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Abstract
Many viral infections, including HIV, exhibit sex-based pathogenic differences. However,

few studies have examined vaccine-related sex differences. We compared immunogenicity

and protective efficacy of monomeric SIV gp120 with oligomeric SIV gp140 in a pre-clinical

rhesus macaque study and explored a subsequent sex bias in vaccine outcome. Each

immunization group (16 females, 8 males) was primed twice mucosally with replication-

competent Ad-recombinants encoding SIVsmH4env/rev, SIV239gag and SIV239nefΔ1–13 and

boosted twice intramuscularly with SIVmac239 monomeric gp120 or oligomeric gp140 in

MF59 adjuvant. Controls (7 females, 5 males) received empty Ad and MF59. Up to 9 weekly

intrarectal challenges with low-dose SIVmac251 were administered until macaques became

infected. We assessed vaccine-induced binding, neutralizing, and non-neutralizing antibod-

ies, Env-specific memory B cells and plasmablasts/plasma cells (PB/PC) in bone marrow

and rectal tissue, mucosal Env-specific antibodies, and Env-specific T-cells. Post-chal-

lenge, only one macaque (gp140-immunized) remained uninfected. However, SIV acquisi-

tion was significantly delayed in vaccinated females but not males, correlated with Env-

specific IgA in rectal secretions, rectal Env-specific memory B cells, and PC in rectal tissue.

These results extend previous correlations of mucosal antibodies and memory B cells with

protective efficacy. The gp140 regimen was more immunogenic, stimulating elevated

gp140 and cyclic V2 binding antibodies, ADCC and ADCP activities, bone marrow Env-
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specific PB/PC, and rectal gp140-specific IgG. However, immunization with gp120, the form

of envelope immunogen used in RV144, the only vaccine trial to show some efficacy, pro-

vided more significant acquisition delay. Further over 40 weeks of follow-up, no gp120

immunized macaques met euthanasia criteria in contrast to 7 gp140-immunized and 2 con-

trol animals. Although males had higher binding antibodies than females, ADCC and ADCP

activities were similar. The complex challenge outcomes may reflect differences in IgG sub-

types, Fc glycosylation, Fc-R polymorphisms, and/or the microbiome, key areas for future

studies. This first demonstration of a sex-difference in SIV vaccine-induced protection

emphasizes the need for sex-balancing in vaccine trials. Our results highlight the impor-

tance of mucosal immunity and memory B cells at the SIV exposure site for protection.

Author Summary

Viral infections can have different disease courses in men and women. Following HIV
infection, women generally exhibit lower viral loads and higher CD4 counts than men, but
paradoxically progress faster to AIDS. Sex differences result from effects of X-linked genes
and hormonal influences, and are believed to be largely based on immune response differ-
ences. Nevertheless, little is known about potential sex differences following vaccination.
Here we report for the first time a sex bias in response to a SIV vaccine in rhesus
macaques, showing that female animals were better protected against acquisition of SIV
compared to males. The vaccine-induced immune responses that contributed to this better
protection were viral-specific antibodies and immune antibody-secreting B cells, both at
the local rectal site of SIV exposure. These results suggest that HIV/SIV vaccines should be
better designed to target mucosal exposure sites. Additionally, they indicate that more vac-
cine studies should include animals of both sexes to address potential differences. Our
study also illustrates that inclusion of both sexes can lead to greater complexity in vaccine
trial outcomes, necessitating more in depth analyses. However, we believe sex balancing to
be particularly important, as approximately 50% of HIV infections worldwide occur in
women.

Introduction
Sex differences in the pathogenesis of numerous viral diseases, including HIV, are well-known
[1]. HIV-infected women exhibit lower viral loads and higher CD4 counts than men, but prog-
ress faster to AIDS [2]. Women with similar viral loads as men exhibit a 1.6-fold higher risk of
AIDS [3]. This sex bias is associated with differences in immune responses. Following viral
infections, antigen recognition by pattern recognition receptors, induction of innate and adap-
tive immune responses, and production of inflammatory cytokines are higher in females than
in males [1]. After viral clearance, immune responses in females can remain elevated, contrib-
uting to pathogenesis [1]. Less is known regarding sex differences following vaccination.
Females have exhibited better immune responses to HSV-2 gD, HBV, and inactivated influenza
vaccines [1], but sex-based effects following HIV/SIV vaccinations have not been reported.
Using a large number of female rhesus macaques in a pre-clinical SIV vaccine study we uncov-
ered a sex bias in vaccine-elicited immunity and protective efficacy.

Our vaccine strategy is based on mucosally-delivered replicating Ad-recombinants which
target myeloid dendritic cells and persist in rectal macrophages, eliciting systemic and mucosal
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immunity [4]. Following Ad-priming we compared the immunogenicity and protective efficacy
of regimens boosted with monomeric SIV gp120 or oligomeric SIV gp140. gp120 immunogens
are of interest as they were the form of antigen used as subunit boost for the RV144 clinical
trial, the first to show modest protection [5]. Although that vaccine regimen failed to elicit neu-
tralizing antibodies (nAbs) against primary HIV circulating isolates [6], non-neutralizing anti-
bodies exhibiting binding to V1/V2 and high ADCC activity in the presence of low serum IgA
levels correlated with reduced infection risk [7–8]. Nevertheless, broadly neutralizing antibod-
ies (bnAbs) are believed important for a highly efficacious vaccine. They develop in a small
proportion of HIV-1 patients over prolonged infection, and contribute to maintenance of low
viremia [9]. Passive transfer of bnAbs in non-human primates has protected against SHIV
infection [10]. Thus, rational design of HIV Env antigens for elicitation of bnAbs is at the fore-
front of HIV research [11–12]. Native gp140 trimers are thought to be more promising for this
purpose compared to monomeric gp120 [13–16] due to the presence of conserved conforma-
tional and quaternary epitopes. For example, the potent bnAb 35O22 targets an epitope shared
across gp120 and gp41 [17].

The SIV rhesus macaque model is extensively used in pre-clinical vaccine research as SIV
transmission and disease progression in macaques resemble human HIV infection [18]. How-
ever, SIV monomeric and oligomeric Env immunogens have not been directly compared in
this model. We assessed both proteins as booster immunogens, focusing on systemic and
mucosal humoral immunity, and evaluating protective efficacy following repeated low-dose
SIV rectal challenges. Viremia reductions were modest post-challenge, but we discovered for
the first time a sex bias in SIV vaccine outcome. Female but not male macaques exhibited sig-
nificantly delayed SIV acquisition. These findings are timely in view of recent NIH policy
requiring balancing of males and females in animal studies [19]. The mechanisms of acquisi-
tion delay point to local mucosal B cell responses.

Results

Delayed SIV acquisition following repeated low-dose intrarectal
challenges
Macaques mucosally primed with Ad5hr-SIV recombinants and boosted with monomeric
gp120 or oligomeric gp140 as described in Materials and Methods and outlined in Fig 1A were
challenged intrarectally with repeated low doses of SIVmac251 eight weeks following the last
immunization. All macaques became infected by the 9th exposure except one gp140-immu-
nized female. No difference in rate of infection was observed between all immunized macaques
combined versus the controls (Fig 1B) or between either immunization group and the controls
(Fig 1C). As the study included only 12 contemporaneous controls, to achieve greater statistical
power we combined these with an additional 53 historical controls (17 females, 36 males)
which had been challenged intrarectally at weekly intervals with the same low dose of the same
SIV challenge stock. There was no difference in rate of SIV acquisition between the contempo-
raneous and historical control groups (Fig 1D). A comparison of all the immunized macaques
with these combined controls (n = 65) showed a marginally significant difference in rate of SIV
acquisition (Fig 1E), suggesting a vaccine effect.

To explore this effect further, we evaluated the rate of SIV acquisition among the immu-
nized male and female macaques and the combined control males and females. We observed
significantly delayed acquisition in all the immunized females when compared to the combined
control females (Fig 1F), whereas no acquisition delay was seen when all the immunized males
were compared to the combined control males (Fig 1G). A direct comparison of all the immu-
nized females versus all the immunized males confirmed a significant acquisition delay in the

Mucosal B Cells and Delayed SIV Acquisition in Female Rhesus Macaques

PLOS Pathogens | DOI:10.1371/journal.ppat.1005101 August 12, 2015 3 / 28



Fig 1. Immunization scheme and delayed acquisition after intrarectal repetitive SIVmac251 low dose challenges. (A) Immunization and challenge
schedule. O = oral; IN = intranasal; IT = intratracheal; IM = intramuscular; IR = intrarectal. Dosages and further details are provided in on-line Methods. (B) No
difference in SIV acquisition between all immunized macaques and current controls (n = 12). (C) No difference in SIV acquisition rate in gp120- and
gp140-immunized macaques and current controls. (D) Similar acquisition rate in historical (n = 53) and current controls. (E) Delayed SIV acquisition in all
immunized macaques compared to combined controls (n = 65). (F) Delayed SIV acquisition in all immunized females (n = 32) compared to combined control
females (n = 24) but not (G) in all immunized males (n = 16) compared to combined control males (n = 41). (H) Delayed SIV acquisition in gp120-immunized
females compared to combined control females. (I) Trend for delayed SIV acquisition in gp140-immunized females compared to combined control females.
No difference in SIV acquisition rate in gp120-immunized males (J) and gp140-immunized males (K) compared to combined control males.

doi:10.1371/journal.ppat.1005101.g001
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females (S1A Fig). We next explored the influence of the booster immunogen on acquisition
delay. A significant difference was observed when gp120-immunized females were compared
to the combined control females (Fig 1H), whereas a marginally non-significant difference was
seen when comparing gp140-immunized females versus the combined control females (Fig 1I).
In contrast, no delay in acquisition was seen when either gp120- or gp140-immunized males
were compared with the combined control males (Fig 1J and 1K). A direct comparison of the
gp120- and gp140-immunized females versus the similarly immunized males again confirmed
the delayed acquisition in gp120- but not gp140-immunized females (S1B and S1C Fig). Over-
all the delay in SIV acquisition of the gp120 immunized females was clearly a vaccine effect
and provides the first demonstration of a sex bias in SIV vaccination outcome.

Immunogenicity of monomeric gp120 and oligomeric gp140
To understand the basis for the significantly delayed acquisition observed in gp120 immunized
but not gp140 immunized females, we conducted a thorough analysis of systemic and mucosal
humoral immune responses throughout the course of immunization and post-challenge. We
first compared the two immunization groups. Oligomeric gp140 proved to be more immuno-
genic than gp120 as summarized in Tables 1 and 2 and detailed in the accompanying supple-
mental figures. Systemic Env-specific binding antibodies following Ad5hr-recombinant
immunizations (wk 14) were boosted to titers over 106 (wk 53) in both immunization groups
(S2A–S2C Fig). The gp120 group exhibited similar antibody titers against gp140 and gp120 but
gp140-immunized animals developed higher titers to gp140 with an overall higher titer to
gp140 compared to gp120-immunized macaques (Table 1; S2A–S2C Fig). Antibody levels were
maintained between wk 53 post-vaccination and 2 weeks post-infection (2wkpi) in both
groups. The gp140 immunized macaques also developed higher cyclic V2-specific binding anti-
body titers than the gp120 group (Table 1; S2D Fig).

Serum nAb titers against tier 1 SIVmac251.6 were comparable in both immunization groups
(Table 1; S3A Fig). No neutralization of challenge-related tier 3 SIVmac251.30 developed. Higher
ADCC activity (S3B and S3C Fig) was elicited by gp140 compared to gp120 immunization,
regardless of whether gp140- or gp120-coated targets were tested (Table 1). Similarly, anti-
body-mediated phagocytosis of gp140-coated beads pre-and post-challenge was elevated in
both immunization groups compared to controls (p<0.0001; S3D Fig). gp140-immunized
macaques phagocytosed gp120-coated beads significantly above control and gp120-immunized
macaque levels (wk 53, Table 1; S3E Fig), whereas phagocytosis by gp120-immunized
macaques was higher than that of gp140-immunized macaques 2wkpi (p = 0.0034; S3D Fig).

Mucosal binding antibodies were also assessed during the immunization regimen. Rectal
gp120- and gp140-specific IgA and IgG were elicited following mucosal Ad-recombinant prim-
ing (wk 14) in both immunization groups. After systemic Env immunization, mucosal IgG was
significantly boosted (wk 53) while Env-specific IgA was maintained at post-Ad levels (S4A–
S4D Fig). In most cases, IgA and IgG mucosal antibodies in both groups showed elevated reac-
tivity to gp120 at wk 53. gp140-immunized animals developed higher levels of Env-specific rec-
tal IgG against gp140 (wk 53) compared to gp120-immunized macaques (Table 2).

Bone marrow (BM) antibody secreting cells (ASC) were next assessed by ELISpot. SIV Env-
specific IgG and IgA memory B cells significantly declined after peak elicitation (wk 53), but
rebounded 2wkpi (S5A and S5B Fig). IgA memory B cells developed at higher levels than IgG
memory B cells at wk 53 in both groups (p = 0.0049 and 0.036), and also 2wkpi (p = 0.0001 and
0.023) (S5C and S5D Fig). Env-specific plasmablasts (PB) and plasma cells (PC) exhibited a
similar response pattern as memory B cells, but displayed smaller IgG and IgA ASC declines
between wks 53 and 57 as expected for long-term memory cells (S6A and S6B Fig). The gp140
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group maintained higher levels of both IgG and IgA PB/PC prior to challenge (wk 53, Table 2;
wk 57, S6A and S6B Fig). In both groups IgG PB/PC were elevated compared to IgA PB/PC at
wk 53 (p = 0.0072 and 0.014, respectively), but IgA was higher than IgG in gp120-immunized
macaques 2wkpi (p = 0.023; S6C and S6D Fig).

With regard to cellular immune responses, we investigated SIV specific CD4+TM and
CD8+TM T-cell responses in PBMC 2wkpi. SIVsmH4 Env-specific CD4

+ and CD8+ T-cell
responses, representative of env encoded in the Ad-recombinant, were comparable between
immunization groups, and appeared post-infection in controls (S7A and S7C Fig). In contrast,
gp140- compared to gp120-immunized macaques exhibited a trend of elevated CD4+ and
CD8+ T-cell responses following SIVmac239 Env stimulation, suggesting a more effective booster

Table 1. Comparative immunogenicity of monomeric gp120 and oligomeric gp140: serum binding and functional antibody activities.

gp120 immunized gp140 immunized gp120 vs gp140

Serum Antibody Responses geometric mean 95% CL geometric mean 95% CL p value

Binding titer to gp120 2.18x106 (1.38x106, 3.42x106) 2.06x106 (1.38x106, 3.07x106) 0.90

Binding titer to gp140 2.29x106 (1.54x106, 3.41x106) 4.51x106 (3.28x106, 6.22x106) 0.0059

Binding titer to cyclic V2 8.13x104 (6.50x104, 1.02x105) 1.12x105 (8.84x104, 1.41x105) 0.034

Neutralizing titera 5.97x105 (3.42x105, 1.04x106) 3.74x105 (2.29x105, 6.11x105) 0.12

ADCC to gp120 targetsb 6.00x104 (4.03x104, 8.92x104) 2.81x105 (1.66x105, 4.77x105) <0.0001

ADCC to gp140 targetsb 3.74x105 (2.57x105, 5.44x105) 1.78x106 (1.26x106, 2.52x106) <0.0001

mean ± SEM mean ± SEM p value

Phagocytosis of gp120 beadsc 1.12 ± 0.01 1.21 ± 0.01 <0.0001

Phagocytosis of gp140 beadsc 1.25 ± 0.01 1.27 ± 0.01 0.59

Immune responses were evaluated on serum samples obtained at week 53, 2 weeks following the second Env protein immunization.
aNeutralization of tier 1 SIVmac251.6;
bADCC expressed as 50% maximum killing titer;
cPhagocytic score/background phagocytic score. CL = confidence limits.

doi:10.1371/journal.ppat.1005101.t001

Table 2. Comparative immunogenicity of monomeric gp120 and oligomeric gp140: mucosal and bonemarrow responses.

Mucosal and Bone Marrow Responses gp120 immunized gp140 immunized gp120 vs gp140

Mucosal Antibody Responses Mean ± SEM Mean ± SEM p value

Rectal gp120-specific IgAa 0.21 ± 0.066 0.20 ± 0.092 0.19

Rectal gp140-specific IgAa 0.043 ± 0.026 0.18 ± 0.13 0.055

Rectal gp120-specific IgGa 39.51 ± 7.14 53.15 ± 8.05 0.12

Rectal gp140-specific IgGa 12.53 ± 1.71 27.32 ± 3.15 0.0002

Bone Marrow Responses

Env-specific IgA memory B cellsb 6.55 ± 1.94 5.49 ± 1.24 0.58

Env-specific IgA PB/PCb 0.80 ± 0.26 1.85 ± 0.48 0.033

Env-specific IgG memory B cellsb 2.30 ± 0.40 3.20 ± 0.58 0.22

Env-specific IgG PB/PCb 1.39 ± 0.34 2.37 ± 0.42 0.013

Immune responses were evaluated on mucosal secretions and bone marrow samples obtained at week 53, 2 weeks following the second Env protein

immunization.
ang specific/μg total.
bPercent Env-specific ASC relative to total ASC in bone marrow.

doi:10.1371/journal.ppat.1005101.t002

Mucosal B Cells and Delayed SIV Acquisition in Female Rhesus Macaques

PLOS Pathogens | DOI:10.1371/journal.ppat.1005101 August 12, 2015 6 / 28



immunization (S7B and S7D Fig). Similar results were seen after summing responses to Env,
Gag, and Nef (S7E–S7H Fig).

Sex-related difference in immune responses to monomeric gp120 and
oligomeric gp140
Having shown that immune responses in general were elevated in the gp140 immunized
macaques, but that SIV acquisition delay was observed in gp120 immunized female macaques,
we next analyzed these data by sex. Systemic binding antibodies to the SIVmac239 Env boosting
immunogens were higher in gp120-immunized males compared to females against both gp120
and gp140 targets prior to challenge (wks 53 and 57), and were maintained at higher levels
against gp120 2wkpi (Fig 2A). A similar result was not seen in the gp140-immunized animals
(Fig 2B). Males of both groups combined exhibited higher titers to gp120 than females at all
time points (Fig 2C). Antibody responses to SIV EnvE660, representative of SIV EnvsmH4 in the
Ad-recombinant, were higher in immunized males compared to females following priming
(wk 14; Fig 2D). However, no significant sex differences were seen in neutralizing antibody
titers or binding titers to cyclic V2 (S8A–S8C Fig); BM ASC (S9A–S9D Fig), or rectal Env-spe-
cific IgA and IgG (S10A–S10D Fig). Although no significant sex difference by group was
observed in phagocytic activity, gp120-immunized females maintained higher activity against
gp140-coated beads compared to the gp140 group (Fig 2E). Additionally, no sex differences
were seen in ADCC activity by group; however, consistent with results of the group analysis
(S3B and S3C Fig) gp140-immunized females and males maintained higher activity against
both gp120 and gp140 targets (Fig 2F). Female macaques displayed significantly higher rectal
Env-specific memory B cell levels than males 2wkpi (Fig 2G), regardless of immunization
group. A similar trend was seen both prior to challenge (wk 53) and 8wkpi.

Env-specific CD4+TM and CD8+TM T-cell responses showed no sex-based differences
(S11A–S11D Fig), although females tended to exhibit higher responses following Env239 stimu-
lation, indicative of the protein boosts derived from that strain (S11B and S11D Fig). When
CD4+TM and CD8+TM responses against Env, Gag, and Nef were summed, results were similar
in animals stimulated with EnvsmH4 peptides, matched to the env gene in the Ad-recombinant,
(S11E and S11G Fig) whereas females showed higher CD4+TM and CD8+TM T-cell responses
than males in the animals stimulated with Env239 peptides, matched to the Env booster immu-
nogens, significantly so for the CD4 responses (p = 0.019; S11F and S11H Fig).

Immunological correlates of delayed SIV acquisition
Analysis of all the immunogenicity data showed that neither humoral nor cellular systemic
immune responses, including serum binding antibodies, serum neutralizing or non-neutraliz-
ing activities, bone marrow memory B cells and PB/PC, and CD4+ and CD8+ T cell responses,
correlated with SIV acquisition delay. With regard to mucosal immune responses, Env specific
IgG in rectal secretions was not associated with acquisition delay in either gp120- or gp140-im-
munized male or female macaques (S12 Fig). However, although present at lower levels, Env-
specific IgA in rectal secretions significantly correlated with delayed acquisition (Fig 3A). All
immunized animals with rectal Env-specific IgA levels above the median (0.04ng/μg total IgA)
required more SIV exposures for infection. The difference remained significant in the gp140
group alone (tested against gp140, Fig 3C) but not in the gp120 group (tested against gp120,
Fig 3B). This same pattern was exhibited by immunized females. Higher Env-specific rectal
IgA levels in all immunized females and in gp140-immunized females but not in gp120-immu-
nized females were associated with an increased number of challenges (Fig 3D–3F). Env-spe-
cific rectal IgA in vaccinated males did not correlate with delayed acquisition (S13 Fig). As
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Fig 2. Comparison of immune responses between female andmale macaques. Binding antibody titers to SIVmac239 gp120 and gp140 over the course of
immunization and following infection in (A) gp120- and (B) gp140-immunized female and male macaques. (C) Binding antibody titers by sex of combined
gp120- and gp140 immunization groups to SIVmac239 gp120 over the course of immunization and 2wkpi. (D) Binding antibody titers to SIVE660 gp120 over the
course of immunization in females and males of combined gp120- and gp140-immunization groups. Pre-bleed samples were not tested but binding titers of
control macaque samples at all time points were <50. Titers are expressed as geometric means with 95% CL. (E) Serum phagocytic activity (phagocytosis
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delayed acquisition of immunized females was most evident in gp120-immunized macaques
(Fig 1H and 1I), additional factors must have been involved.

To pursue the role of mucosal immunity in delayed acquisition, we next examined Env-spe-
cific memory B cells and total PB and PC in rectal tissue by flow cytometry [20–21] (S14 Fig).
Consistent with the higher rectal Env-specific memory B cell levels 2wkpi in immunized
females compared to males (Fig 2G), the rectal Env-specific memory B cell levels 2wkpi were
significantly correlated with challenge exposures in all immunized females, but not males (Fig
3G and 3H). This correlation remained significant in gp120-immunized females and
approached significance in gp140-immunized females (Fig 3I and 3J). Total rectal PC levels
were significantly correlated with acquisition delay in all immunized females but not males
(Fig 3K and 3L) and in gp120- and gp140-immunized females analyzed separately (Fig 3M and
3N). Overall, our data strongly implicate a local mucosal B cell contribution in delayed acquisi-
tion of vaccinated female macaques.

Reduced acute viremia following repeated low-dose SIVmac251 rectal
challenges
A secondary outcome of this study was modestly reduced acute phase viremia in the immu-
nized macaques compared to the controls. Median peak viremia for the gp120 and gp140
groups (1.79x107 and 2.16x107 SIV RNA copies/ml, respectively) were reduced nearly one log
compared to controls (1.71x108 SIV RNA copies/ml; p<0.05). Viremia differences between
gp120- and gp140-immunized macaques and controls were significant at 2, 3 and 4wkpi, while
the gp140 group also exhibited lower viremia at 6 and 8wkpi (Fig 4A). Viral loads of the indi-
vidual macaques are shown in S15 Fig.

In contrast to SIV acquisition, no sex bias was observed in viremia reduction. Both females
and males of both immunization groups as well as the controls exhibited similar viral loads
during the acute phase of infection (Fig 4B–4D). Similarly, CD4 counts over the period of fol-
low-up were similar between the sexes (Fig 4E–4G). We did observe a decrease in viral loads of
males compared to females in the gp120 group over weeks 24 to 40 post infection (Fig 4B). A
similar difference was not seen in the gp140 immunized macaques, however, we cannot reach a
firm conclusion regarding an immunization group difference as a number of macaques in the
gp140 group had been euthanized prior to 40 weeks of follow up (see below). Viral loads during
the acute phase of infection for the historical controls were available for 41 of the additional 53
macaques, however, no acute viral load difference was observed between the current and his-
torical controls or between males and females of the combined current and historical control
groups (S16 Fig).

We next examined vaccine-induced immune responses associated with the modestly
reduced acute phase viremia in the immunized macaques. We found that phagocytic activity
prior to challenge (wk 53) against gp140 targets by the gp140-immunization group, which dis-
played more prolonged viremia control than the gp120-immunization group (Fig 4A), was sig-
nificantly correlated with reduced viremia (Fig 5A). Phagocytosis by all macaques was
inversely correlated with peak viremia 2wkpi (Fig 5B). No correlation with neutralizing anti-
body or ADCC activity was observed (S17 Fig).

score/background phagocytosis) to gp140 targets 2wkpi in females and males of the gp120- and gp140 immunization groups. (F) Serum ADCC activity of
female and male macaques to gp120 and gp140 targets by immunization group at wk 53. (G) Rectal gp120-specific memory B cells (identified by flow
cytometry) in female and male macaques of combined gp120- and gp140-immunization groups at 2 wk post-second Env boost (wk 53), 2wkpi, and 8wkpi.
Mean values ± SEM are shown in E and G. One gp140-immunized macaque remained uninfected, and is omitted from 2wkpi analyses. In panel G, rectal
samples of 15 macaques (6 from each gp120- and gp140-immunization group and 3 controls) are not shown at wk 53 as samples were lost due to a
processing error.

doi:10.1371/journal.ppat.1005101.g002
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Fig 3. Immunological correlates of delayed SIV acquisition. Influence of rectal Env-specific IgA at wk 55 on the rate of infection in (A) all immunized
macaques, (B) in gp120 immunized macaques, and (C) in gp140 immunized macaques. Influence of rectal Env-specific IgA at wk 55 on the rate of infection
in (D) all immunized females, (E) in gp120-immunized females, and (F) in gp140-immunized females. gp120 and gp140-immunized macaques were tested
against gp120 and gp140 proteins respectively. Control background levels were subtracted prior to analysis. Correlation analysis of Env-specific memory B
cells in rectal tissue identified by flow cytometry 2wkpi with number of challenges to become infected in (G) all immunized females, (H) all immunized males,
(I) gp120-immunized females, and (J) gp140-immunized females. Correlation analysis of rectal plasma cells identified by flow cytometry 2wkpi with number
of challenges to become infected in (K) all immunized females, (L) all immunized males, (M) gp120-immunized females, and (N) gp140-immunized females.
One gp140-immunized female remained uninfected and is excluded from the 2wkpi time point in panels G, J, K, and N. In panels K-N, PC were identified
following the first challenge using IRF-4 and BCL2 intracellular markers. Subsequently, all data were obtained using the surface marker CD138 and IRF-4. As
the two approaches are not comparable, the week one challenge data are omitted.

doi:10.1371/journal.ppat.1005101.g003
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Fig 4. Viral loads post-infection by immunization group and sex. (A) Geometric mean plasma viral loads
by immunization group. (B-D) Geometric mean plasma viral loads and (E-G) mean CD4 T cell counts in
males and females in gp120, gp140, and control macaque groups.

doi:10.1371/journal.ppat.1005101.g004

Mucosal B Cells and Delayed SIV Acquisition in Female Rhesus Macaques

PLOS Pathogens | DOI:10.1371/journal.ppat.1005101 August 12, 2015 11 / 28



CD8+ T-cell responses contribute to viremia control in natural infection [22–23], confirmed
in numerous pre-clinical vaccine studies [24–32]. SIVsmH4 Env-specific CD8

+
TM T-cells in all

macaques significantly correlated with reduced peak and chronic viremia (Fig 5C and 5D). By
immunization group, a significant inverse correlation was only observed between SIVsmH4

Env-specific cytokine-producing CD8+TM T-cells of gp140-immunized macaques and viremia
levels at peak and acute-phase time points and during the chronic phase of infection (Fig 5E–
5G). No correlations with SIVmac239 Env-specific CD8+TM T cells were observed. Overall, the

Fig 5. Immunological correlates of viremia control. Correlation of phagocytic activity (expressed as phagocytosis score/background phagocytosis) of
gp140-immunized macaques using gp140 targets 2 weeks post-second Env boost (wk 53) with peak viral load (A). Correlation of phagocytic activity of all
macaques 2wkpi with peak viral load (B). Correlation of peripheral EnvsmH4-specific CD8

+
TMT cells (% CD8+TM T cells expressing IL-2, IFN-γ, and TNF-α) in

all animals with reduced peak viral load (C) and chronic viremia (median over weeks 8–24) (D). Correlation of EnvsmH4-specific CD8
+
TM T cells (% CD8+TM T

cells expressing IL-2, IFN-γ, and TNF-α) 2wkpi in gp140-immunized macaques with (E) peak viral load, (F) acute viral load (geometric mean over weeks
1–6), and (G) chronic viremia (median over weeks 8–24). One gp140-immunized female macaque remained uninfected so is not included in these
correlations with viral load. Due to the large number of macaques only half of the macaques in each group were assessed for CD8+TM T cell SIVsmH4 Env-
specificity.

doi:10.1371/journal.ppat.1005101.g005
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contribution of cellular immunity to viremia reduction was most evident in gp140-immunized
macaques.

Although cellular responses in macaques overall and in gp140-immunized macaques were
associated with better viremia control (Fig 5C–5G), this outcome was not reproduced in
females. SIVsmH4 Env-specific CD8

+
TM responses in all males but not all females correlated sig-

nificantly with reduced peak, acute-phase, and chronic viremia (p = 0.0055, 0.0004, and
0.0086, respectively; S18A and S18B Fig).

Additional post-infection outcomes
We observed that the number of challenges necessary to infect immunized females but not
males correlated inversely with peak viremia (Fig 6A and 6B). Thus we speculate that repeated
exposures boosted immunity, leading to better acute viremia control. Over 40 weeks of follow-
up, no group differences were seen in males or females with regard to viral loads (S19A and
S19B Fig) or CD4 counts (S19C and S19D Fig), with the exception as mentioned above, that
gp120 immunized females exhibited higher viral loads than similarly immunized males over
weeks 24–40 of the chronic phase (Fig 4B). However, in spite of enhanced immunogenicity,
significantly more gp140-immunized macaques (n = 7) met established criteria and had to be
euthanized before 40wkpi compared to gp120-immunized macaques (n = 0) and the controls
(n = 2) (Fig 6C). While 5 females and 2 males in the gp140 group were euthanized before
40wkpi (Fig 6D) this difference was not statistically significant.

Discussion
Here we report for the first time a sex bias in SIV vaccine-induced protective efficacy. Delayed
SIV acquisition in females was associated with local B cell immunity, including Env-specific
mucosal IgA, Env-specific rectal memory B cells, and rectal PC. Our results highlight the
importance of mucosal immunity and development of memory B cells at the site of viral expo-
sure for an effective vaccine.

The correlations of anamnestic Env-specific rectal memory B cell and total rectal PC
responses with acquisition delay were obtained with samples obtained 2wkpi. It is possible that
these B cell responses could have been boosted by the series of repeated low dose viral expo-
sures necessary to infect the female macaques. However, in the absence of any detectable infec-
tion over the course of these weekly challenges, these responses, initially elicited by
vaccination, even if boosted, were contributing to protective efficacy. Similar responses were
not observed in control macaques. Future studies should investigate more fully the possibility
of antigenic boosting by repeated low-dose challenge exposures.

Our previous report of vaccine-induced rectal IgA correlating with delayed SIVmac251 acqui-
sition [33] is confirmed here and extended by demonstrating the sex bias. Other reports have
also associated mucosal antibody with protection. Vaccine-induced rectal antibodies mediating
transcytosis correlated with decreased chronic viremia [34]. Macaques protected against
repeated vaginal SHIV challenges exhibited vaginal IgAs that blocked transcytosis and vaginal
IgGs with neutralizing and/or ADCC activity [35]. Following intravenous SIVmac251 challenge,
aerosol-vaccinated macaques exhibited reduced CD4+ T-cell depletion in the lung correlated
with viral-specific IgA in bronchoalveolar lavage and nasal fluid [36]. Thus the rationale for
continued study of mucosal antibodies in vaccine efficacy is well-substantiated.

We previously reported a correlation of vaccine-elicited HIV and SIV Env-specific IgG and
IgA peripheral blood memory B cells with reduced viremia [37]. Here we extend this finding,
demonstrating the importance of Env-specific memory B cells and PC at the mucosal exposure
site for delayed SIVmac251 acquisition. It will be important to further explore how vaccine
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designs can foster homing of memory B cells to the mucosa and enhance their retention. Here
we believe the replicating Ad-recombinants played a major role. We have previously shown
that the biodistribution of this vector following administration to the upper respiratory tract is
broad, and that it exhibits persistent expression in rectal macrophages [4]. Certainly, continued
exploration of vaccine-elicited mucosal immune responses in males and females is warranted,
along with pursuit of vaccine regimens that target the intestinal mucosa.

Females exhibited a higher percentage of SIV Env-specific memory B cells in rectal tissue,
consistent with higher basal immunoglobulin levels and greater humoral responses to antigens
in women compared to men [1]. While mucosal antibodies correlated with significant acquisi-
tion delay in females, male macaques exhibited higher serum antibody binding titers than
females at the time of peak response, 2 weeks after the second envelope boost. Nevertheless, no
sex bias was seen in neutralizing or non-neutralizing antibody activities. The proportion of IgG
subtypes in males versus females should be examined, as IgG3 V1V2-specific antibodies that
mediate ADCC correlated with decreased risk of HIV infection in the RV144 trial, but exhib-
ited a short half-life [38]. Recent development of reagents for use in subtyping macaque IgG
should allow this question to be addressed.

Additionally, Fc-receptor differences may exist between males and females. Polymorphisms
in IgG Fc-receptors modulate antibody binding affinity for IgG subtypes, and affect antibody-
dependent functions [39–40]. Moreover, differences in Fc glycosylation can affect antibody
function [41]. Fucosylation modulates IgG1 binding to FcγRIIIa [42]. In the absence of fucose,

Fig 6. Additional post-infection outcomes by immunization group and sex.Correlation of the number of
challenges required to become infected with peak viremia in all immunized females (A) but not in males (B).
(C) Comparison of survival for gp120- and gp140-immunized macaques and control macaques. The overall p
value was obtained by a logrank test. All 24 macaques in the gp120 immunization group survived at least 40
weeks, 7 of the 23 infected macaques in the gp140 group were euthanized between weeks 19 and 39, and 2
of 12 controls were euthanized between weeks 36 and 39. (D) Survival of female and male macaques in the
gp140 group. Five of the 15 infected females were euthanized between weeks 19 and 39; 2 of 8 males were
euthanized between weeks 28 and 39.

doi:10.1371/journal.ppat.1005101.g006
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binding is enhanced, resulting in improved ADCC activity [43]. A non-fucoslylated variant of
bNAb 2G12 exhibited greater ADCVI activity against HIV and SHIV isolates [44]. Fc glycosyl-
ation differences also modulate ADCP activity [45]. Further, Fc agalactosylation and asialya-
tion have been associated with better HIV control [46]. Differences in Fc glycosylation patterns
between males and females have been established [47] and could have impacted our results.

Delayed SIV acquisition in immunized females was greatest in gp120-immunized rather
than gp140-immunized macaques that exhibited enhanced humoral immunity. Moreover,
gp140-immunized animals met criteria for euthanasia earlier than gp120-immunized
macaques although a sex bias was not observed. Although not excluding investigations of olig-
omeric gp140, this result validates continued study of gp120, the form of immunogen used in
the RV144 trial, as a vaccine immunogen. The basis for the different outcome in gp120 immu-
nized macaques while gp140 immunization appeared more immunogenic, however, is not
known. Differences in antibody epitope specificities elicited by the different immunogens as
well as IgG subtypes and Fc/Fc-R differences as discussed above might explain these outcomes.
It may also be the case that higher antibody titers are not beneficial. This has been seen in other
infectious diseases. For example, high titers and avidity of vaccine-elicited non-neutralizing
antibodies against influenza have been associated with development of more severe disease
[48]. Moreover, some non-neutralizing antibodies may be detrimental to protective efficacy. In
the RV144 trial, V1V2-specific antibodies that mediate ADCC correlated with protection
against acquisition, however high serum Env-specific IgA correlated with infection risk, possi-
bly blocking protective ADCC responses [49]. We did not examine serum Env-specific IgA lev-
els, but they warrant evaluation. Antibody-dependent enhancement of infection can also occur
via complement and Fc receptors, dependent on antibody titer and receptor affinity [50]. Both
FcγRIIa and FcγRIIIa receptor genetic polymorphisms increase receptor avidity for immune
complexes [40]. Notably, the FcγRIIIa genotype was associated with HIV infection rate in the
VAX004 trial [51]. Thus, genotyping receptors in females and males may also help explain our
complex results.

Viral loads exhibited in this study not unexpectedly inversely correlated with CD8+ T-cell
responses. By immunization group, a significant correlation of these cellular responses with
reduced viremia was only seen in gp140 immunized animals, perhaps due to additional epi-
topes present in gp140. The gp140 immunized macaques also exhibited more persistent acute
viremia reductions. It is possible that these cellular immune responses initially contributed to
stronger acute viremia control in this immunization group while at the same time enhanced
humoral immunity led to later detrimental effects as suggested above, resulting in the gp140
immunized macaques meeting euthanasia criteria earlier than the gp120 immunized animals.
In this regard, significant correlations of CD8+ T cell responses with decreased viremia were
exhibited in all male but not female macaques (S18 Fig), perhaps reflecting a greater waning of
vaccine-induced CD8+ T-cell responses during infection delay in females. This might have
abbreviated the period of time during which the CD8 T cells were able to effectively control
viremia. Among humoral responses, phagocytic activity 2wkpi correlated with decreased vire-
mia in all macaques, but a significant correlation of ADCP prior to infection (wk 53) was only
present in gp140-immmunized macaques, a result possibly influenced by antibody quality as
discussed above.

The sex bias in immunity [52], especially mucosal immunity [53–54], is profound and can
be attributed to both hormonal influences and contributions of X-linked genes. The micro-
biome plays a major role in shaping mucosal immune responses [55] and can impact mucosal
infections. Steroid hormones can also modulate the microbiome, leading to distinct sex profiles
[56]. Overall the microbiome composition is critical in HIV transmission and pathogenesis,
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can influence HIV acquisition [57], and is a key area for further investigation of the sex bias in
SIV acquisition.

Female sex hormone changes throughout the menstrual cycle impact susceptibility to vagi-
nal HIV infection by affecting all arms of the immune system. A “window of vulnerability” in
the late secretory phase of the cycle during which risk of sexually transmitted infections is high-
est was postulated [58], and corroborated by the demonstrations during the secretory phase of
more frequent vaginal SHIV transmission to macaques [59] and better ex vivoHIV infection of
human cervical explants [60]. We did not synchronize our female macaques, as rectal chal-
lenges were planned. However, fluctuations in female sex hormone levels could affect HIV/SIV
acquisition by other than vaginal routes of exposure. Estrogen receptors (ER) are expressed by
cells in a variety of tissues in addition to the reproductive tract. ERα is expressed in T and B
lymphocytes, dendritic cells, macrophages, monocytes, natural killer cells and mast cells [61],
and influences intestinal levels of proinflammatory cytokines, including TNFα [62]. An exami-
nation of gut biopsies from men and women directly demonstrated that women have higher
levels of immune activation and inflammation compared to men [53]. The profound effects of
ERα on DC development and function greatly influence the quality of adaptive immune
responses. ERβ is expressed predominantly in the brain, cardiovascular system, and colon and
is found mainly on epithelial cells [63]. It plays an important role in cellular differentiation and
maintenance of cellular homeostasis in the colon [64]. In addition, by suppressing chloride ion
secretion across the colonic epithelium, estrogen controls fluid retention during different stages
of the menstrual cycle [65]. Estrogen also increases mucin content of the protective mucus
layer in the intestine and increases mucus viscosity and elasticity [66]. ERα and ERβ play differ-
ent roles in controlling B cell maturation and selection. Engagement of both by estrogen can
alter B cell maturation, whereas triggering of ERα influences development of autoimmunity
[67]. In rhesus macaques the frequency of ASC in not only genital mucosal but also systemic
lymphoid tissues, bone marrow, and PBMC exhibited profound changes throughout the men-
strual cycle [68]. Overall, little is known regarding the influence of female sex hormones on
other than vaginal viral exposures, however, as illustrated above, these hormones affect innate
and adaptive immune responses, intestinal homeostasis and integrity, biophysical properties of
protective mucus, and immune activation and inflammation in more than just reproductive tis-
sue. Thus, it is reasonable to take into account potential hormonal effects in future vaccine
studies.

Our results showing a clear sex bias in vaccine challenge outcome correlated with local
mucosal humoral immunity, is timely in view of recently formulated NIH policy requiring sex
balancing in animal studies [19]. Such balancing will cause increased complexity in vaccine
design and may require study of the microbiome and in-depth examination of immune
responses beyond mere quantitation of functional activities. This approach may provide better
understanding of vaccine protective mechanisms. The knowledge gained can be applied to
future sex-balanced pre-clinical studies and clinical vaccine trials, critically important as
women harbor ~50% of HIV infections worldwide [69].

Materials and Methods

Ethics statement
All animal experiments were approved by Institutional Animal Care and Use Committees
prior to study initiation. During the course of this study, the study animals were housed in
three facilities, each of which approved the work (Bioqual, Inc., Rockville, MD, Protocol No.
12-3507-15; Advanced BioScience Laboratories, Inc. (ABL), Rockville, MD, Protocol No.
AUP526; and the NCI Animal Facility, Bethesda, MD, Protocol No. VB007). Each of these
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facilities is accredited by the Association for Assessment and Accreditation of Laboratory Ani-
mal Care International. The standard practices closely follow recommendations made in the
Guide for the Care and Use of Laboratory Animals of the United States—National Institutes of
Health. The rhesus macaques (Macaca mulatta) used in this study were housed in accordance
with the recommendations of the AAALAC Standards and with the recommendations in the
Guide for the Care and Use of Laboratory Animals. When immobilization was necessary, the
animals were anesthetized with approximately 10 mg/kg of ketamine hydrochloride injected
intramuscularly. All efforts were made to minimize discomfort of all animals used in the study,
including provision of peri-operative and post-operative analgesia and strict accordance to
humane endpoint criteria. Details of animal welfare and steps taken to ameliorate suffering
were in accordance with the Guide and the recommendations of the Weatherall report, ‘‘The
use of non-human primates in research”, as approved by the relevant IACUCs. Animals were
housed in temperature controlled facilities with an ambient temperature of 21–26°C, a relative
humidity of 30%– 70% and a 12 h light/dark cycle. Due to the nature of the experiment the ani-
mals were housed singly in stainless steel wire-bottomed cages and provided with a commercial
primate diet and fresh fruit twice daily, with water freely available at all times. All animals were
monitored twice daily for activity, food and water intake, and overall health. Enrichment in the
form of rotating toys, visual and auditory stimuli, and foraging opportunities were provided
daily. Animals that reached IACUC defined endpoints, including pain or distress, that could
not be alleviated therapeutically, were humanely euthanized with an overdose of barbiturate
consistent with the recommendations of the most recent American Veterinary Medical Associ-
ation Panel on Euthanasia.

Animals, immunization and challenge
Sixty Indian rhesus macaques (Macaca mulatta) aged 2 to 7 years and negative for SIV, SRV,
and STLV were used in this study. Males and females (see below) were assigned to immuniza-
tion and control groups to achieve similar mean ages, and balanced for Mamu A�01 and B�08
haplotypes (3 Mamu A�01, 2 Mamu B�08, and 1MamuA�01/B�08). Experimental and control
groups (Fig 1A) were divided in two for the vaccination phase of the study, and macaques were
housed and handled at either Bioqual Inc, or ABL. The challenge of all 60 macaques was con-
ducted at the ABL facility. Post-challenge monitoring after macaques had received up to nine
challenges was carried out at the NCI Animal Facility. The number of macaques used was
based on a power analysis which determined that using 18 additional historical controls previ-
ously challenged with the stock to be used, and the historical infection rate, the estimated
power to detect differences between the experimental groups and the controls was 84%. Twenty
four macaques were included in each immunization group and primed at weeks 0 (intranasally
and orally) and 12 (intratracheally) with three replication-competent Ad5hr recombinants sep-
arately encoding SIVsmH4env (gp140)/rev, SIV239gag and SIV239nefΔ1–13 (Fig 1A). The recom-
binants were administered in PBS at 5 X 108pfu/dose/route as previously described [24]. The
SIVmac239 monomeric gp120 and oligomeric gp140 boosting immunogens were produced in
CHO cells, purified and characterized as previously described [70], and administrated intra-
muscularly with MF59 adjuvant (Novartis Vaccines and Diagnostics, Cambridge, MA) at
weeks 39 and 51. The gp120 immunization group (16 females and 8 males) received 100μg/
dose of monomeric SIVmac239 gp120 in MF59 adjuvant, and the gp140 immunization group
(16 females and 8 males) received 100μg/dose of oligomeric SIVmac239 gp140 in MF59. Control
macaques (7 females and 5 males) received equivalent doses of Ad5hrΔE3 empty vector and
MF59 adjuvant only. At week 59, all macaques were challenged intrarectally using a repeated
low dose of SIVmac251 (1:500 dilution; 120 TCID50), a challenge stock developed by Dr. Ronald
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Desrosiers and provided by Dr. Nancy Miller, Division of AIDS, NIAID. As SIV exposures
were intrarectal, we did not synchronize females prior to initiating challenges. Challenges were
continued weekly until the onset of infection determined by a plasma viral load of�50 SIV
RNA copies/ml as assessed by the NASBA method [71–72]. Macaques were monitored for 40
weeks after infection or until euthanasia criteria were met. Samples from all macaques were
included in each analysis except as specified in individual figure legends. Experiments were
not blinded. By the time this study was completed, 53 additional historical control rhesus
macaques, challenged intrarectally repeatedly with a 1:500 dilution of the same SIVmac251

stock, were available to provide greater statistical power for the analyses. Twenty-three of these
macaques have been reported in previous publications [73,74]. Data on the remaining 30 have
not yet been published. Additionally, rectal pinch biopsies were obtained at necropsy from 6
chronically SIV infected rhesus macaques for use in validating the staining of Env-specific rec-
tal memory B cells.

Antibody binding assays: binding titers and antibody to SIVmac251 cyclic
V2 peptide
Serum antibody binding titers to monomeric SIVmac239 gp120, oligomeric SIVmac239 gp140
(Novartis) and SIVsmH4 gp120 protein (ABL) were assessed by ELISA as described previously
[75]. Antibody titer was defined as the reciprocal of the serum dilution at which the optical
density (OD) of the test serum was two times greater than that of the negative-control serum
diluted 1:50. Binding antibody end point titers to variable region V2 of SIV gp120 Env were
analyzed in serum samples collected prior to immunization and 2 weeks after the second pro-
tein boost (wk 53) by ELISA as previously described [7] using a peroxidase-labeled γ chain spe-
cific goat anti-monkey IgG (Catalog No 074-11-021, KPL, Gaithersburg, MD) and a custom-
synthesized SIVmac251 cyclic V2 full-length peptide: CIAQNNCTGLEQEQMISCKFNMTGLK
RDKTKEYNETWYSTDLVCEQGNSTDNESRCY (JPT Peptide Technologies, GmbH, Berlin,
Germany).

Neutralizing and non-neutralizing antibody activities
Serum neutralizing antibody titers against SIVmac251.6 (tier 1) and SIVmac251.30 (tier 3) were
assayed in TZM-bl cells as described [76]. Neutralizing titers were defined as the reciprocal
serum dilution at which there was a 50% reduction in relative luminescence units compared to
virus control wells which contained no test sample.

Serum antibody-dependent cell-mediated cytotoxicity (ADCC) was evaluated using a rapid
fluorometric assay [77]. Briefly, CEM-NKR cells coated with SIVmac239 gp120 or SIVmac239

gp140 (Novartis) were used as targets along with human effector PBMC at an effector-to-target
(E:T) ratio of 50:1, and serially diluted macaque sera. Controls included unstained and single-
stained target cells. The percent ADCC cell killing was determined by back-gating on the PKH-
26high population of targets cells that lost the CFSE viability dye. ADCC titers are defined as the
reciprocal dilution at which the percent ADCC killing was greater than the mean percent kill-
ing of the negative controls plus three standard deviations. The maximum % killing for each
serum was determined. Results were expressed as the 50% maximum killing titer: the reciprocal
serum dilution at which 50% maximum killing was observed, and as endpoint titers.

Antibody-dependent cellular phagocytosis (ADCP) activity was measured as previously
described [78], with minor modifications. Briefly, SIVmac239 gp120 or SIVmac239 gp140 was bio-
tinylated with the Biotin-XX Microscale Protein Labeling Kit (Life Technologies, Grand Island,
NY), and 3–5 μg of gp120 or gp140 was incubated with a 100-fold dilution of 1μm Yellow-
Green streptavidin-fluorescent beads (Life Technologies) for 25 min at room temperature in
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the dark. Serial dilutions of each serum sample (1:50 to 1:3000) were added to 250,000–300,000
THP-1 cells in wells of a 96-well U-bottom plate. The bead-gp120/gp140 mixture was further
diluted 5-fold in RPMI 1640 medium containing 10% fetal bovine serum (R10) and 50 μl was
added to the cell/serum mixtures and incubated for 3 h at 37°C. Cells were then washed at low
speed, fixed in 2% PFA, and assayed for fluorescent bead uptake by flow cytometry using a BD
Biosciences LSRII. The phagocytic score of each sample was calculated as follows: (% phagocy-
tosis x MFI)/106. The values were standardized to background values (cells and bead only with-
out serum) by dividing the phagocytic score of the test sample by the phagocytic score of the
background sample.

SIV-specific IgA and IgG antibodies in rectal secretions
Rectal secretions were collected using cotton swabs and stored in 1 ml of PBS containing 0.1%
bovine serum albumin, 0.01% thimerosal, and 750 Kallikrein inhibitor units of aprotinin at
-70°C until analyzed. Samples were tested for blood contamination using Chemstrips 5 (Boeh-
ringer Mannheim) prior to assay. To remove fecal contaminant sample was passed through a
5μm PVDF microcentrifugal filter unit (Millipore, Billerica, MA). Briefly, SIVgp120 and
gp140-specific IgA and IgG antibodies were measured by ELISA as previously described
[79,80]. Env-specific IgA and IgG standards derived from IgG-depleted pooled serum or puri-
fied serum IgG, respectively, obtained from SIVmac251-infected macaques and quantified as
previously described [27] were used to generate standard curves. HRP-conjugated goat anti-
monkey IgA and IgG (Nordic Immunology) and TMB substrate were used in sequential steps,
followed by the addition of phosphoric acid prior to reading the OD at 450 nm. Total IgA and
IgG antibodies were measured in each sample and used to standardize gp120 or gp140-specific
IgA and IgG concentrations. Results are reported as Env-specific IgA or IgG/total IgG or IgA
(ng specific/μg total).

SIVgp120 and gp140-specific rectal B cells
Rectal biopsies were collected at different time points and single cell suspensions were obtained
from fresh samples as previously described [21]. Cells obtained were stained with a mixture of
fluorescent-conjugated monoclonal antibodies. Env-specific memory B cells were identified
using a biotinylated SIVmac239 gp120 or gp140 with the Biotin-XX Microscale Protein Labeling
Kit (Life Technologies, Grand Island, NY) followed by APC-conjugated Streptavidin (Life
Technologies) as previously described [20]. Briefly, staining was carried out at 4°C in the pres-
ence of unconjugated anti-CD4 antibodies to block reactivity to CD4. Representative gating is
illustrated in S14A Fig. gp120/gp140-specific B cells were detected within the memory B cell
subpopulation (CD27+/-IgD-). Rectal plasmablasts and plasma cells were similarly assessed in
fresh rectal biopsies as previously described [21]. Plasmablasts were identified as CD19+CD20-
+/-IgD-IRF4+CD138-HLA-DR+Ki67+ and plasma cells as CD19+CD20+/-IgD- IRF4+CD138+-

HLA-DR-Ki67- (S14B Fig). The Env-specific memory B cell staining was validated using rectal
pinch biopsies from 6 chronically SIV infected rhesus macaques (not a part of this study) in
analyses by both flow cytometry and B cell ELISPOT. A significant correlation was obtained
(S14C Fig).

SIVgp120 and gp140-specific antibody secreting bone marrow cells
Bone marrow samples were collected at different time points, and lymphocytes were purified as
previously described [75] and frozen until analysis. Lymphocytes were thawed and both total
and SIVgp120 or gp140-specific IgG and IgA secreting B cells were quantified by ELISpot as pre-
viously described [37]. Briefly, plasmablasts and plasma cells were quantified on unstimulated
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samples while memory B cells were enumerated following 3 days of polyclonal stimulation with
CpG (ODN-2006) (Operon), 0.5 μg/ml recombinant human sCD40L (Peprotech), and 50 ng/ml
recombinant human IL-21 (Peprotech). In both cases, Env-specific IgA and IgG antibody secret-
ing cells (ASC) were standardized to the total number of IgA and IgG ASC and are reported as
the percentage of SIVgp120 or gp140-specific ASC relative to the number of total ASC.

Intracellular cytokine assay
Peripheral blood mononuclear cells (PBMC) were isolated from EDTA-treated blood by ficoll
gradient [79] and frozen until assay. Cellular immune responses were evaluated by intracellular
staining for SIV-specific IFN-γ, IL-2 and TNF-α cytokine secreting cells. After thawing, PBMC
were stimulated with peptides at 1μg/ml final concentration. SIV peptide pools were made up
of 15 mers overlapping by 11 amino acids and included EnvsmH4 (Advanced BioScience Labo-
ratories, Inc), Envmac239, Gagmac239 (AIDS Research Reference and Reagents Program) and
Nefmac251. Control tubes included a non-stimulated and a Leucocyte activation Cocktail (BD
Pharmingen) as a positive control. Anti-CD28 PE/Texas red (clone CD28.2; Beckman Coulter)
and anti-CD49d (clone 9F10; eBioscience) were also added during stimulation along with a
protein transport inhibitor (BD Pharmingen). After 6h incubation at 37°C, cells were washed
with PBS, then stained as previously described [33] with the following antibodies: Anti-CD4
PerCP/Cy5.5 (clone L220), Anti-CD8 Qdot655 (clone RPA-T8, eBioscience), and Anti-CD95
PE/Cy5 (clone DX2, eBioscience). A viability dye (Life Technologies) was added to the anti-
body cocktail to exclude dead cell background. Following incubation for 30 min at 4°C in the
dark, intracellular staining was performed. Cells were washed twice, resuspended in 250μl fix/
perm solution (BD Pharmingen) for 20 min at 4°C, washed twice with BD perm/wash buffer
and resuspended in 100μl wash buffer plus the following antibodies: Anti-CD3 Pacific blue
(SP34-2, BD Pharmingen), Anti- IFN-γ APC (B27, BD Pharmingen), Anti-TNF-α FITC
(Mab11, BD Pharmingen) and Anti-IL-2 PE (MQ1-17H12, BD Pharmingen). After 30 min at
4°C in the dark, cells were washed twice with BD perm/wash buffer and pellets were resus-
pended in 2% formaldehyde solution for acquisition on an LSRII. CD3+ T cells were used as a
gate for CD4+ and CD8+ T cells, and each population was further divided into CD28+CD95+

central memory (CM) and CD28-CD95+ effector memory (EM) cells. The percent of cytokine-
secreting cells in each memory cell subset was determined following subtraction of the values
obtained with non-stimulated samples. Both subsets were summed to give the total memory
(TM) T-cell population. Flow-cytometric analysis was performed using FlowJo V9.8.1.
(ThreeStar, Ashland, OR).

Statistical analyses
All tests of quantitative data are rank-based and thus distribution-free, so the weak assump-
tions of the tests are met. Rank-based tests do not require similar variances. Grouped, continu-
ous, and discrete data were analyzed using methods appropriate to each of those types. The
Wilcoxon rank-sum analysis was used to test for differences between immunization groups for
binding antibody titers, neutralizing and non neutralizing antibody activities, rectal SIV-Env
specific B cells, mucosal Env-specific IgG and IgA, Env-specific antibody secreting B cells and
cytokine responses. The Wilcoxon signed-rank test was used to test for differences in paired
samples within immunization groups. The Cochran-Armitage test was used to analyze V2 pep-
tide titers and ADCC titers. The Spearman rank correlation test was used to assess the relation-
ships of antibody and cellular responses with number of challenges and viral loads. Acquisition
and survival data were analyzed using the exact logrank test. For all comparisons a two-sided
p<0.05 was considered statistically significant. Adjustments for multiple comparisons were
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not made. Estimates of variation are provided as needed in individual figure legends. Analyses
were conducted using SAS/STAT software version 9.3 and GraphPadPrism V6.

Supporting Information
S1 Fig. Comparison of rates of SIV acquisition in immunized male and female macaques.
(A) Delayed SIV acquisition in all immunized females compared to immunized males. (B)
Delayed SIV acquisition in gp120-immunized females compared to gp120-immunized males
but (C) not in gp140-immunized females compared to gp140-immunized males.
(PDF)

S2 Fig. Serum Env-specific binding antibody responses in immunized macaques. Binding
antibody titers in gp120- (A) and gp140-immunized (B) macaques to SIVmac239 monomeric
gp120 and oligomeric gp140 and comparison of gp140 titers (C) between immunization groups
and controls over the course of immunization and 2wkpi. Binding titers of pre-bleed samples
were not obtained, but titers of control samples at all time points were<50. (D) Binding anti-
body titers to cyclic V2 peptide prior to immunization and at wk 53 by immunization group.
(PDF)

S3 Fig. Serum neutralizing and non-neutralizing antibody activities. (A) Neutralizing anti-
body titers over the course of immunization and 2wkpi by immunization group. ADCC to
gp120 and gp140 targets expressed as 50% maximum killing titer (B) and endpoint titer (C) at
wk 53. Mean phagocytosis score/background phagocytosis to gp140 targets at wk 53 and 2wkpi
(D) and to gp120 targets at wk 53 (E) by immunization group. � p = 0.0034, ��p<0.0001. All
titers expressed as geometric mean with 95% CL; phagocytosis expressed as mean ± SEM.
(PDF)

S4 Fig. Rectal Env-specific IgA and IgG 2wk post 2nd priming (wk 14) and 2 wk post 2nd

boost (wk 53). (A) IgA and (B) IgG reactivity to gp120 and gp140 at wk 14 and IgA (C)and
IgG (D) reactivity to gp120 and gp140 at wk 53 by immunization group. All results were
expressed as ng specific Ig/μg total Ig and then standardized to control levels. Mean
values ± SEM are shown.
(PDF)

S5 Fig. Bone marrow Env-specific memory ASC assessed by ELISpot.Memory B cells secret-
ing Env-specific IgG (A) and IgA (B) over the immunization course and 2wkpi. Comparison of
Env-specific IgG and IgA memory B cells for both immunization groups at wk 53 (C) and
2wkpi (D). The gp120 group was tested against monomeric gp120 and the gp140 group against
oligomeric gp140. �p<0.01. Due to the large number of tests performed, only differences with
p values<0.01 are shown in panels A and B. Mean values ± SEM are shown.
(PDF)

S6 Fig. Bone marrow Env-specific plasmablasts/plasma cells ASC assessed by ELISpot. PB/
PC secreting Env-specific IgG (A) and IgA (B) over the immunization course and 2wkpi. Com-
parison of Env-specific IgG and IgA PB/PC for both immunization groups at wk 53 (C) and
2wkpi (D). The gp120 group was tested against monomeric gp120 and the gp140 group against
oligomeric gp140. �p< 0.01. Due to the large number of tests performed, only differences with
p values< 0.01 are shown in panels A and B. Mean values ± SEM are shown.
(PDF)

S7 Fig. Vaccine-induced SIV-specific cellular immune responses by immunization group.
PBMC obtained 2wkpi from all macaque groups were assessed by intracellular cytokine staining
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for EnvsmH4- (A and C) and Env239- (B and D) specific CD4+ (A,B) and CD8+ (C, D) T cells.
The frequency of CD4+ (E and F) and CD8+ (G and H) T cells specific for immunizing antigens
in the Ad-recombinants (EnvsmH4, Gag239 and Nef239) or protein boosts (Env239) were summed
and presented. CD4+ and CD8+ central and effector memory cells were summed and results for
total memory (TM) CD4+ or CD8+ T cells are presented as the percent cytokine positive cells
expressing IFN-γ, TNF-α, and/or IL-2. Due to the large number of macaques, half the macaques
in each group were assessed for either SIVsmH4 or SIVmac239 Env-specificity and half were
assessed for either SIVmac239 Gag or SIVmac251 Nef specificity. Mean values + SEM are shown.
(PDF)

S8 Fig. Systemic neutralizing and cyclic V2 binding antibody titers by sex.Neutralizing
antibody titers in (A) gp120- and (B) gp140-immunized females and males. (C) Serum cyclic
V2 binding antibody titers in females and males of all macaque groups at 2 weeks post 2nd
boost (wk 53). Bars denote geometric means with 95% CL.
(PDF)

S9 Fig. Bone marrow Env-specific plasmablasts/plasma cells and memory B cells induced
by vaccination in females and males. Env-specific plasmablasts/plasma cells and memory B
cells secreting Env-specific IgG (A,C) and IgA (B,D) in gp120- (A,B) and gp140- (C,D) immu-
nization groups by sex are shown. The gp120 group was tested against monomeric gp120 and
gp140 group against oligomeric gp140 by ELISpot. Closed black symbols represent females and
open red symbols represent males. Mean values ± SEM are shown.
(PDF)

S10 Fig. Env-specific IgA and IgG in rectal secretions of vaccinated females and males.
Env-specific IgA (A, C) and IgG (B, D) for gp120- (A, B) and gp140- (C, D) immunized
females and males are shown over the course of immunization and 2wkpi. The gp120 group
was tested against monomeric gp120 and the gp140 group against oligomeric gp140. All results
were standardized to background control levels. Bars represent mean values ± SEM.
(PDF)

S11 Fig. SIV-specific cellular immune responses in females and males. PBMC obtained
2wkpi from all macaque groups were assessed by intracellular cytokine staining for EnvsmH4-
(A,C) and Env239- (B,D) specific CD4

+ (A,B) and CD8+ (C,D) T cells. Results for all females
and all males are shown. Additionally, the frequency of CD4+ (E,F) and CD8+ (G,H) T cells
specific for immunizing antigens in the Ad-recombinants (EnvsmH4, Gag239 and Nef239) or pro-
tein boosts (Env239) were summed and presented for all females and all males. CD4+ and CD8+

central and effector memory cells were summed and results for total memory(TM) CD4+ or
CD8+ T cells are presented as the percent cytokine positive cells expressing IFN-γ, TNF-α and/
or IL-2. Due to the large number of macaques, half the macaques in each group were assessed
for either SIVsmH4 or SIVmac239 Env-specificity and half were assessed for either SIVmac239 Gag
or SIVmac251 Nef specificity. Mean values + SEM are shown.
(PDF)

S12 Fig. Rectal Env-specific IgG not correlated with delayed SIV acquisition in immunized
macaques. No influence of rectal Env-specific IgG at wk 55 on the rate of acquisition in (A) all
immunized macaques, (B) gp120-immunized or (C) gp140-immunized macaques, (D) all
immunized females, (E) gp120- immunized or (F) gp140- immunized females, (G) all immu-
nized males, (H) gp120-immunized or (I) gp140-immunized males.
(PDF)
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S13 Fig. Rectal Env-specific IgA not correlated with delayed SIV acquisition in immunized
males.No influence of rectal Env-specific IgA at wk 55 on the rate of infection in (A) all immu-
nized males, (B) gp120-immunized males, and (C) gp140- immunized males.
(PDF)

S14 Fig. Gating strategy for Env-specific memory B cells, plasmablasts and plasma cells in
rectal tissue. (A) Example of flow cytometry staining for Env-specific memory B cells: Live
CD2-CD14- cells from rectal pinches were gated for CD19+CD20+ B cells and then IgD+ B cells
were excluded. The far right-hand plot shows Env-specific memory B cells in a vaccinated
macaque and a control macaque using biotinylated gp120. (B) Example of flow cytometry
staining for PB and PC. Live CD2-CD14- cells from rectal pinches were gated for CD19+CD20+

B cells and then IgD+ B cells were excluded. IgD- B cells were further gated for IRF4+CD138-

and IRF4+ CD138+. PB (upper-right quadrant highlighted by the red box) are identified as
CD19+ CD20+/-IgD-IRF4+ CD138- HLA-DR+Ki67+. PC (lower left quadrant highlighted by the
red box) are identified as CD19+ CD20+/-IgD-IRF4+CD138+HLA-DR-Ki67-. (C) gp120-specific
memory B cells quantified by flow cytometry correlate with frequency of Env-specific memory
B cells secreting IgG + IgA by ELISpot in rectal biopsies from chronically SIV infected
macaques.
(PDF)

S15 Fig. Individual plasma viral loads for gp120 and gp140 immunized and control
macaques. (A-C) Viral loads were recorded up to 40 wkpi. Female macaques are shown in
black lines and males in red lines. A †marks macaques that were euthanized before 40 weeks
of follow up. Macaque R663 in the gp140-immunized group resisted infection over 9 chal-
lenges, and is not shown.
(PDF)

S16 Fig. Dynamics of plasma viral loads in SIV-infected historical and current control
macaques. Plasma viral loads (geometric mean) in historical and current controls (A) and in
(B) combined control males and females.
(PDF)

S17 Fig. No correlation of serum neutralizing and ADCC antibody activities with viremia
control. Lack of correlation of serum (wk 53) ADCC against gp120 and gp140 targets
expressed as 50% maximum killing titer from (A and B) gp120- and (C and D) gp140-immu-
nized animals with peak viral load. No correlation of neutralizing antibody titers (wk 57) from
(E) gp120- and (F) gp140-immunized animals with peak viral load.
(PDF)

S18 Fig. SIV Env-specific CD8+ T cell responses correlate with control of viremia in all
males, but not in females. PBMC obtained 2wkpi from all macaque groups were assessed by
intracellular cytokine staining for EnvsmH4-specific CD8

+ T cells. Significant correlations were
observed in all males with control of viremia (A) including reduced peak, median acute (weeks
1–6) and median chronic (over wk 8–24) viral loads. Similar correlations were not seen for all
female macaques (B). CD8+ central and effector memory cells were summed and results for
total memory (TM) CD8+ T cells are presented as the percent cytokine positive cells expressing
IFN-γ, TNF-α and / or IL-2. Due to the large number of macaques, only half the macaques in
each group were assessed for SIVsmH4 Env-specificity.
(PDF)

S19 Fig. Dynamics of plasma viral loads and CD4 counts in SIV- infected female and male
rhesus macaques by immunization group. Plasma viral loads (geometric mean) in females
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(A) and males (B) by immunization group. Absolute CD4+ T cell counts (mean values) in (C)
females and (D) males by immunization group. �p< 0.05 for immunized males vs controls;
p< 0.01 for immunized females vs controls.
(PDF)
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