-processing steps, we have developed CLUMPAK, the Cluster 

Markov Packager Across K. CLUMPAK clusters replicate runs for the same K via a Markov 

clustering algorithm that improves upon the commonly used fixed threshold approach. 

CLUMPAK summarizes the modes identified, eliminating the additional step of “re-CLUMPPing” runs 

within modes to obtain consensus results for each mode. A newly developed extension 
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further enables cluster matching across different values of K, and simplifies the examination 

and presentation of results across a range of K values. CLUMPAK additionally allows users to 

easily compare results obtained under different models, programs, or subsets of the data. 

Here, we describe the methods underlying CLUMPAK, and we use simulations to demonstrate the 

ability of CLUMPAK to accurately cluster individual runs. We further illustrate the use of CLUMPAK 

on an example human population-genetic dataset.

MATERIALS AND METHODS

Generating clusters of runs at a single value of K

CLUMPAK aids users in summarizing the entire set of runs produced for their data set using one 

or more clustering programs. Users normally run their analysis using a range of K values, 

performing multiple replicates for each K. CLUMPAK obtains similarity matrices for pairs of 

replicate runs using the SSC’ similarity score of Jakobsson and Rosenberg (2007) as 

implemented in CLUMPP, employing as a default the LargeKGreedy algorithm of CLUMPP with 

2,000 random input sequences (both of these choices can be changed by the user). From 

among the replicates, CLUMPAK then identifies different modes within a single value of K—that 

is, genuinely different solutions if they are present.

First, CLUMPAK treats the similarity matrix as a fully-connected, undirected, weighted graph, 

G=(V,E), where vertices in set V represent independent runs, and the edge weight connecting 

vertices u and v is the similarity score SSC’(u, v). Second, given the weighted graph, CLUMPAK 

uses the Markov Clustering (MCL) algorithm (Van Dongen 2000; Van Dongen 2008) to 

partition the graph into distinct modes. This algorithm is a general method for identifying 

clusters, and it has previously been adapted for diverse biological problems, including 

orthology assignments (Enright et al. 2002), detection of operational taxonomic units 

(Ratnasingham and Hebert 2013), and identification of co-occurring associations among 

microbes (Faust et al. 2012). The similarity matrix obtained for a single K, as represented by 

the graph G, is transformed into a column-stochastic matrix or Markov matrix, where entry 

(i, j) represents a probability of “transition” from vertex j to vertex i. The MCL algorithm 

involves alternating between matrix “expansion” and matrix “inflation,” where expansion 

refers to taking the power of a stochastic matrix (i.e. normal matrix squaring), and inflation 

refers to taking the Hadamard power (Horn and Johnson 1991) of the matrix (taking powers 

entrywise) with coefficient r, and rescaling the matrix so that columns sum to 1. These 

alternating steps of matrix expansion and matrix inflation are aimed at simulating random 

walks on a graph: expansion steps correspond to computing probabilities associated with 

higher-length paths, and inflation boosts the probabilities of intra-cluster walks, accentuating 

the similarity of related runs and the dissimilarity of divergent runs. The single parameter r, 

which determines the “granularity” of the clusters obtained, controls the outcome of the 

algorithm, producing finer granularity, and more clusters, with larger r. Figure 1 illustrates 

the steps involved in the clustering process.

To obtain a suitable level of granularity with the MCL algorithm, a useful pre-processing 

step is to use a threshold for the inclusion of edges in the graph (S. van Dongen, personal 

communication). This threshold can be set by the user or determined dynamically given the 

properties of the graph analyzed (the default setting in CLUMPAK). Specifically, for a given data 
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set and for each value in the range of thresholds explored, the mean node degree, as well as 

the fraction of singleton nodes, representing runs that are not connected to any other runs, 

are examined (accomplished using the vary-threshold option of MCL). The dynamic 

threshold that is used by CLUMPAK is the largest threshold for which the fraction of singletons is 

smaller than 0.1 and the mean node degree across all nodes in the graph is at least 50% of 

the total number of vertices. Once a threshold has been set, edges whose weights are smaller 

than the threshold are removed, and the weights of the remaining edges are shifted 

downward by the value of the threshold (accomplished using the tf option of MCL). Other 

than using a threshold, the default parameters of MCL are used by CLUMPAK (equivalent to 

setting the parameter r to 2 without using pre-inflation). Notably, MCL can cluster two 

vertices together even if the input graph does not contain an edge connecting them; thus, the 

choice of the threshold is less influential than in the clique approach.

Once clusters are identified within replicate runs with the same K value, CLUMPAK utilizes CLUMPP 

(Jakobsson and Rosenberg 2007) for obtaining an average run representing each cluster, and 

DISTRUCT (Rosenberg 2004) for graphical display of the results. CLUMPAK reports to the user the 

number of replicate runs clustered in each mode detected, the mean posterior probability of 

runs clustered in each mode, and the mean CLUMPP scores between all pairs of runs within a 

mode. Notably, the largest mode (the one containing the largest number of replicate runs) 

might not have the highest mean posterior probability; users are advised to consider both 

attributes when interpreting their results.

Aligning clustering results across different K values

CLUMPAK aligns cluster labels across replicate runs, clusters of runs, and different K values. 

CLUMPAK relies on a previously developed algorithm for alignments at fixed K values 

(Jakobsson and Rosenberg 2007), whereas the label-matching algorithm for different K 

values is a novel extension and proceeds as follows. We refer to the matrix of membership 

coefficients [Q]C×K as the Q-matrix, with C rows corresponding to individuals and K 

columns corresponding to clusters, and the value in the cth row and kth column representing 

the membership coefficient for individual c in cluster k as inferred in a single run (or the 

mean of a set of runs). Each matrix consists of non-negative entries, and the sum of the 

entries in any row is 1. Following Jakobsson and Rosenberg (2007), the similarity score 

between replicate runs i and j (i.e. two Q-matrices of the same dimension), is defined as

(1)

where ||.||F denotes the Frobenius matrix norm. The normalization constant  constrains 

G’ to lie between 0 to 1 (see Eq. 6 in Jakobsson and Rosenberg 2007).

Consider now a pair of Q-matrices produced for two consecutive K values, [Qi ]C×K and 

[Qj ]C×(K+1) . To account for the different sizes of Qi and Qj , a column of zeros is added to 

Qi , as a final (K+1) column, representing a cluster that does not exist for K clusters but does 

exist for K+1. This addition produces a C×(K+1) matrix . We then compute the similarity 

score
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(2)

Using G” to measure similarity, the optimal alignment of matrices Qi and Qj is defined as 

the permutation of columns of Qj that maximizes G’’ over all (K+1)! possible permutations. 

We sequentially align clustering solutions starting from an initial value K0 , aligning a 

solution with K0+1 clusters to the K0 solution, the K0+2 solution to the K0+1 solution, and 

so on. This process examines alignments of the various modes at K0+1 clusters to the 

corresponding modes at K0 clusters.

Comparing results across different models

CLUMPAK enables a comparison of clustering solutions across different programs (e.g. 

comparing output from STRUCTURE and ADMIXTURE), different model choice (e.g. comparing output 

for a no-admixture model and an admixture model), or different subsets of genetic markers 

across the same data set (e.g. comparing output for half of the markers to the other half), 

each with its own sets of runs. Hereafter all three of these scenarios are termed “different 

models.” CLUMPAK first analyzes and summarizes the results of each model separately, but it 

aligns cluster labels across the two models, thus enabling easy visual inspection of the 

results. Additionally, CLUMPAK provides users with CLUMPP similarity scores between the modes 

identified for the two models, and for comparison, CLUMPP similarity scores within each mode.

Simulation study

We used simulations to assess the accuracy of CLUMPAK in differentiating runs into distinct 

clustering solutions. We simulated STRUCTURE-like outputs directly, for three a priori distinct 

populations, each with a sample of 25 individuals. Q-matrices were generated for three 

predefined clusters (K=3). A single simulation contained 40 Q-matrices, corresponding to 40 

individual STRUCTURE-like runs.

We explored two aspects of variation across runs. First, we allowed mean membership 

coefficients for each a priori population to vary across replicate runs, representing stochastic 

variation across individual STRUCTURE-like runs. Second, within each run and each population, 

we varied individual membership coefficients around the population mean for that run. The 

standard deviation (SD) parameters for these two sources of variation are termed SDRUNS 

and SDINDIVS , respectively (described in more detail below). By increasing these standard 

deviations, we obtained Q-matrices that are increasingly more challenging for accurate 

clustering (see Supplementary Note 1 for the relation of the similarity scores between runs 

to SDRUNS and SDINDIVS ).

The simulations assumed that each a priori population is characterized by its own “seed” 

membership coefficients,  denoting the mean genomic proportion within a priori 

population i originating from cluster k (k=1, 2, 3). Thus, for example, 

, corresponds to a scenario in which the mean membership 

coefficients for individuals belonging to population 1 are 0.5, 0.4, and 0.1 for clusters 1, 2, 
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and 3, respectively. We chose the seed vectors on the basis of empirical examples, as 

described in Appendix 1 (Supporting Information).

We simulated data in a two-step manner as follows. First, for each run (m=1, 2, …, 40), a set 

of mean membership coefficients for each a priori population was sampled around the 

predefined population seed vector. For a priori population i, we sampled around the seed 

vector using a Dirichlet distribution , where α(i) is a 

concentration parameter adjusted so that the standard deviation of the first component of the 

Dirichlet distribution was equal to a predefined value of SDRUNS (see Appendix 2, 

Supporting Information). Let  denote the mean membership coefficients for 

population i that were sampled for a certain run (for clarity, we omit the notation of the run 

index). This vector is the output of the first simulation step.

In the second step, we sampled individual membership coefficients around the run-specific 

 vector of population-mean membership coefficients for each of the 25 

individuals belonging to a priori population i. To this end, we sampled around  using 

, where β(i) is a concentration parameter adjusted so that 

the standard deviation of the Dirichlet distribution was equal to a predefined value of 

SDINDIVS (Appendix 2, Supporting Information). In summary, obtaining a single Q-matrix 

requires sampling once around  for each a priori population i = 1, 2, 3, and 

then for each i, sampling 25 sets of membership coefficients around . A single 

simulation iterates this process 40 times, obtaining a simulated set of 40 STRUCTURE-like runs on 

75 individuals. These runs were then provided as input to CLUMPAK.

The procedure outlined above represents a scenario in which all 40 STRUCTURE runs are drawn 

from a single set of seed vectors, and we thus expect these runs to be clustered together, 

obtaining a single mode. We are also interested, however, in examining the performance of 

CLUMPAK under genuine bimodality, that is, when STRUCTURE-like runs can be divided into two 

truly distinct solutions. The procedures for generating simulated data under bimodality were 

similar to the unimodal case, with two exceptions. First, instead of having a single seed 

membership vector per population we now have two: one representing a major mode and the 

other a minor mode. Second, among the 40 simulated runs, we choose a fraction of runs, f, 

to represent the minor mode, placing fraction 1-f into the major mode. We used several 

values of f, simulating data for f=0, 0.125, 0.25, 0.375. The fraction 0.125, for example, 

corresponds to the case in which the minor mode has 5 runs and the major mode has 35 runs. 

The f=0 case represents a unimodal simulation.

Simulations were performed for a range of values of SDRUNS and SDINDIVS , 0.01 to 0.15, 

for both parameters. Values exceeding 0.15 represent very high variation, as evident from 

the similarity scores between simulated runs, compared to the similarities observed in the 

empirical datasets that we considered (Supplementary Note 1, Supporting Information). For 

each combination of SDRUNS , SDINDIVS , and f, we performed 30 simulations. The seed 
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membership coefficients were taken from empirical examples for which bimodality was 

evident (Appendix 1, Supporting Information). The seed vectors for the simulations in 

Figures 2 and 3 are based on mean membership coefficients in major and minor modes for 

the Mozabite, Bedouin, and Druze populations at K=3, for the same set of runs presented in 

the Results section (Figures 4 and 5). Simulation sets based on other empirical examples 

(Supporting Information) yielded similar results.

We used the simulations both to assess accuracy of mode identification and to validate 

choices of settings in CLUMPAK. Each simulation was given to CLUMPAK as input under different 

program settings. First, we modified the similarity threshold, using either a fixed similarity 

threshold in the range of 0.6 to 0.9, reasonable in light of past choices (Wang et al. 2007; 

Jakobsson et al. 2008), or by the default approach in which the threshold was determined 

dynamically. We also examined values of the inflation parameter that differed from the 

CLUMPAK default of r=2.

We used the Jaccard index (Jain and Dubes 1988; Kaufman and Rousseeuw 1990) to 

measure the accuracy of the clustering solution obtained by CLUMPAK in comparison to the 

“real” (simulated) modes. This index varies from 0 to 1, with 1 being a perfect match 

between the inferred and simulated clustering of runs. Specifically, each simulation contains 

40 runs; thus, each has (40×39)/2=780 pairs of runs. Each pair was tabulated in one of four 

categories: (1) N11 , the runs truly belong in the same mode, and were placed in the same 

mode by CLUMPAK, (2) N10 , the runs belong in the same mode, but were placed in different 

modes by CLUMPAK, (3) N01 , the runs belong in different modes, but were placed in the same 

mode, (4) N00 , the runs belong in different modes, and were placed in different modes. The 

Jaccard index is calculated according to the following formula:

(3)

Availability and requirements

CLUMPAK is available through a web-server, at http://clumpak.tau.ac.il, or can be downloaded 

and used on Linux, Unix, and Mac operating systems. With either approach, CLUMPAK includes 

calls to CLUMPP, DISTRUCT, and MCL (all of which the user needs to install if running CLUMPAK locally). 

In the downloaded version, users can explore a range of values of optional parameters—

especially those concerned with running CLUMPP—that are more restricted in the web server in 

order to limit exhaustive running times.

By using the DISTRUCT program (Rosenberg 2004), and by allowing users to specify graphical 

parameters used by DISTRUCT, CLUMPAK provides users with high-quality images produced for each 

K (and within each K for each mode of convergence); the modes are graphically aligned 

across K. For its main pipeline, CLUMPAK requires that users submit the results of clustering 

programs in STRUCTURE or ADMIXTURE format, allowing any range of K values and single or multiple 

runs for each K. CLUMPAK also implements the methods of Evanno et al. (2005) and Pritchard et 

al. (2000) for selecting a preferred value of K.

Kopelman et al. Page 8

Mol Ecol Resour. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://clumpak.tau.ac.il


RESULTS

Simulations

We used simulations to examine the accuracy of CLUMPAK in assigning independent STRUCTURE-

like runs into separate modes. We first compared the default setting of CLUMPAK, under which a 

threshold for the inclusion of edges in the similarity graph (Figure 1) is chosen dynamically, 

to a range of fixed values for the threshold.

Figure 2 presents the Jaccard similarity score between the partition obtained by CLUMPAK and 

the true partition for unimodal simulations, in which all replicate runs were sampled from 

the same mode. Under this setting, as the value of the fixed threshold increases, the accuracy 

of the clustering obtained using the MCL algorithm decreases. This pattern is expected, 

because higher thresholds lead to sparser graphs, resulting in the separation of replicate runs 

into distinct clusters, whereas in the correct configuration, all runs are clustered together to 

form a single mode. Comparing the four panels in Figure 2, representing different values of 

SDINDIVS , and comparing different values of SDRUNS for fixed values of SDINDIVS , the 

decline in accuracy with an increasing threshold is more noticeable for simulations at higher 

SD values. This pattern is also expected, as higher SD values indicate more variation 

between the runs, and hence sparser graphs at a fixed threshold.

Figure 3 presents the Jaccard score for the bimodal case, when two distinct modes were 

simulated, with 25% of the runs belonging to the minor mode (other fractions are examined 

in Supporting Information, Figures S1 and S2). Here, the accuracy of the fixed threshold 

exhibits a peaked pattern, with the most accurate clustering achieved at intermediate values 

of the threshold. Whereas low thresholds lead to erroneous clustering of all replicate runs 

into a single mode, thresholds that are too high break the similarity graph into too many 

components, identifying too many distinct modes. As the SD values increase, the peak 

moves to the left, and thus, the optimal fixed threshold is lower.

The differing performance of the graph clustering procedure in the unimodal and bimodal 

cases in Figures 2 and 3 suggests that a single fixed threshold does not yield an optimal 

solution applicable in all scenarios, as the optimal threshold is influenced both by the 

number of modes among the replicate runs and by the level of variation across runs and 

individuals. These tradeoffs are accommodated using the dynamic procedure implemented 

in CLUMPAK, which sets the threshold according to the characteristics of the input data. Indeed, 

as the level of variation increases in either of two ways (SDRUNS and SDINDIVS ), the 

dynamic threshold is set to lower values, thus allowing more variability within modes 

inferred to be distinct (Supplementary Note 1, Supporting Information). In both the 

unimodal and bimodal cases, the performance of the dynamic threshold is optimal or near 

the optimum for all simulation scenarios (rightmost bars in each panel of Figures 2 and 3). 

For example, in the unimodal simulations, the mean Jaccard similarity score calculated 

across 30 simulations for each set of parameters is 1.0 or close to 1.0 in most settings, 

including the challenging setting of low SDINDIVS values coupled with high values of 

SDRUNS . The somewhat lower accuracy in such cases arises from the separation of the runs 

into multiple modes; the clustering is still adequate, as in nearly all simulations, there is a 

major cluster containing most replicate runs (>35 of 40). In the bimodal simulations, the 
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accuracy of the inferred clusters obtained using the dynamic threshold is high for both low 

and high SDINDIVS and SDRUNS values, and exceeds that of any single fixed value (Figure 

3).

In addition to the manner of choosing the threshold for inclusion in the similarity graph, the 

inflation parameter, r, of the MCL algorithm, potentially also influences the clustering of 

runs. We found that for the range of values examined (ranging from 1.1 to 12, representing 

the range of reasonable values for that parameter; S. van Dongen, personal communication), 

however, this parameter has little influence on the clustering results for low values of 

SDINDIVS and SDRUNS , whereas for higher values the optimal performance is obtained for 

r=2, the CLUMPAK default (Figure S3, Supporting Information). Taken together, for the 

clustering task of distinguishing between modes, we found that the threshold choice is more 

influential than the inflation parameter r, and that the dynamic threshold implemented in 

CLUMPAK produces high accuracy that is optimal or close to optimal.

Empirical example

To illustrate a data application of CLUMPAK, we have reexamined a data set of 678 autosomal 

microsatellites in 399 individuals from 16 European and Middle Eastern human populations, 

including 78 individuals of Jewish descent (Ashkenazi, Moroccan, Tunisian, and Turkish 

Jews). Using STRUCTURE, Kopelman et al. (2009) previously studied the membership 

coefficients of the 399 individuals for a range of K values. For each value of K, 40 

individual STRUCTURE runs were conducted and then assessed using CLUMPP (Jakobsson and 

Rosenberg 2007). The clique clustering approach was then used to detect distinct solutions.

To reanalyze this data set through CLUMPAK, we first generated new STRUCTURE replicates, running 

STRUCTURE 40 times for each value of K from 2 to 6, using the mixed-membership admixture 

model with a burn-in period of 10,000 iterations followed by 20,000 additional iterations for 

each run. The resulting runs were provided to CLUMPAK.

Figure 4 presents the output obtained from CLUMPAK for this collection of runs before and after 

label-matching across different values of K. The main distinct solutions—the major modes 

for each K as identified by the Markov clustering algorithm—are similar to those presented 

by Kopelman et al. (2009) on the basis of the clique approach. In addition to the major 

modes, CLUMPAK further identifies minor modes for K=3 (13 runs), K=4 (7 runs), K=5 (4 runs), 

and K=6 (10 runs). Figure 4 includes the minor modes for K=3 and K=6. Interestingly, the 

minor mode for K=6 distinguishes the Tunisian Jewish population from other Jewish 

populations. This distinction, which was not present in the major modes reported by 

Kopelman et al. (2009), was in fact observed by Kopelman et al. when the population 

structure of Jewish individuals was examined separately. We might argue, however, that by 

simplifying the user experience of examining minor modes, CLUMPAK can uncover biologically 

interesting minor clustering solutions that might otherwise go unnoticed.

To demonstrate the comparison of models using CLUMPAK, we ran STRUCTURE a second time on the 

same data set of 399 individuals using the admixture model along with the locprior model 

(i.e. supervised clustering), which takes into consideration sampling locations of individuals, 

treating separate population identifiers as separate locations in prior information to assist 
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clustering. This option is recommended for cases in which the inferred population structure 

is weak, or the populations examined are very closely related (Hubisz et al. 2009). We ran 

the locprior model with K=6, comparing the results to those obtained without the use of the 

locprior model.

Figure 5 illustrates the comparison of 40 runs obtained for K=6 without the locprior model 

to 40 runs with the locprior model. Visual comparison of the results obtained under the two 

models is simplified using the CLUMPAK alignment across the two models (as well as across 

multiple modes obtained under the same model). This comparison demonstrates the 

tendency of the supervised approach to intensify weak population structure within the a 

priori populations, leading to somewhat different inferences. The “Compare models” option 

of CLUMPAK further provides users with CLUMPP similarity scores between the modes that were 

identified by the two models. Indeed, the similarity score between the major modes obtained 

under the two models (0.79) is lower than the similarity score for the major and minor 

modes of the unsupervised runs (0.85), giving further indication that the results obtained 

under the two models are not identical.

DISCUSSION

Analysis of population structure using model-based clustering methods is a complex task 

that requires careful handling (Pritchard et al. 2000; Rosenberg et al. 2001b; Evanno et al. 

2005; Weiss and Long 2009). Due to the inherent stochasticity of STRUCTURE and other genetic 

clustering programs, independent runs of these programs often arrive at distinct solutions, 

and thus, understanding the replicability of the results and distinguishing distinct solutions 

are not always trivial tasks. We have developed CLUMPAK to simplify and enhance the user 

experience in evaluating, comparing, and displaying the results produced by these programs. 

CLUMPAK treats the problem of grouping STRUCTURE-like runs as a graph-based clustering problem, 

providing a useful method for separating distinct solutions within K values, averaging runs 

belonging to the same mode, and comparing runs across K values. It additionally supports 

the possibility of comparing different programs, models, and subsets of the data, and 

identifying a preferred K value via the methods of Evanno et al. (2005) and Pritchard et al. 

(2000). Using simulations and an example data set of Kopelman et al. (2009), we found that 

CLUMPAK can identify major and minor solutions observed in replicate runs, potentially 

facilitating the assessment of biologically interesting clustering behavior that is only visible 

in minor modes. We have also validated the dynamic procedure by which CLUMPAK identifies 

the optimal similarity threshold for each value of K , finding that this approach, set as the 

CLUMPAK default, is preferable to a fixed-threshold approach.

Three other tools are currently available to assist users with post-processing and presentation 

of the results from STRUCTURE-like programs—the aforementioned CLUMPP (Jakobsson and 

Rosenberg 2007), DISTRUCT (Rosenberg 2004), and STRUCTURE HARVESTER (Earl and Vonholdt 2012). 

As noted earlier, a typical post-processing effort has involved use of two or all three of these 

programs. CLUMPAK combines many of the features of these existing tools, incorporating calls 

to CLUMPP and DISTRUCT, and providing users with a single program to accomplish primary aspects 

of post-processing (Table 1). Most of the options provided by DISTRUCT and CLUMPP also appear in 

CLUMPAK, including the choice of algorithm in CLUMPP, and color options, labeling, and order of 
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populations in DISTRUCT. STRUCTURE HARVESTER is used for preparing CLUMPP input files and for 

determining the most suitable K according to the method of Evanno et al. (2005); the former 

functionality is subsumed in CLUMPAK, and the latter appears in CLUMPAK via the “Best K” feature. 

Beyond its incorporation of features of these programs in a single convenient form, CLUMPAK is 

the first to automate the process of distinguishing between distinct solutions for a single K 

value, and to perform cluster matching across different K values. Finally, CLUMPAK offers a 

natural visualization for comparing results obtained using different models, programs, or 

subsets of the data.

One view of “genuine multimodality” in clustering studies, as opposed to label-switching, is 

that it represents a failure of clustering programs to identify a single optimal mode, and that 

multimodality is simply an algorithmic artifact. From this idealistic standpoint, widely used 

algorithms such as STRUCTURE are problematic, and rather than facilitating the analysis of 

multimodality as a feature of clustering results, it would be preferable to improve algorithms 

to eliminate it. However, a pragmatic approach to available methods regards genuine STRUCTURE 

multimodality as a regular feature of the analysis that can be used to assist with biological 

interpretations (e.g. Rosenberg et al. 2001a; Wang et al. 2007; Kopelman et al. 2009). 

Especially for complex data sets, different modes for a given data set can reflect the 

existence of population groupings that are comparably supported (Pritchard et al. 2000), so 

that exploration of multiple modes contributes information to an analysis. For example, in 

examining how distinct solutions—both major and minor modes—change across a range of 

K values, Wang et al. (2007) observed multimodality at certain values of K, but found that 

solutions for larger K could be viewed as refinements of several of the modes observed at 

lower K. The distinct modes at smaller K each possessed some of the biological structure 

made apparent at larger K—structure portended in full by the collection of modes at small K

—and they thus contributed to the understanding of major subdivisions in Native American 

population structure.

Finally, we note that although we have implemented CLUMPAK primarily for use specifically 

with STRUCTURE and ADMIXTURE, it is suitable for use with any program that generates cluster 

membership coefficients, provided the results produced by these programs are appropriately 

formatted for CLUMPAK. Notably, each of the model-based clustering programs requires that 

users make appropriate choices regarding the underlying model and optional running 

parameters (for example, running STRUCTURE long enough). Though CLUMPAK does not guide the 

users regarding these clustering choices, making sense of the results of such programs is 

rendered easier by the use of CLUMPAK. If the number of distinct clusters of runs inferred by 

CLUMPAK is too large, however, or if the similarity scores between replicate runs are low, then 

the STRUCTURE-like program might be uninformative or might have employed inappropriate 

settings; in these circumstances, we advise the user to inspect the original outputs and 

parameter choices for the program used to obtain the membership matrices.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the Markov clustering algorithm for a similarity matrix of 7 independent 
STRUCTURE runs
(A) Similarity matrix, with the entry in a cell representing the similarity of the runs 

represented in the associated row and column. (B) A graph equivalent to the similarity 

matrix, with nodes representing runs and edges representing similarity scores for distinct 

pairs of runs (loops connecting nodes to themselves are not shown). (C) A graph following 

the removal of edges whose weights are smaller than a fixed threshold, 0.5. The weights of 

the remaining edges have been shifted by −0.5. (D) A column-stochastic matrix for the 7 

runs. (E) The equilibrium matrix obtained by iterating expansion and inflation steps in the 

Markov clustering algorithm. (F) Clusters of runs identified by the Markov clustering 

algorithm.

Kopelman et al. Page 16

Mol Ecol Resour. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Jaccard similarity scores between the clustering solutions obtained by CLUMPAK and the 
“true” (simulated) partitioning in a unimodal case, as a function of SDRUNS , SDINDIVS , and 
either a fixed threshold value or a dynamic threshold
Simulations were carried out with one underlying mode. Different colors represent different 

values of SDRUNS as given by the color palette on the right side of panel B. (A) SDINDIVS 

=0.01. (B) SDINDIVS =0.05. (C) SDINDIVS =0.075. (D) SDINDIVS =0.15.
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Figure 3. Jaccard similarity scores between the clustering solution obtained by CLUMPAK and the 
“true” (simulated) partitioning in a bimodal case, as a function of SDRUNS , SDINDIVS , and 
either a fixed threshold value or a dynamic threshold
Simulations were carried out with a fraction f=0.25 of the runs assigned to the minor mode. 

Different colors represent different values of SDRUNS as given by the color palette on the 

right side of panel B. (A) SDINDIVS =0.01. (B) SDINDIVS =0.05. (C) SDINDIVS =0.075. (D) 

SDINDIVS =0.15.
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Figure 4. Major and minor modes identified for 399 individuals from 16 populations, illustrating 
CLUMPAK’s label-matching across K values
For each K value, STRUCTURE was run 40 times. (A) Membership coefficients produced by 

CLUMPAK when label-matching across K values was disabled (for illustration only). (B) 

Membership coefficients produced by CLUMPAK for the same set of runs as in (A), matching 

labels across K values. Clusters have been permuted to sequentially match the configuration 

for the lowest K in the range (K=2).
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Figure 5. Membership coefficients compared using two different STRUCTURE models with K=6
The same set of 399 individuals from 16 populations was used for both panels. For each 

model, STRUCTURE was run 40 times, and CLUMPAK was used to identify distinct solutions among 

runs of the same model as well as to compare the different modes across the two models. 

For the runs without the locprior model (unsupervised), the runs are the same as in Figure 4. 

Top: The major mode for the unsupervised admixture model without the locprior model. 

Bottom: The major mode for the locprior (supervised) admixture model.
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Table 1
Programs that aid in the post-processing of results obtained from STRUCTURE-like methods

Software Platform Input type/
format

Description Refs

STRUCTURE

HARVESTER

Online &
downloadable
Python script

Zipped
STRUCTURE

result files

Determines a choice of K.
Produces input files for CLUMPP.

(Earl and Vonholdt 2012)

CLUMPP Unix, Linux,
Dos, Mac

CLUMPP

format
a

Deals with label switching within a
single K value.
Evaluates the similarity of replicate
runs.

(Jakobsson and Rosenberg 2007)

DISTRUCT Unix, Linux,
Dos, Mac

DISTRUCT

format
a,b

Produces graphical display for a
single replicate run.

(Rosenberg 2004)

CLUMPAK Online & Unix,
Linux, Mac

Multiple
formats,
enabling
direct input
from
STRUCTURE

and other
STRUCTURE-
like programs

Deals with label switching within a
single K value.
Deals with label switching across
multiple K values.
Clusters replicate runs into distinct
modes.
Produces graphical displays for
each mode within each K.
Determines a choice of K.

This paper

a
Input files can be obtained from the output of STRUCTURE-like programs.

b
One of the input files can be obtained from the output of CLUMPP.
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