
REVIEW

Compartmentalizing intestinal epithelial cell toll-like receptors
for immune surveillance

Shiyan Yu1 • Nan Gao1,2

Received: 6 March 2015 / Revised: 13 May 2015 / Accepted: 18 May 2015 / Published online: 23 May 2015

� Springer Basel 2015

Abstract Toll-like receptors (TLRs) are membrane-

bound microbial sensors that mediate important host-to-

microbe responses. Cell biology aspects of TLR function

have been intensively studied in professional immune

cells, in particular the macrophages and dendritic cells,

but not well explored in other specialized epithelial cell

types. The adult intestinal epithelial cells are in close

contact with trillions of enteric microbes and engage in

lifelong immune surveillance. Mature intestinal epithelial

cells, in contrast to immune cells, are highly polarized.

Recent studies suggest that distinct mechanisms may

govern TLR traffic and compartmentalization in these

specialized epithelial cells to establish and maintain pre-

cise signaling of individual TLRs. We, using immune

cells as references, discuss here the shared and/or unique

molecular machineries used by intestinal epithelial cells

to control TLR transport, localization, processing, acti-

vation, and signaling. A better understanding of these

mechanisms will certainly generate important insights

into both the mechanism and potential intervention of

leading digestive disorders, in particular inflammatory

bowel diseases.
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Introduction

The mammalian intestinal lumen is immediately colonized

by trillions of microorganisms after the initiation of post-

natal enteral feeding. This community of commensal

microbes, also known as microbiota or microflora, lives in

a symbiotic relationship with the host by engaging in food

digestion and vitamin production. In return, host cells

provide microbiota the essential surviving niches and nu-

trients [1–4]. Commensal microbes in healthy individuals

critically promote the normal development of host immune

system and prevent adverse colonization by enteric

pathogens, thereby contributing to local immune home-

ostasis [5–7]. The mutualistic relationship between host

and microbes may be disrupted by various factors that

trigger microbial recognition by the host immune system.

Such microbial recognition in turn activates local or sys-

temic inflammatory responses [8–10]. After intestinal

infection or injury being resolved, pro-inflammatory sig-

naling responses must be down-regulated and ultimately

withdrawn to avoid unwanted damage to host tissues.

Otherwise, intestinal pathogenesis such as inflammatory

bowel diseases develops. Thus, the immune homeostasis of

mammalian intestines critically relies on cellular mechan-

isms that exquisitely balance the immune-activating and -

suppressing cues. In this review, we conduct a compre-

hensive literature survey and elaborate on various

molecular mechanisms, proposed in recent studies for the

compartmentalization and activation of specific microbial

receptors. In intestinal epithelia, emerging studies suggest

that these mechanisms strategically regulate microbial
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receptor activation and are essential for a balanced mi-

crobe–host interaction.

Intestinal epithelial cells

The intestinal mucosa is lined by highly polarized epithe-

lial cells whose apical plasma membrane domains face the

lumen. The basolateral surfaces of these epithelial cells are

associated with lamina propria where professional immune

cells reside. A small population of intestinal epithelial stem

cells is located at the bottom of crypts, from which func-

tionally distinct epithelial cell types differentiate and

mature [11, 12]. In contrast to enterocytes, goblet cells,

enteroendocrine cells, and tufts cells that locate in the

villus epithelia, mature Paneth cells reside at the crypt

bottom. In addition, microfold cells with high phagocytotic

and transcytotic activities account for 10 % of follicle-as-

sociated epithelia that overlie gut-associated lymphoid

tissues [13]. Formation of a critical barrier by intestinal

epithelial cells via tight junctions physically separates

commensal microbiota from host tissues, thereby consti-

tuting one of the most important mechanisms to support

mucosal innate immunity [14–16]. In addition to the barrier

function, a growing body of evidence has suggested the

critical contribution of pattern recognition receptors

(PRRs) to the homeostatic interplay between intestinal

epithelia and gut microbiota [14–16].

Toll-like receptors

Toll-like receptors (TLRs) are a group of type I trans-

membrane proteins that belong to the PRR family. To data,

13 TLRs have been identified in mammalian cells, in-

cluding 10 human and 12 mouse functional receptors [17].

TLRs recognize conserved microbe or pathogen-associated

molecular patterns (PAMPs) [18]. Different TLRs bind

distinct ligands derived from either microbes or endoge-

nous molecules. TLR2 forms heterodimer with TLR1 or

TLR6, respectively, to sense bacterial lipoproteins [19, 20].

TLR4 specifically binds and recognizes lipopolysaccharide

(LPS), TLR5 for flagellin, TLR3 for double-stranded RNA,

TLR7 and TLR8 for single-stranded RNA, TLR9 for

double-stranded DNA, TLR11 and TLR12 for profillin, and

TLR13 for bacterial 23S rRNA [17, 21, 22]. In addition to

microbial agonists, a large number of endogenous mole-

cules derived from host tissues can also bind TLRs and

trigger sterile inflammatory responses in pathological

conditions [23, 24]. For example, heat shock proteins, ex-

tracellular matrix components, degraded intermediates,

high-mobility group box 1(HMGB1), surfactant protein A,

and uric acid crystal can be recognized and bound by TLR2

and TLR4 [24]. Human cardiac myosin can be recognized

by TLR2 and TLR8 [25], and self-RNA and DNA, when

loaded onto TLR3 or TLR7–9, stimulate autoimmune re-

sponses [23].

All TLRs contain multiple leucine-rich repeats in their

ectodomains and use intracellular Toll/IL1 receptor (TIR)

domains for signal transduction [18]. TLR signaling has

been well characterized in professional immune cells,

especially in macrophage and several immortalized cell

lines. In general, TLRs recognition of PAMPs can occur in

multiple cellular compartments including cell surface, en-

dosomes, and lysosomes [26]. The proper cellular

compartmentalization of TLRs appears to be critical for

ligand binding, maintenance of immune tolerance, and

initiation of downstream signaling [26]. In a generic TLR

signaling cascade, TLR binding to its specific ligand ini-

tiates receptor dimerization and recruitment of unique

adaptor proteins such as MyD88 adaptor-like (Mal, also

called TIRAP)/MyD88 or TRIF-related adaptor molecule

(TRAM)/TRIF, which in turn activates NF-jB or inter-

feron regulatory factor (IRF) signaling pathways,

respectively [17, 27]. Intracellular TLR signaling and

molecular regulation of the signal transduction pathways

have been adequately discussed elsewhere [26–30]. In

contrast, a collective analysis of TLR transport and acti-

vation in polarized cells such as the intestinal epithelial

cells has been incomplete.

The consensus view has been that TLR signaling in the

intestinal epithelia critically influences epithelial cell pro-

liferation and differentiation, maintenance of tight

junctions, synthesis and release of antimicrobial peptides,

and induction of pro- or anti-inflammatory responses, re-

spectively [15, 16]. As the intestinal epithelial cells are at

the frontline of a microbe-rich environment, TLR signaling

in intestinal epithelial cells appears to be critically

regulated to not only maintain immune tolerance to host-

friendly microbes, but effectively respond to invasive en-

teric pathogens. To serve such dual purposes, polarized

distribution and activation of specific TLRs have been

employed by intestinal epithelial cells as the most impor-

tant mechanisms for immune balance. We have surveyed

the recent progress in understanding the molecular basis of

TLR compartmentalization and will focus the discussion

on TLR transport, processing, and activation in intestinal

epithelial cells.

Expression and polarized distribution of TLRs

in intestinal epithelium

In response to the extremely diverse commensal microor-

ganisms in host digestive tract, TLR expression and

activation in intestinal epithelial cells are regulated in

temporal and spatial manners to achieve immune defense

and equilibrium [15]. Among the 13 TLRs discovered,

TLR1–9 have been detected in human intestinal epithelial
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cells [31–33], while TLR1–11, with the exception of non-

functional TLR10 due to a retrovirus insertion [28], are

expressed in mouse intestinal epithelia [15]. Different from

the high expression levels of TLRs in professional immune

cells, TLRs are generally expressed at low level in in-

testinal epithelial cells [33, 34]. Furthermore, in contrast to

non-polarized immune cells, in polarized intestinal ep-

ithelial cells TLRs demonstrate specific intracellular

distributional features (Fig. 1).

Immunohistochemistry for TLR2 in human fetal ileum

has demonstrated that this receptor is mainly localized to

the basolateral membranes of crypt epithelial cells and only

weakly detected at the brush border [35]. In human colon

cancer T84 cells, TLR2 is distributed from the cytoplasm

to apical surface, once the cells become polarized in culture

[32]. In mouse intestine, TLR2 was shown as apically

distributed in villus and crypt epithelial cells; however, the

localization appeared at both apical and basolateral do-

mains in follicle-associated epithelia [36], suggesting that

the localization of TLR2 depends on cell types as well as

the surrounding tissue environment. TLR3 has been shown

to be distributed in the cytoplasm of human small intestinal

and colonic epithelial cells; however, its localization

changes to the basolateral surface in colonic epithelial cells

in ulcerative colitis patients [37].

Immunofluorescent analysis of TLR4 in human intestine

samples has demonstrated that this receptor is localized to

the basolateral side of fetal ileal crypts and adult colon [35].

In addition, the expression levels of TLR4 in ulcerative

colitis and Crohn’s disease tissues, when compared with

those in normal non-inflammatory bowel disease mucosa,

are elevated. However, in contrast to the basolateral local-

ization of TLR4 in ulcerative colitis mucosa, active Crohn’s

disease patient samples show apical enrichment of TLR4 in

both ileum and colon [37]. In line with these studies, TLR4 is

also found to be localized to the apical surface of polarized

human colon cancer T84 cells [32]. In mouse intestines,

TLR4 is apically localized in terminal ileal epithelium, but

basolaterally in colonic epitheliumwhere a lower expression

level was detected [36, 38]. Interestingly, functional TLR4

has also been reported in Golgi compartments of the mouse

small intestinal epithelial cell line m-IC [39], collectively

suggesting that TLR4 is compartmentalized into a variety of

cellular components.

Fig. 1 Compartmentalization of different TLRs in polarized intesti-

nal epithelial cells in contrast to non-polarized professional immune

cells. a Professional immune cells (such as macrophages and DCs)

contain both cell surface (TLR1, 2, 4–6) and endosome (TLR3,

TLR7–9) localized TLRs. TLR1 and 6 form heterodimer with TLR2

for bacterial lipoprotein recognition; to simplify the diagrams, both

receptors are not shown. b Intestinal epithelial cells are typical

polarized monolayers assembled through tight junctions (TJs). Apical

surfaces are constantly confronted by commensal microbes and

microbial products, which are ligands for specific TLRs. Classic

surface TLR2, 4, and 5 are localized to the basolateral plasma

membrane. Classic endosomal TLRs such as TLR3 and TLR9 are

sometimes detected on the basolateral surfaces. Apically localized

TLR2 and 9 have been reported. In Paneth cells; TLR9 has been

found in secretory vesicles
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In contrast to TLR4, TLR5 has been consistently and

predominantly detected at the basolateral cell surface and

cytoplasm in colonic cells (Fig. 1b) [37, 40–42]. This

unique distribution pattern of TLR5 prevents luminal

bacterial flagellin access and activates this receptor, thus

avoiding unnecessary immune response in steady-state

conditions. However, mucosal injuries that impair epithe-

lial barrier function will expose TLR5 to bacterial flagellin,

eliciting TLR5-mediated inflammatory response [42].

Apical TLR5 has been reported in mouse ileal and follicle-

associated epithelial cells, but its function has not been

well characterized [36, 43].

To avoid recognition of self-DNA, TLR9 is almost ex-

clusively distributed in the endosomal compartments in

professional immune cells including macrophages and

dendritic cells (Fig. 1a) [44], with certain exceptions such

as the splenic dendritic cells, demonstrating some cell

surface TLR9 localizations [45]. In addition, in mouse

RAW264.7 macrophages, TLR9 requires proteolytic pro-

cessing at its ectodomain in endolysosomal compartments

before its activation [46–48]. Reinforcing TLR9 onto cell

surface and circumventing its proteolytic processing by

mutating the transmembrane domain still leads to MyD88

recruitment and CpG-stimulated NFjB signaling activation

[49]. Transferring hematopoietic stem cells carrying this

transmembrane domain mutant TLR9 to lethally irradiated

recipient mice causes expansion of CD11c? cells, reduc-

tion of CD19? B cells, and lethal auto-inflammation [49].

These studies suggested that internalization of TLR9 me-

diated by its transmembrane domain is one of the important

strategies for peripheral immune tolerance. In polarized

intestinal epithelial cells, TLR9 is detected at both the

apical and basolateral plasma membrane domains in cul-

tured human colonic cells with immune-suppressive and

immune-stimulative functions, respectively (Fig. 1b) [50].

Intriguingly, activation of the basolateral TLR9 induces

IjBa degradation and NFjB activation, whereas activation

of apical TLR9 causes IjBa ubiquitination and accumu-

lation but not degradation, thereby preventing NFjB
signaling [50]. Consistent with these reports, localization

of TLR9 to plasma membranes has also been observed in

mouse small intestinal epithelia [51]. In mouse intestinal

Paneth cells, TLR9 is found in granules (Fig. 1b), and its

activation by CpG triggers degranulation of this cell type

[52, 53].

TLR transport in polarized intestinal epithelial cells

Being highly polarized after maturation, adult intestinal

epithelial cells have multifaceted functions including ab-

sorption of nutrients, electrolytes, and vitamins, as well as

secretion of digestive enzymes, mucin, neuropeptides, and

antimicrobial peptides. Intestinal epithelial cells also

communicate with the submucosal immune system through

transcytosis of secreted IgA and sampling luminal antigens

for presentation to professional immune cells [54]. Efficient

coordination of these biological processes requires highly

selective and directional cargo transports that are guided by

specific small GTPases, motor proteins, adaptors, and

SNAREs [55–58]. The homeostatic distributions of mem-

brane-bound receptors, such as TLRs, are established and

maintained by dynamic trafficking processes consisting

biosynthetic, endo-, and exocytotic, and protein turnover

pathways. In the biosynthetic pathway, newly synthesized

TLRs, after proper folding assisted by endoplasmic reticu-

lum (ER) chaperone gp96 and protein associated with TLR4

A (PRAT4A) [59–61], are exported from ER lumen to Golgi

apparatus via coat protein complex II (COPII) vesicles

(Fig. 2). Additional post-translational modifications occur in

Golgi, from where the cargos are transported to trans-Golgi

network (TGN) for segregation into various vesicular com-

partments prior to delivery to final destinations [55, 62]. In

parallel to the biosynthetic pathway, transmembrane pro-

teins can be reutilized through endocytotic pathways [63,

64]. Membrane-bound subcellular vesicles typically travel

along actin or microtubule filaments for short- or long-range

cargo transport, respectively. The specific directionality of

individual vesicles is controlled by their associated motor

proteins that power the polarized movement along cy-

toskeletal tracks [65–68]. On actin cables, the myosin family

of motor proteins comprises the primary motors driving

vesicular deliveries, which are typically regulated by Rab

small GTPases [67, 69]. On microtubule tracks, plus-end-

directed kinesin superfamily and minus-end-directed motor

proteins such as dynein are the major effectors whose ac-

tivities are also controlled by Rab small GTPases [56, 68,

70].

In polarized epithelial cells, the transporting direction-

alities of intracellular cargos are established via multiple

mechanisms. First, cells with apical–basolateral polarity

form polarized actin and microtubule cytoskeleton [71],

directing the unidirectional motor movements. Second, the

lipid components of distinct plasma membrane domains

also demonstrate disparities with the apical membrane

enriched with phosphatidylinositol-4,5-bisphosphate

(PtdIns (4,5)P2), and the basolateral membrane with PtdIns

(3,4,5)P3 [72]. Such distinct lipid constituents serve as

critical targeting sites for polarized vesicular transport and

cargo delivery [73]. Third, distinct intracellular trafficking

machineries have also been developed to differentiate ba-

solateral and apical cargos. It has been proposed that

specific sorting motifs for basolateral transport are con-

tained frequently at the cytosolic tails of those basolaterally

destined cargos and cargo receptors (please see below).

Two canonical sorting motifs for basolateral trafficking,

one tyrosine-based NPXY (X is any amino acid) or YXXØ
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(Ø presents a bulky hydrophobic amino acid) and another

dileucine-based [D/E]XXXL[L/I] or DXXLL motifs, have

been reported [55, 62]. Notably, these motifs also mediate

the endocytosis as well as delivery of related cargos to

lysosomes [62]. A tyrosine-based motif (YNEL) in TLR9

cytosolic tail has been proposed as essential for TLR9

endolysosomal localization; deletion of this motif causes

cell surface retention of TLR9 in HeLa cells [74]. Like-

wise, a tyrosine-based sorting motif (YDAF) of TLR7 is

critical for its trafficking to endosome; mutating tyrosine to

alanine (Y892A) impairs TLR7’s processing and ligand

response [75].

Some basolateral cargos contain non-canonical sorting

motifs. For example, the basolateral transport of transferrin

receptor depends on GDNS [62], while the basolateral

traffic of polymeric immunoglobulin receptor is deter-

mined by a 17-amino acid motif containing an HRRNV

core sequence, the mutation of which abolishes basolateral

targeting, resulting in non-polarized or apical delivery of

the mutant protein [62]. Of note, these basolateral motifs

described above appear to be recognized by adaptor protein

complexes (APs). A total of six different AP complexes

participate in cargo selection and formation of coated

vesicles [76]. Among them, AP2 is uniquely critical for

endocytotic cargo trafficking, while other AP complexes

primarily regulate cargo traffic from TGN or recycling

endosome to cell surface or endosomes. AP1 l1B subunit

that is specifically expressed by some polarized, including

the intestinal, epithelial cells directly and preferentially

recognizes basolateral sorting motifs, thereby mediating

basolateral sorting (Fig. 2b). AP1 l1B knockout mouse

intestinal epithelial cells display disrupted cellular polarity

evident by misdistributed basolateral cargos, including the

low-density lipoprotein receptor (LDLR), ephrin receptor

Eph2B, E-cadherin, and interleukin 6 signal transducer

(IL6st) [77, 78]. Nevertheless, trafficking of some apical

Fig. 2 TLR trafficking in polarized IECs in reference to professional

immune cells. a In professional immune cells, newly synthesized

TLRs are trafficked with their accessary proteins along the secretory

pathway (route 1). TLR4 requires MD2, while endosomal TLRs need

UNC93B1 (route 1) for transport from ER to COPII vesicles to cis-

Golgi, and to trans-Golgi network (TGN). Clathrin- associated

adaptor protein AP1A, including b, c, r1 and l1A subunits,

recognizes sorting motifs in the cytosolic tail of TLRs or in sorting

transporter UNC93B1, for segregating TLRs into exocytic vesicles.

Exocytic transport of these vesicles is regulated by Rab small

GTPases and their corresponding motor proteins that power vesicular

movement along the microtubule and/or actin filaments to the plasma

membrane. Endosomal TLRs are internalized via the endocytotic

pathway to the endolysosomal compartments. TLR7 has also been

shown to use direct route from TGN to endolysosomes (route 2) with

the aid of AP3 and/or AP4. b In polarized intestinal epithelial cells,

TLR9 is observed at both the apical and basolateral plasma membrane

domains. Basolateral targeting of TLR9 probably follows a similar

pathway (route 3) as in professional immune cells, except that the

epithelial cell-specific AP1B with b, c, r1, and l1B subunits are

utilized. Apical targeting of TLR9 is suggested to occur through the

transcytotic pathway (route 4) or via TGN (route 5)
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cargos such as the ion exchanger NHX-2 is also affected in

intestinal epithelia of AP1 l1B knockout mice and AP1-

deficient C. elegans [77, 79]. In line with these studies,

reduced expression of AP1 l1B has been reported in pa-

tients with Crohn’s disease [78], indicating plausible

occurrence of disrupted polarized cargo trafficking during

the course of inflammation.

Since most TLRs are basolaterally distributed in in-

testinal epithelial cells (Fig. 1b), it is highly possible that

AP complexes participate in TLR trafficking; however, the

direct in vivo evidence has been absent at this moment.

Studies using other cell types do support the critical in-

volvement of AP complexes in TLR trafficking [80–83]. In

keratinocytes, AP1r1C subunit regulates TLR3 trafficking;

pustular psoriasis mutations of AP1r1C reduces TLR3

trafficking and the induction of anti-inflammatory inter-

feron b (IFNb) [80]. In human kidney HEK293T cells,

TLR9 trafficking from plasma membrane to endolyso-

somes requires AP-2 complex (Fig. 2); knockdown of

AP2l1 accumulates TLR9 on the cell surface [75]. Two

recent studies, using plasmacytoid dendritic cells and bone

marrow-derived macrophages, have demonstrated that AP-

3 regulates the delivery of TLR7 and TLR9 to lysosomal

compartments (Fig. 2a) for type I IFN induction [82, 83].

Consistent with these results, AP-3 genetic ablation in

plasmacytoid dendritic cells impairs TLR9 trafficking to

lysosomal compartments, thereby decreasing type I IFN

production [82]. AP-3 has also been implicated in phago-

some recruitment of TLR4 and promoting MHC class II

antigen presentation in bone marrow-derived dendritic

cells [81]. Moreover, a recent study has shown that TLR7

trafficking from TGN to endosome needs AP-4 in 293T

cells and bone marrow-derived macrophage [75].

In contrast to basolateral cargos, apical cargos contain

even more diverse sorting motifs in transmembrane do-

mains or luminal regions [84]. Typically, apical sorting

depends on glycosylation modification at the ectodomain,

glycosyl phosphatidylinositol (GPI) anchorage, lipid raft-

associated transmembrane domain, or certain specialized

determinant motifs in the cytosolic domain [55, 84]. Both

N-linked and O-linked glycosylations are considered to be

apical sorting signal [55, 84]. However, this type of apical

sorting signal by glycosylation is recessive to cytosolic

basolateral sorting motifs [55]. In the case of TLRs,

TLR2–4 have been identified as highly glycosylated pro-

teins [85, 86], whereas other TLRs may contain potential

glycosylation sites in their ectodomain [87], hinting at their

potential apical trafficking activities. However, most TLRs

locate at the basolateral side of polarized IECs at steady-

state conditions, suggesting that basolateral sorting of these

TLRs or their transporting receptors may play a dominant

role. Of note, polarized TLR distribution also appears to be

cell-type dependent. Immunofluorescent analysis for TLR5

detected its exclusive distribution at the basolateral side of

polarized enterocytes [42]; however in microfold cells,

TLR5 is found at the apical poles and supranuclear struc-

tures [36]. This cell type-dependent polarization of TLR5

may attribute to specific trafficking machinery that requires

further investigations.

Rab small GTPase family proteins have been well

characterized in apical trafficking in the recent years [73,

84]. In polarized epithelia, Rab11a is located in the apical

recycling endosome to modulate apical trafficking [88, 89].

Genetic ablation of Rab11a in mouse intestinal epithelia

led to abnormal TLR9 trafficking and processing [51]. In

wild-type intestinal epithelial cells, TLR9 is detected by

immunofluorescent analysis at both basolateral and apical

domains as small vesicles, whereas TLR9 is accumulated

into larger puncta of vacuolar-like intracellular compart-

ments in Rab11a-deficient cells. In Rab11a-deficient

intestines, abnormal activation of NFjB signaling and

overproduction of inflammatory cytokines (IL6, IL1b, etc.)
have been observed. Histopathologically, Rab11a mutant

mice developed blunting villi, hyperproliferative crypts,

and infiltration of immune cells. These phenotypes re-

semble inflammatory bowel diseases and collectively

suggest that Rab11a vesicles contribute to a homeostatic

TLR9 intracellular compartmentalization to sustain in-

testinal epithelial and immune homeostasis [51]. In human

monocytes, Rab11a is also found to regulate TLR4 trans-

port to E. coli phagosomes [90], hinting at a broader

involvement of Rab11a in TLR trafficking and innate im-

munity. In addition, Rab10 has also been shown to control

TLR4 transport from TGN to plasma membrane to regulate

the macrophage response to LPS stimulation [91]. In po-

larized Madin-Darby canine kidney cells and C. elegans

intestines, Rab10 is proposed as an important regulator of

basolateral transport [92, 93]. Whether or not Rab10 also

regulates TLR4 transport in intestinal epithelial cells is

currently not clear.

In addition to TGN to apical membrane trafficking,

transcytosis is another important route for apical delivery

of some macromolecules in the intestinal epithelial cells

[94]. During transcytosis, cargos are transported from the

basolateral to apical cellular domains (Fig. 2b), or vice

versa, via intracellular compartments without affecting

tight junction integrity. Studies of transcytosis have shown

that basolateral proteins travel through basal sorting en-

dosome, common recycling endosome, and apical

recycling endosome before reaching apical plasma mem-

brane [84]. On this long journey, apical recycling

endosome resident proteins, Rab11a and its effectors

Rab11a-FIP5 and myosin V, appear to play critical roles

[88, 95]. However, it remains unclear whether apical TLR

traffic intersects the route of transcytosis. In the intestinal

epithelial cell-specific Rab11a knockout mice,
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accumulation of TLR9 at the subapical cytoplasmic com-

partments affirms the role of Rab11a vesicles in TLR9

apical transport [51]; however, whether the observed im-

pairment of TLR9 traffic represented a defective

biosynthetic pathway, transcytotic pathway, or both has not

been determined. Careful dissection of the molecular

mechanism of TLR9 trafficking by Rab11a will facilitate a

better understanding of this microbial receptor and its

contribution to intestinal immune homeostasis.

Ubiquitylation of cargos, such as TLRs, can also serve

as an endosome targeting signal to influence the trafficking

destination [96]. Genome-wide RNAi screening studies

have identified hepatocyte growth factor-regulated tyrosine

kinase substrate (Hrs) as being able to recognize ubiquiti-

nated TLR9, thereby regulating TLR9 endolysosome

localization [97]. Knockdown of Hrs in Raw 264.7 mouse

macrophages inhibits the proteolytic cleavage of TLR9.

Compared to control cells, Hrs-deficient cells show sig-

nificant reduction of NFjB promoter activation in response

to TLR7- or TLR9-specific ligand challenge. Furthermore,

mutating the lysine residues of mouse TLR9 cytosolic tail

disrupts an interaction between TLR9 and Hrs, causing

poor response to CpG stimulation, highlighting the positive

role of Hrs in TLR7 and TLR9 trafficking and signaling.

Negative regulation of TLRs signaling by Hrs has also

been reported in HEK293 cells and monocytes, where Hrs

interacts with the ubiquitinated TLR4 and delivers it to

lysosome for degradation upon LPS stimulation [98]. It

will be interesting to test Hrs-mediated TLR transport in

intestinal epithelial cells and determine the specific

mechanisms attributed to the distinct, potentially TLR-/li-

gand-dependent transport by Hrs.

In inflammatory bowel diseases, e.g., Crohn’s disease

and ulcerative colitis, persistent inflammation may com-

promise epithelial polarity and barrier integrity. For

example, proinflammatory tumor necrosis factor a (TNFa)
signaling suppresses atypical protein kinase C (PKCf) level
via NFjB-dependent abrogation of Hsp70/Hsc70 chaper-

oning activity and interrupts PKCf–Par3–Par6 polarity

complex activity that is critical for the maintenance of

epithelial polarity [99, 100]. PKCf activity can be rescued

by NFjB inhibition [99]. However, NFjB activity is also

critical for maintenance of intestinal epithelial barrier

[101]. When epithelial polarity is compromised, polarized

trafficking of TLRs can be disrupted, consequently altering

their access to microbial ligands and activation of pro-in-

flammatory signaling. In addition, persistent inflammation

can also reshape local membrane phospholipid composi-

tion, especially phosphorylated phosphatidylinositol

through activating or deactivating related kinases, phos-

phatase, and/or phospholipase activity, and subsequently

affect the recruitment of TLR adaptors and signaling

pathways [102–104]. Further investigation of polarized

trafficking and regulation in the milieu of inflammation

will optimize therapeutic target selection and facilitate the

re-establishment of normal TLR localization and signaling.

Role of UNC93B1 in TLR3, 7, 8, and 9 trafficking

Unc93 homolog B1 (UNC93B1) is a multi-transmembrane

chaperone protein regulating TLR trafficking from ER to

targeting destinations [105]. Previous studies have estab-

lished the critical contribution of UNC93B1 to the delivery

of endosomal TLRs, including TLR3, 7, 8, and 9 to en-

dosomes via the ER–Golgi–endosome pathway [106]. Of

note, cell surface-localized TLRs, such as TLR2 and TLR4,

are generally UNC93B1 independent with only a few ex-

ceptions (please see below). Endosomal TLRs interact with

UNC93B1 using distinct domains [107–109], deletion or

mutation of which cause trafficking defects exhibited as ER

accumulation or cell surface retention [49, 109, 110].

Conversely, point mutation (H412R) of UNC93B1 also

completely abolishes ER exit of endolysosomal TLRs

[105]. Serial truncation of UNC93B1 has identified its N

terminus as critical for TLR9’s ER exit [75]. In macro-

phages, expressing N-terminal UNC93B1 truncates or

D34A mutants prevent TLR9 exit from the ER compart-

ment, leading to significant reduction of EndoH-resistant

TLR9 precursor and proteolytically cleaved TLR9 forms.

C-terminal truncation of UNC93B1 causes an accumula-

tion of EndoH-resistant TLR9 precursor and a decrease of

cleaved TLR9. Further analyses suggest that TLR9 traf-

ficking to endocytic compartment requires adaptor protein

2 (AP2), indicating that TLR9 delivery is through endo-

cytic pathway in macrophage cell line (Fig. 2a).

Immunoprecipitation studies confirmed that UNC93B1

recruits AP2 to facilitate TLR9 internalization [75]. In

parallel, AP3 and AP4 are involved in UNC93B1-mediated

escort of TLR7 to endolysosomes, suggesting a direct

transportation of TLR7 from Golgi to endolysosomes [75,

82].

UNC93B1 appears also involved in transport of cell

surface-localized TLR3 and TLR5 [111, 112]. Overex-

pression of UNC93B1 in human 293T cells promotes

surface-associated TLR3 that shows different glycosylated

pattern and is sensitive to peptide N-glycosidase F treat-

ment [111, 113]. Knockdown of UNC93B1 in macrophage

decreases TLR5 cell surface distribution without affecting

the total level of TLR5 or TLR2 plasma membrane local-

ization, suggesting that UNC93B1 is an essential regulator

for surface TLR5 transport [112]. Although UNC93B1

contains a C-terminus localized YXXØ motif that mediates

AP1- and AP2-dependent UNC93B1 traffic, it does not

contain any domain that may power the trafficking of TLR/

UNC93B1 on actin or microtubule filaments. Disruption of

this YXXØ motif leads to different effects of endosomal
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TLR signaling that is dependent on the cell types and the

ligands [114]. Identification of additional trafficking com-

ponents, such as the motors and the specific small GTPases

that engage in UNC93B1-mediated TLR transport, will

elucidate additional mechanisms of endosomal TLR com-

partmentalization and signaling.

Roles of MD2, CD14, and TMED7 in TLR4

trafficking

In resting cells, TLRs are distributed in a cell type-de-

pendent manner. For example, TLR4 is mainly localized in

Golgi and plasma membrane in human monocytes [115]. A

secreted glycosylated protein, myeloid differentiation fac-

tor 2 (MD2), has been shown to associate with TLR4

(Fig. 2a) and regulates the dynamic trafficking of TLR4

between Golgi and plasma membrane [116]. In the absence

of MD2, TLR4 is trapped in the Golgi apparatus and fails

to reach the cell surface.

CD14, a glycosylphosphatidylinositol-anchored mem-

brane protein, can interact with multiple TLR ligands and

facilitate TLR recognition [117]. In addition to ligand de-

livery, CD14 also controls TLR4 endocytosis upon LPS

stimulation and is required for endosomal TLR4/TRIF-

mediated induction of type I interferon [118, 119]. Inter-

estingly, the expression levels of MD2 and CD14 are

relatively low in IECs at steady-state conditions, but are

increased under inflammatory conditions [120, 121].

The transmembrane Emp24 domain-containing protein

7 (TMED7) functions as another adaptor protein that

contributes to packaging of TLR4 into COPII vesicles

[122]. Knocking down TMED7 in HEK293T cell or human

THP-1 monocytes reduces surface TLR4 level and inhibits

the activation of TLR4/MyD88/NFjB without affecting the

TLR4/TRIF/IRF pathway.

Closing remarks

TLRs are membrane-bound microbial sensors that mediate

important host-to-microbe responses. The TLR biology has

been intensively studied in macrophage, dendritic cell, and

human embryonic kidney cells, but not fully explored in

mammalian intestinal epithelial cells. In close contact with

enteric microbes and engaging in constant immune

surveillance, these special epithelial cells may use similar

molecular machineries, as found in immune cells, to con-

trol TLR transport, localization, processing, activation, and

signaling (Fig. 2b). However, in contrast to immune cells,

these cells, being highly polarized, may have developed

distinct trafficking and regulatory mechanisms to establish

and maintain the precise location and signaling of indi-

vidual TLR. In pathological conditions, these trafficking

routes can be disrupted. Continued exploration of these

mechanisms will require combined inputs from both cell

biology and genetic studies and is expected to generate

important insights into the mechanism and therapeutic in-

tervention of inflammatory bowel diseases.
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