
HIGD1A regulates oxygen consumption, ROS production and 
AMPK activity during glucose deprivation to modulate cell 
survival and tumor growth

Kurosh Ameri, Arman Jahangiri2, Anthony M. Rajah1, Kathryn V. Tormos1, Ravi Nagarajan2, 
Melike Pekmezci3, Vien Nguyen4, Matthew L. Wheeler5, Michael P. Murphy6, Timothy A. 
Sanders1, Stefanie S. Jeffrey7, Yerem Yeghiazarians8, Paolo F. Rinaudo9, Joseph F. 
Costello2, Manish K. Aghi2, and Emin Maltepe1

1Department of Pediatrics/Biomedical Sciences, UCSF, 94143 USA

2Department of Neurological Surgery, UCSF, 94143 USA

3Department of Pathology, UCSF, CA, 94143 USA

4Department of Biomedical Sciences, UCSF, 94143 USA

5Department of Microbiology/Immunology, UCSF, 94143, USA

6Mitochondrial Biology Unit, MRC, Cambridge, CB2 0XY, UK

7Department of Surgery, Stanford University School of Medicine, CA, 94305, USA

8Department of Medicine/CVRI/Eli and Edythe Broad Center for Regeneration Medicine, UCSF, 
CA, 94143, USA

9Department of Obstetrics, Gynecology/Reproductive Sciences, UCSF, CA, 94143, USA

Abstract

Hypoxia-Inducible Gene Domain Family Member 1A (HIGD1A) is a survival factor induced by 

Hypoxia-inducible Factor-1 (HIF1). HIF1 regulates many responses to oxygen deprivation but 

viable cells within hypoxic perinecrotic solid tumor regions frequently lack HIF1α. HIGD1A is 

induced in these HIF-deficient extreme environments and interacts with the mitochondrial electron 

transport chain to repress oxygen consumption, enhance AMPK activity and lower cellular ROS 

levels. Importantly, HIGD1A decreases tumor growth but promotes tumor cell survival in vivo. 

The human Higd1a gene is located on chromosome 3p22.1, where many tumor suppressor genes 

reside. Consistent with this, the Higd1a gene promoter is differentially methylated in human 

cancers, preventing its hypoxic induction. When hypoxic tumor cells are confronted with glucose 

deprivation, however, DNA methyltransferase activity is inhibited, enabling HIGD1A expression, 
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metabolic adaptation and possible dormancy induction. Our findings therefore reveal important 

new roles for this family of mitochondrial proteins in cancer biology.

Introduction

Heart disease, stroke and cancer are associated with hypoxia (Semenza, 2014) and nutrient 

deprivation (Hardie et al., 2012). Hypoxia inducible factor 1 (HIF1) is a widely expressed 

transcription factor that regulates the survival of cells during oxygen and glucose deprivation 

(Iyer et al., 1998; Maltepe et al., 1997; Ochiai et al., 2011; Ryan et al., 1998). HIF can also 

regulate tumor metabolism by repressing respiration (Kim et al., 2006; Papandreou et al., 

2006) while promoting glycolysis, which enables rapid tumor cell proliferation (Vander 

Heiden et al., 2009). When severe, cancer cells can survive hypoxia and/or nutrient-

deprivation by entering a dormant state, which suppresses their growth (Bragado et al., 2012; 

Sosa et al., 2013). Since most cancer therapies target proliferating cells, oxygen/nutrient-

deprived tumor regions frequently become resistant and contribute to tumor recurrence. New 

agents are therefore being developed to target these regions (Harada et al., 2012; Zhang et 

al., 2014). Paradoxically, chronically oxygen starved tumor regions frequently lack HIF1α 
expression (Ameri et al., 2010; Sobhanifar et al., 2005), likely due to simultaneous glucose 

deprivation (Catrina et al., 2004; Osada-Oka et al., 2010). However, some HIF1 target genes 

such as CAIX remain either due to greater protein stability (Sobhanifar et al., 2005) or 

HIF1-independent pathways (van den Beucken et al., 2009).

Oxygen or glucose deprivation promotes reactive oxygen species (ROS) production, which 

can trigger adaptive responses such as HIF induction (Sena and Chandel, 2012) or can 

induce apoptosis (Malhotra et al., 2008). Therefore, cells need to modulate both oxygen 

consumption and ROS production in order to survive oxygen/glucose-deprivation. One 

pathway that cells utilize to achieve this relies on AMP-dependent protein kinase (AMPK) 

activation (Jeon et al., 2012). AMPK can activate multiple adaptive pathways, including 

antioxidant mechanisms. Interestingly, the effects of AMPK on tumor growth are complex, 

acting as oncogene or tumor suppressor depending on context (Hardie and Alessi, 2013).

Hypoxia-Inducible Gene Domain Family Member 1A (HIGD1A) is a survival factor 

regulated by Hypoxia-inducible Factor-1 (HIF1) (Wang et al., 2006). We previously 

demonstrated that HIGD1A is expressed in regions of severe ischemia in vivo (Ameri et al., 

2013) that frequently lack detectable HIF1 activity. To investigate this phenomenon, we 

interrogated the function of HIGD1A in RAS-transformed HIF1-deficient MEFs (Ryan et 

al., 2000) as well as in human cancers in vitro and in vivo. Our studies identify novel 

functions for HIGD1A with implications for tumor cell survival and dormancy mechanisms.

Results

HIGD1A protects from oxygen/glucose-deprivation but suppresses growth

HIGD1A can protect cells from glucose and oxygen deprivation induced death (Wang et al., 

2006). To confirm this, we generated HIGD1A “knockdown” mouse embryonic fibroblasts 

(MEFs) (Fig. 1Ai), which exhibited poor survival during oxygen/glucose deprivation (Fig. 
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1Aii, and Aiii). To isolate the function of this single HIF1α target from other HIF-dependent 

effects, we generated HIF1α deficient MEFs (Hif-1α−/− MEFs) that stably expressed 

HIGD1A to levels observed in wild-type MEFs exposed to hypoxia (Fig. 1Bi). Sustained 

HIGD1A expression in Hif-1α−/− MEFs had negligible effects on colony formation under 

normoxic or hypoxic conditions (Fig. 1 Bii). Glucose deprivation reduced colony size and 

number in Hif-1α−/− MEFs expressing either HIGD1A or GFP (Fig. 1Bii). However, Hif-1α
−/− MEFs expressing HIGD1A produced even fewer numbers of colonies that were also 

smaller in size during glucose- or combined glucose/oxygen-deprivation (Fig. 1B ii). 

Interestingly, HIGD1A expression protected Hif-1α−/− MEFs from death during glucose 

deprivation (Fig. 1C), suggesting that increased cell death was not the cause for reduced 

colony number or size. Consistent with these results, tumors derived from Hif-1α−/− MEFs 

expressing HIGD1A were much smaller than control Hif-1α−/− MEF tumors (Fig. 1D) and 

did not contain any appreciable areas of necrosis, which was widely seen in control tumors 

(Fig. 1Ei). Furthermore, these tumors also exhibited significantly less apoptosis (Fig. 1Eii). 

These results indicate that HIGD1A can promote cell survival during nutrient deprivation 

while simultaneously suppressing growth in vitro and in vivo.

HIGD1A interaction with the electron transport chain modulates mitochondrial ROS 
production and oxygen consumption

HIGD1A is an inner mitochondrial protein and recently orthologs of HIGD1A and the 

related HIGD2A were shown to interact with complex IV in yeast (Chen et al., 2012; 

Strogolova et al., 2012). Immunoprecipitation assays with extracts derived from MEFs 

expressing GFP-tagged HIGD1A detected an interaction between murine HIGD1A and 

Complex III subunit 2 of the mitochondrial electron transport chain (ETC), but not with 

Complex IV subunit I (Fig. 2A). Complex III is an important site for mitochondrial 

superoxide (O2
−) production (Buetler et al., 2004; Chen and Gibson, 2008), which can be 

increased when the proton motive force increases, as occurs with decreased flow through the 

respiratory chain (Murphy, 2009). Therefore, we examined the level of mitochondrial O2
− 

production via FACS-mediated analysis of Mitosox Red intensity. This was increased to a 

greater extent in HIGD1A expressing Hif-1α−/− MEFs during glucose starvation than their 

GFP expressing counterparts (Fig. 2B). Additionally, HIGD1A expression in Hif-1α−/− 

MEFs resulted in an approximately two-fold reduction in cellular oxygen consumption 

during glucose deprivation (Fig. 2Ci and ii). Interestingly, following re-introduction of 

glucose, oxygen consumption was reversed more rapidly in cells stably expressing HIGD1A 

(Fig. 2D i and ii). These results indicate that HIGD1A expression can modulate 

mitochondrial ROS production and oxygen consumption during conditions of glucose 

deprivation via interaction with the ETC.

HIGD1A induces AMPK activity and decreases cellular ROS to promote survival

ROS generation during glucose deprivation can result in cell death (Gao et al., 2012; Lenin 

et al., 2012; Malhotra et al., 2008). AMPK can be induced by glucose deprivation and 

mitochondrial O2
− production (Wu and Wei, 2012) (Mackenzie et al., 2013) to reduce total 

ROS via the promotion of pentose phosphate shunt-mediated NADPH production (Jeon et 

al., 2012). Consistent with these studies, Hif-1α−/− MEFs that stably expressed HIGD1A 

increased pAMPK levels to a greater extent than control cells during glucose deprivation 
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(Fig. S1 A) and this effect was reduced by the mitochondria-targeted antioxidant MitoQ 

(Kelso et al., 2001) (Fig. S1B). Furthermore, this diminished total cellular ROS in HIGD1A 

expressing cells during glucose starvation (Fig. S1C), and a cell permeable form of the 

antioxidant glutathione (Graham et al., 2012) improved the viability of control Hif-1α−/− 

MEFs during glucose deprivation (Fig. S1D). Thus, HIGD1A triggers increased 

mitochondrial O2
− production to activate AMPK and decrease total cellular ROS levels to 

promote cell survival. To determine whether AMPK activity was necessary for the protective 

effect of HIGD1A during glucose deprivation, we stably transfected Ampk1/2−/− MEFs with 

HIGD1A or GFP as control, and examined their survival during glucose starvation. AMPK-

deficient cells do not reduce total cellular ROS levels and fail to induce autophagy during 

glucose starvation, compromising their survival (Jeon et al., 2012; Kim et al., 2011). 

Interestingly, HIGD1A expression did not protect Ampk1/2−/− MEFs from glucose 

starvation (Fig. S1E), indicating that AMPK activation is necessary for the protective effect 

of HIGD1A during glucose deprivation. We also examined AMPK activation in vivo 

utilizing tumors derived from Hif-1α−/− MEFs expressing HIGD1A previously described in 

Fig. 1D and found that they demonstrated pAMPK immunoreactivity that was more intense 

as well as more diffusely distributed than control tumors (Fig. S1F), consistent with the 

reduction of cell death. Immunoreactivity of pAMPK was ablated when treated with 

pAMPK blocking peptide (Fig. S1G). Finally, we questioned whether the effects of 

HIGD1A-dependent pAMPK induction during glucose deprivation could be due to 

autophagy induction, since it can also be regulated by AMPK to increase cell survival during 

glucose starvation (Kim et al., 2011). As seen in figure S2, autophagy induction was 

dispensable for the protective effects of HIGD1A.

HIGD1A is not induced by HIF1α in hypoxic human cancers but is triggered by additional 
metabolic stressors

We next examined the mode of regulation of HIGD1A in a variety of human cancer cell 

lines. Human HT1080 fibrosarcoma and HeLa cervical cancer cell lines exhibited basal 

levels of HIGD1A that were surprisingly not further induced by hypoxia, despite inducing 

HIF-1α (Fig. 3A). BNIP3, another HIF1 target mitochondrial protein (Sowter et al., 2001), 

was induced, however. The gene encoding HIGD1A is located on human chromosome 

3p22.1, where many tumor suppressor genes reside, and these are often inactivated via 

epigenetic mechanisms (Bhat Singh and Amare Kadam, 2013; Buchhagen et al., 1994). 

From genome-wide analyses of aberrant DNA methylation in glioblastoma multiforme 

(GBM) (Nagarajan et al., 2014), we identified two candidate regions near the Higd1a 
promoter that exhibited GBM-specific hypermethylation. As indicated in figure 3B, one of 

these regions, located upstream of the 5′ CpG island promoter, in a CpG island “shore,” 

contains consensus core hypoxia response elements (HRE) (blue underlined). Two CpG sites 

within this region are interrogated on the Illumina HumanMethylation450 methylation array, 

and exhibit high methylation in several cancer cells, and only partial methylation in normal 

human NH-A astrocytes (ENCODE data), indicating that it may be a differentially 

methylated region (DMR, red and green CG). ChIP-seq profiles from the Roadmap 

Epigenomics Project confirmed the presence of histone modifications associated with 

enhancers in both brain and breast, consistent with it harboring potential HREs. ChIP 

analysis confirmed that HIF1α was able to bind the HRE within this DMR in HeLa cells 
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during hypoxia (Fig. 3C), despite its expression not being induced. Treating HeLa cells with 

the DNA methylation inhibitor 5-aza-2′-deoxycytidine, however, enhanced HIGD1A 

expression during hypoxia (Fig. 3D). Reduced expression of DNA methyl transferase 1 

(DNMT1) can reactivate tumor suppressors (Xiang et al., 2014; Yao et al., 2014), and 

glucose starvation can reduce expression of the gene encoding DNMT1 (Lin et al., 2012). 

Glucose starvation reduced DNMT1 expression in hypoxic HeLa cells suggesting that DNA 

methylation pathways are inhibited during combined oxygen/glucose deprivation (Fig. 3E). 

Reduction of DNMT1 correlated with enhanced HIGD1A expression during glucose 

starvation (Fig. 3F). Unlike canonical tumor suppressor genes that are sometimes strongly 

and permanently silenced by dense methylation across their promoter CpG islands, the 

Higd1a gene locus shows more nuanced epigenetic regulation in human cancer. DNA 

methylation at upstream HREs might prevent transactivation of HIGD1A via HIF1 and 

thereby suppress enhanced HIGD1A expression during growth permissive hypoxic 

conditions, but allow epigenetic activation when environmental conditions favoring 

HIGD1A expression are encountered.

HIGD1A expression is enhanced in severely ischemic tumor regions in vivo

We next examined whether HIGD1A expression is induced in a similar fashion in human 

cancers in vivo, particularly since reduced methyl cytosine levels have been reported in 

ischemic tumor regions due to reduced DNMT activity (Shahrzad et al., 2007; Skowronski et 

al., 2010). MDA-MB 231 breast cancer xenografts demonstrated severely ischemic 

perinecrotic regions as evidenced by strong staining with the hypoxia marker pimodinazole, 

along with diminished HIF1α immunoreactivity, indicating likely glucose starvation (Fig. 

4A). As shown in Figure S3, lack of HIF1α was also observed in severely ischemic 

myocardial regions following experimental myocardial infarction in mice, suggesting that 

this may be a common indicator of starvation severity. As indicated in Fig. 4B and S3, these 

areas of ischemia demonstrated enhanced HIGD1A expression. Similar to our observations 

with HeLa cells, DNMT1 levels were also reduced in ischemic MDA-MB 231 cells (Fig. 

4C). In addition, HIGD1A expression was enhanced in vitro in ischemic MDA-MB 231 cells 

when compared with hypoxia (Fig. 4D). Circulating tumor cells (CTCs) derived from MDA-

MB 231 xenografts were previously reported to be more resistant to anoxia (Ameri et al., 

2010). Both MDA-MB231 cells and their CTCs induced HIF1α but not HIGD1A during 

hypoxia (Fig. 4E). Interestingly, basal levels of HIGD1A were higher in CTCs. These results 

further confirm that hypoxic HIF1α induction is not sufficient to enhance HIGD1A 

expression in human cancers in vitro or in vivo, but that additional pathways triggered by 

severe metabolic stressors are necessary. Finally, we analyzed HIGD1A expression patterns 

in glioblastoma multiforme (GBM) biopsies from patients before and after treatment with 

the anti-angiogenesis agent bevacizumab, which is known to induce severe tumor ischemia. 

Primary GBM biopsies exhibited hypoxic areas as evident by increased CA9 expression 

(Fig. 4F). These areas did not demonstrate significant HIGD1A expression. However, after 

treatment with bevacizumab, HIGD1A was strongly induced (Fig. 4F). This indicates that 

HIGD1A expression is prevented during physiological hypoxia and that additional metabolic 

stressors are needed to induce HIGD1A in human cancers in vivo.
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Discussion

We and others previously documented (Ameri et al., 2010; Sobhanifar et al., 2005), and 

confirmed once again here, that some of the most metabolically compromised tumor regions 

found around their necrotic cores fail to induce HIF activity, potentially due to glucose 

starvation (Catrina et al., 2004; Osada-Oka et al., 2010). Interestingly, these regions still 

express the HIF1 target HIGD1A. One way that cells can survive metabolic stress is via 

lowering cellular ROS and oxygen consumption, which are parameters associated with 

quiescence and dormancy-mediated survival (Endo et al., 2014; Lagadinou et al., 2013; 

Lopes et al., 2010). Consistent with this, we found that HIGD1A interacts with the 

mitochondrial electron transport chain, modulates oxygen consumption, ROS production 

and AMPK activity to promote cell survival during glucose starvation, while simultaneously 

suppressing tumor growth in vivo. Furthermore, anti-VEGF therapy has previously been 

shown to induce AMPK activity to promote tumor cell survival in vivo (Nardo et al., 2011), 

which we also confirm to be associated with enhanced HIGD1A activity in human GBM. 

Multiple studies have previously linked ROS suppression and cell survival with AMPK 

activation, likely via phosphatase inhibition (Davies et al., 1995; Faubert et al., 2013; Han et 

al., 2010; Hofstetter et al., 2012; Indraccolo, 2013; Ingebritsen et al., 1983; Jeon et al., 2012; 

Klaus et al., 2012; Kwan et al., 2013; Rotte et al., 2010; Wu and Wei, 2012). Our studies 

confirm these observations and identify HIGD1A as an important upstream component of 

this signaling cascade. Furthermore, HIGD1A repression is associated with tumor 

recurrence in breast cancers following therapy (Chanrion et al., 2008), consistent with our 

observations that HIGD1A expression helps repress tumor growth. These findings therefore 

provide novel insights into tumor cell adaptation mechanisms to extreme environments and 

suggest that HIGD1A may play an important role in tumor dormancy or recurrence 

mechanisms (Giancotti, 2013).

The ability of HIGD1A expression to be regulated epigenetically provides an attractive 

model whereby environmental factors can regulate HIGD1A expression independent of HIF 

activity to modulate tumor growth. The gene encoding HIGD1A is located on human 

chromosome 3p22.1, where many tumor suppressors reside, and many of which are 

inactivated via epigenetic mechanisms (Bhat Singh and Amare Kadam, 2013; Buchhagen et 

al., 1994). Our analysis of the human Higd1a locus indicated hypermethylation of the 

upstream promoter region in various cancer cell lines that was able to bind HIF1α but not 

drive its hypoxic expression. This suggested that additional pathways are required to induce 

HIGD1A in human cancers in vivo and we found that reducing the expression or activity of 

DNA methyl transferases (DNMTs) increased HIGD1A expression in vitro. This result is 

consistent with previous reports linking DNMT1 inhibition with tumor suppressor 

reactivation in response to environmental stressors in vivo (Xiang et al., 2014; Yao et al., 

2014) (Lin et al., 2012). Constitutive basal expression of HIGD1A might be beneficial 

during growth permissive hypoxic conditions without glucose deprivation. When glucose 

deprivation becomes severe, enhanced HIGD1A expression modulated by epigenetic 

mechanisms may help trigger a state of dormancy and tumor growth inhibition (LaRue et al., 

2004; Sutherland, 1988). Such dormant cells are typically resistant to many therapies, 

enabling tumor cell survival and cancer recurrence (Indraccolo, 2013; Lin et al., 2012). 
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Novel molecules are therefore being developed to target these dormant cells (Zhang et al., 

2014). Small molecule modulators of the HIG family of mitochondrial proteins (Lindert et 

al., 2014) may therefore prove useful in the fight against cancer.

Experimental Procedures

Cell Culture

MEFs, HT1080 and HeLa cells were cultured in RPMI-1640, 10%FBS, and 110 μg/ml 

Sodium Pyruvate. Glucose starvation was achieved by using glucose-free RPMI 1640. 

Normoxic cells were incubated at 5% CO2 and 21% O2 while hypoxia experiments were 

performed at 1% O2 with 5% CO2.

Oxygen consumption and ROS measurements

O2 consumption measured via use of the SeaHorse Extracellular flux Analyzer according to 

the manufacturer’s protocol. Mitochondrial ROS measured via FACS-mediated analysis of 

Mito-Sox Red, and total ROS assayed by measuring Cell-Rox Deep Red fluorescence via 

manufacturer’s instructions.

Immunohistochemistry

Formalin-fixed paraffin-embedded (FFPE) MEF and human tumor sections were cut at 5 

μm, subjected to antigen retrieval, treated with M.O.M. kit, incubated for 1 hour at 37°C 

with primary antibody. Glioblastoma FFPE biopsies were cut at 16 μm sections. Sections 

were incubated overnight at 4°C in primary antibody. List of antibodies and suppliers 

available in supplement. Imaging performed with a Zeiss Imager Z.2 fluorescence 

microscope equipped with an Apotome and axiovision-ZEN software for optical sectioning 

and analysis.

Immunoprecipitation and immunoblotting

GFP-fusion proteins were immunoprecipitated with Chromotek-GFP-Trap bead according to 

manufacturer’s recommendations. Pulldowns, as well as all other immunoblotting, 

performed via SDS-PAGE and blotted onto Immobilon-FL membranes using semi-dry 

transfer. Membranes were blocked in blocking buffer from LI-COR Biosciences and probed 

with primary antibodies in LI-COR blocking buffer.

ChIP Assays

The ExactaCHIP kit was used for chromatin immunoprecipitation assays according to the 

manufacturer’s protocol.

Tumor models and human glioblastoma samples

Described in supplementary experimental procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. HIGD1A protects against glucose starvation and suppresses tumor growth with 
diminished apoptosis
(Ai) Immunoblot analysis of HIGD1A levels following shRNA-mediated knockdown in wt 

MEFs (control shRNA=ctrl). (A ii and iii) Phase contrast microscopy as well as trypan blue 

exclusion count indicate that HIGD1A is necessary for survival of cells during glucose 

starvation/hypoxia. 20,000 cells were seeded in 6-well plates and counted after 4 days. (Bi) 

Immunoblot analysis comparing protein levels of HIGD1A in HIF-deficient (Hif-1α−/−) 

MEFs stably expressing HIGD1A versus wild-type MEFs (Hif-1α+/+) exposed to hypoxia. 

(Bii) Colony formation assays showing that HIGD1A expression in HIF-deficient (Hif-1α
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−/−) MEFs results in fewer as well as smaller colonies during combined hypoxia/glucose 

deprivation or glucose deprivation alone. (C) Viability assay of Hif-1α−/− MEFs expressing 

HIGD1A compared with control GFP cells following three days of glucose deprivation. (D) 

Hif-1α−/− MEFs stably expressing HIGD1A resulted in significantly smaller tumor 

xenografts when grown for 3 weeks subcutaneously in mice. (Ei) Histopathological analysis 

indicating lack of necrosis in Hif-1α−/− HIGD1A tumors, but profound necrosis in Hif-1α−/− 

GFP control tumors. Cleaved-caspase-3 immunohistochemical staining shows significantly 

more apoptosis in Hif-1α−/− GFP control tumors (Eii). Error bars represent ±SD. * p<0.05. 

Five mice per group were used for tumor growth and analysis.

Ameri et al. Page 14

Cell Rep. Author manuscript; available in PMC 2016 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. HIGD1A can regulate mitochondrial superoxide and oxygen consumption during 
glucose starvation
(A) Immunoprecipitation assay showing HIGD1A can interact with complex III subunit 2 of 

the respiratory chain. (B) FACS analysis showing that HIF-deficient cells overexpressing 

HIGD1A have increased mitochondrial ROS (superoxide) during glucose starvation 

compared to control cells overexpressing GFP. (Ci and Cii) Oxygen consumption is lower 

during glucose deprivation when HIGD1A is overexpressed in Hif-1α−/− cells. (Di and Dii) 

When glucose is re-introduced to glucose-starved cells, HIGD1A expressing cells increase 
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their oxygen consumption at a faster rate than control GFP expressing cells. Error bars 

represent ±SD, * p<0.05.
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Figure 3. Expression and regulation of HIGD1A in cancer
(A) Immunoblot analysis of HIGD1A, HIF1α and BNIP3 expression in human HT1080 and 

HeLa cancer cell lines during normoxia or hypoxia (B) Data from Illumina 

HumanMethylation450 methylation array, and the ENCODE consortium showing high 

methylation level (vertical orange lines) upstream of the 5′ CpG island promoter, in a CpG 

island “shore.” The HIGD1A CpG island itself is generally unmethylated (vertical blue and 

violet lines) in both cancer cell lines (U87, ovcar-3, HCT-116, HeLa) as well as in normal 

human astrocytes (NH-A). Two of the CpGs (within vertical grey rectangle) in the 5′ shore 
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of that CpG island have high methylation levels in HeLa, ovcar-3, HCT-116, and U87 cell 

lines, and partial methylation in normal human astrocytes, indicating a potential differential 

methylated region (DMR, red and green CG in the sequence given). The sequence of the 

entire 5′ region (region chr3: 42846997–42847502) including the two specific CpGs 

(highlighted as green and red in the sequence) of this putative DMR neighbors several HRE-

core sequences (blue underlined). ChIP-seq data from the Roadmap Epigenomics Project 

indicate that this region is marked by histone modifications associated with enhancers 

(yellow and orange bars) in both brain (FB ChromHMM, BGM ChromHMM) and breast 

(BMC ChromHMM). Primers used for CHIP analysis in black underlined. (C) ChIP analysis 

performed on normoxic (N) or hypoxic (H) HeLa cells using primers (black underlined in 

sequence) within the 5′ region that contains the two specific CpGs (highlighted as green and 

red in the sequence) of this putative DMR. (D) Immunoblot analysis demonstrating 

expression of HIGD1A protein in the human cervical cancer cell line HeLa in hypoxia (H) 

versus hypoxia combined with the DNA methylation inhibitor (DNMT-inhibitor) 5-aza-2′-

deoxycytidine (H+aza). (E) Immunoblot analysis showing that glucose starvation (-glucose) 

during hypoxia (H) reduces expression of DNMT1. (F) Glucose starvation induces HIGD1A 

in hypoxic HeLa cells. H=hypoxia (1% O2)
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Figure 4. Expression of HIGD1A in vivo and in circulating tumor cells
(A) Pimonidazole and HIF1α staining of MDA-MB 231 xenografts showing diminished 

expression of HIF1α within perinecrotic regions where pimonidazole staining is strongest. 

(B) MDA-MB 231 xenografts showing enhanced expression of HIGD1A at perinecrotic 

regions where HIF1α expression is diminished. (C) Immunoblot analysis showing that 

expression of DNMT1 during hypoxia (H) versus hypoxia and glucose starvation (H -

Glucose). (D) Glucose starvation during hypoxia enhances HIGD1A protein level in MDA-

MB 231 cells. (E) Immunoblot analysis of HIGD1A expression in MDA-MB231 cells from 
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which the xenografts where made, and in CTCs derived from the xenografts via blood 

extraction, as a function of oxygen. (F) Human primary glioblastoma biopsies demonstrate 

lack of HIGD1A induction in hypoxic regions where Ca9 induction is evident. Induction of 

HIGD1A is evident only after treatment with the anti-angiogenesis agent bevacizumab. 

N=normoxia (21% oxygen), H=hypoxia (1% oxygen), HBS=HIF binding site, 

HRE=hypoxia response element, CTC=circulating tumor cell.
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