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Abstract
Gastric inhibitory polypeptide (GIP, glucose-dependent insulinotropic polypeptide) is

expressed by intestinal K cells to regulate glucose-induced insulin secretion. The impact of

Roux-en Y bypass (RYGB) surgery on blood GIP is highly contraversial. This study was

conducted to address the mechanism of controversy. GIP mRNA was examined in the

intestine, and serum GIP was determined using Luminex and ELISA in diet-induced obese

(DIO) mice. The assays were conducted in RYGB mice in fasting and fed conditions. Food

preference, weight loss and insulin sensitivity were monitored in RYGB mice. In DIO mice,

GIP mRNA was increased by 80% in all sections of the small intestine over the lean control.

The increase was observed in both fasting and fed conditions. After RYGB surgery, the

food-induced GIP expression was selectively reduced in the Roux-limb, but not in the bilio-

pancreatic and common limbs of intestine in fed condition. Lack of stimulation by glucose or

cholesterol contributed to the reduction. Jejunal mucosa of Roux-limb exhibited hypertro-

phy, but villous surface was decreased by the undigested food. Serum GIP (total) was sig-

nificantly higher in the fasting condition, but not in the fed condition due to attenuated GIP

response to food intake in RYGB mice. The GIP alteration was associated with chow diet

preference, sustained weight loss and insulin sensitization in RYGB mice. RYGB increased

serum GIP in the fasting, but not in the fed conditions. The loss of food-induced GIP

response in Roux-limb of intestine likely contributes to the attenuated serum GIP response

to feeding.

Introduction
Roux-en-Y gastric bypass surgery (RYGB) is a powerful therapy for obesity and type 2 diabetes
[1, 2]. The surgery induces a negative energy balance by reducing food intake [2, 3] and increasing
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energy expenditure [4–7]. These changes are required for prevention of weight regain and diabe-
tes recurrence. In addition to the anatomical alterations, changes in gut hormone secretion have
been suggested for the negative energy balance. These hormones include glucagon-like peptide 1
(GLP-1) [8–10], peptide YY (PYY), GIP (gastric inhibitory polypeptide or glucose-dependent
insulinotropic polypeptide), cholecystokinin (CCK), ghrelin and amylin [11, 12]. Studies from
this and other groups suggest that PYY [13] and leptin [14], but not GLP-1 [15, 16], may contrib-
ute to the metabolic effects of RYGB. However, the role of GIP remains to be determined.

GIP is secreted by K cells of the epithelial lining in small intestine. The secretion is induced
by food intake. Bioactive GIP is generated from precursor through cleavage of single arginine
residue from the precursor by the intestine-specific prohormone convertase. GIP promotes
energy storage by its action in multiple organs including pancreas, gut, adipose tissue and
brain. GIP stimulates insulin secretion in β-cells, inhibits gastric acid secretion, suppress lipoly-
sis in adipose tissue, induce appetite and reduce energy expenditure in the brain [17]. Inhibi-
tion of GIP activity by GIP-receptor gene knockout partially prevented diet-induced obesity in
mice [18], suggesting that a decrease in GIP activity may lead to weight loss. Although this pos-
sibility has been tested in weight loss by RYGB surgery, there is controversy regarding serum
GIP levels in RYGB subjects. Serum GIP was reported to be increased [19, 20], decreased [21–
23] or unaltered [24–26] in RYGB patients. In RYGB rats, postprandial serum GIP was not
changed in a study of 20–90 minute feeding [27], but was increased in a study of 15 minute
feeding [28]. There is no report about GIP expression in the intestine after RYGB surgery. Lack
of information about GIP mRNA expression in RYGB models may contribute to the discrep-
ancy about plasma GIP. We addressed this issue by testing gut GIP mRNA in our mouse
RYGB model.

In this study, GIP mRNA was examined in all segments of intestine in DIO mice before and
after RYGB surgery. The results suggest that intestinal GIP mRNA was increased by high fat
diet (HFD) and reduced in the Roux-limb by RYGB surgery. The reduction accounts for
decreased food response of serum GIP in RYGB mice.

Materials and Methods

Diet-induced obese (DIO) mice and RYGB surgery
This study was conducted in mice and all procedures were approved by IACUC of the Pen-
nington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA. Six
week-old C57BL/6J mice were purchased from the Jackson Laboratory or obtained through in-
house breeding. The mice were fed a high fat diet (HFD, D12331 diet, 58% calories from fat,
Research Diets Inc.) for 14 weeks to generate the diet-induced obese (DIO) model. RYGB sur-
gery was performed in the mice at body weight around 50 g. The surgical operation for RYGB
and sham was conducted as described previously [5]. In the sham operation, the perigastric lig-
aments were cut, and then a 3 mm incision was made in the stomach wall and closed with a
titanium clip. In the cohorts 1–3, after surgery, the mice were fed medium-fat breeder chow
diet (25% calorie from fat, 5015 LabDiet) to mimic dietary changes after RYGB surgery in
patients [29, 30]. There are four cohorts in this study. In the first cohort, chow-fed and HFD-
fed mice were compared for intestinal GIP mRNA in both overnight fasting and non-fasting
conditions (freely fed) (n = 5). In the second cohort, GIP mRNA was examined in the intestine
at 6 weeks after RYGB surgery (n = 5), in which mice were fed HFD before surgery and breeder
chow diet after surgery. In the third cohort (n = 7–8, 8 shames and 7 RYGB), insulin sensitivity
and serum gut hormones were determined 6–8 weeks after RYGB with the same dietary regi-
men. Weight-matched mice were generated by calorie-restriction of DIO mice on the breeder
chow diet to induce weight reduction to match weight loss in RYGB mice. In the fourth cohort
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(n = 4), food intake was examined in animals with a choice between HFD and breeder chow
diet after surgery. Food intake was measured daily during the first 6 weeks after surgery. The
data were derived from 4 cohorts of studies to obtain data in different conditions. The mice
were sacrificed by cervical dislocation for sample collection at the end of each study.

Body weight, composition and insulin tolerance test
These parameters were measured using protocols as previously described [5]. Body weight was
measured in mice weekly in the first 5 weeks and biweekly thereafter after surgery. Body com-
position was determined using NMR at 7 weeks after surgery. ITT was conducted in mice at
8 wks after RYGB. DIO mice were used in surgery at body weight of 50±3 g after 14 wks on
HFD. In terms of adiposity, fat content was above 30% in DIO mice at this body weight.

GIP mRNA and protein
In cohort 1 and 2, the intestine sample was collected immediately after mouse sacrifice, quickly
cleaned, frozen in liquid nitrogen and then stored in -80°C. Collection was done in both over-
night fasted mice and freely fed mice. Total RNA was prepared from the tissues with TRIzol
reagent (Cat. T9424, Sigma, St. Louis, MO). TaqMan RT-PCR reaction was used to quantify
GIP mRNA using the 7900 HT Fast real-time PCR System (Applied Biosystems, Foster City,
CA) as previously described [31]. TaqMan primer for mouse GIP (Mm00433601-m1) and 18S
(AIQJA2B, P N4331348) were purchased from the Applied Biosystems. The GIP mRNA signal
was normalized with ribosome 18S RNA. In the tissue culture, GIP protein in the culture
supernatant was determined using an ELISA kit (EZRMGIP-55K, EMDMillipore, Billerica,
MA 01821). In cohort 1, GIP mRNA was tested at 10 wks on HFD. In cohort 2, the test was
done at 6 weeks after surgery.

Tissue culture
The small intestine (jejunum) was collected from lean mice at 7 wks of age in the fasting condi-
tion,and washed with cold DMEM to remove the intestinal content. The tissue was cut into
small pieces around 1 mm in diameter, as previously described [32]. The tissue was treated for
2 hrs with nutrients such as glucose (Glu, 20 mM), cholesterol (CHO, 5 mM), linoleic acid
(300 μM), palmitic acid (100 μM), and BSA (3%) in a 24 well-plate. Tissues were then collected
after the treatment and used for GIP mRNA and protein assay.

Serum GIP, insulin, PYY and ghrelin
Gut hormones were measured in mouse serum at 6 wks post-surgery in cohort 3 and 4. In
cohort 3, blood samples were collected from the retro-orbital plexus in overnight fasted or at
30 min meal after overnight fast (postprandial condition). DPP4 inhibitor (Sitagliptin) was
used to preserve incretines. The hormones were determined using the Luminex technology
with a Mouse Serum Adipokine multiplex Kit (Cat. #MMHMAG-44K, EMDMillipore Corpo-
ration, 28820 Single Oak Drive, Temecula, California) according to the manufacturer's instruc-
tion. The assay provides information for total GIP protein. In cohort 4, serum GIP was
examined 15 mins after glucose gavage (2 g/kg) using a rat/mouse GIP ELISA kit (total GIP,
Cat. # EZRMGIP-55K, EMDMillipore Corporation). GIP protein concentration was deter-
mined according to the standard curve in the multiplex kit. Total ghrelin was determined in
this assay.
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Hematoxylin and eosin (H&E) staining
Intestine tissues was collected immediately after mouse sacrifice, quickly cleaned, and fixed in
10% neutral buffered formalin solution (HT50-1-2; Sigma). The tissue slides were obtained
through serial cross-section cutting at 8 μm thickness and processed with a standard HE stain-
ing procedure.

Insulin tolerance test
In cohort 3, insulin tolerance test was conducted 8 wks after surgery with peritoneal injection
of insulin (0.8 U/kg). Glucose was measured at 0, 30, 60 and 90 mins with a glucometer (Free
style OneTouch, TheraSense, Phoenix, AZ) after the injection.

Statistical Analysis
In the statistical analysis, two-tailed, unpaired Student’s t test was used in analysis of in vitro
data, and one-way ANOVA was used in analysis of in vivo data with significance P<0.05.

Results

GIP mRNA was increased in the gut of DIO mice
GIP mRNA expression was determined in the small and large intestine of lean and DIO mice
in both the fasting and freely fed state. In chow-fed lean mice, mRNA was mainly detected in
the small intestine including duodenum (Du), jejunum (Je), and ileum (Il) in the fasting condi-
tion (Fig 1A). The expression was a hundred fold less in colon (Co) (Fig 1A). GIP expression
was increased in the freely fed state by over 30-fold in the duodenum, jejunum, and 10-fold in
the ileum (Fig 1B). GIP expression was also increased in colon in the fed state, but the change
was small compared to those in other regions of the small intestine (Fig 1B). In DIO mice, GIP
expression in the small and large intestine was more than double that of lean mice in the fasting
state (Fig 1A). In the freely fed state, GIP expression remained higher in the DIO mice, with at
least 80% increase over lean mice (Fig 1B). Fasting insulin and blood glucose were significantly
elevated in DIO mice (Fig 1C and 1D). Taken together, intestinal GIP expression is signifi-
cantly induced in DIO mice regardless of feeding condition. The increase is associated with
hyperinsulinemia and hyperglycemia.

RYGB results in weight and fat loss
The RYGB mouse model was established using a protocol as previously described [5]. RYGB
drastically reduced body weight by about 30%, which was entirely from fat loss (Fig 2, A-C).
Lean body mass was not reduced by RYGB (Fig 2C). Maximal weight loss was achieved 2 wks
after surgery and body weight was maintained at this lower level thereafter in the 12 wks study.
Food intake was measured 6 wks post-surgery, and no difference was observed between RYGB
and sham mice (Fig 2D).

RYGB induces a transient reduction in food intake
In cohort 3, sham-operated mice lost about 8% of body weight and no food reduction was
observed in RYGB mice at 6 wks post-surgery. The weight loss may be a result of change from
HFD to breeder chow diet. Food reduction may happen before 6 wks post-surgery. These pos-
sibilities were tested in cohort 4, in which mice were provided with HFD and breeder chow diet
at the same time post-surgery, and food intake was monitored daily before and after surgery.
The food choice was provided since RYGB mice do not favor HFD after RYGB, according to
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our previous experience. In this dietary plan, body weight was increased by 15% in sham mice
and decreased by 18% in RYGB mice at 6 wks post-surgery (Fig 3A). The weight change was a
result of fat mass alteration (Fig 3B and 3C). There was no alteration in lean body mass (data
not shown). Calorie intake was reduced in mice in the first week post-surgery (Fig 3D). RYGB
mice exhibited a greater reduction in food intake and the reduction was significant at days 4
and 6 (Fig 3D). At 6 wks, calorie intake was identical between RYGB and sham mice. In addi-
tion, RYGB mice exhibited more preference to the chow diet (Fig 3D).

Food-induced GIP mRNA in intestine
To study GIP expression in intestine, we divided the intestine into 8 segments labeled by letters
A through E in cohort 2 (Fig 4A). RYGB and sham mice were compared in GIP mRNA at 6
wks after surgery in the fed condition. In RYGB mice, food-induced GIP expression was
reduced by about 50% in the Roux-limb compared with that of corresponding jejunal segments
in sham mice (segments C and D in Fig 4B). The GIP expression was identical between RYGB
and sham mice in other segments (Fig 4B). The same results were observed in cohort 4 (data

Fig 1. Association of intestine GIPmRNA and fasting insulin or glucose in DIOmice (Cohort 1).GIP expression was determined in DIOmice at 10 wks
on HFD. A. GIP mRNA in the fasting condition. The expression was examined in duodenum (Du), jejunum (Je), ileum (Il) and colon (Co) in mice after
overnight fast. Chow-fed mice were used as lean mice in the control. B. GIP mRNA in fed mice. Samples were collected in the morning after mouse food
intake at night. C. Fasting insulin. The test was done after overnight fast. D. Fasting glucose. Data is presented as mean ± SE (n = 5). * p<0.01; ** p<0.001
RYGB vs. lean by student’s t test.

doi:10.1371/journal.pone.0134728.g001
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not shown). Jejunal morphology was examined to understand the histological basis of GIP
reduction in Roux-limb (Fig 4C). In DIO mice, the jejunal segment exhibited an increase in
diameter and a change in color from the pink to white. The mucosal villous surface was
increased in the segment. After RYGB surgery, the changes in diameter and color were cor-
rected in the jejunal fragment (the Roux-limb). In the Roux-limb of RYGB mice, the mucosa
exhibited a hypertrophy, but villous surface was reduced. The surface was even less than that of
chow-fed mice, suggesting a result of exposure to undigested food in the Roux-limb.

Induction of GIP mRNA and protein expression in jejunum by nutrients
GIP expression is induced by food intake as suggested by increased GIP in the fed condition
(Fig 1B). To understand the effect of nutrients on GIP expression, GIP mRNA was examined
in jejunum in tissue culture. Glucose, free fatty acids (linoleic and palmitic acids), cholesterol,
and BSA were used as nutrients to stimulate GIP expression. The mRNA was induced by glu-
cose (3-fold, 20 mM) and cholesterol (2-fold, 5 mM), but not by linoleic acid (300 μM) and pal-
mitic acid (100 μM) or BSA (3%) (Fig 5A). The mRNA expression was associated with an
increase in GIP peptide secretion. GIP peptide was induced by glucose (1.8-fold) and

Fig 2. Weight loss in RYGBmice (Cohort 3). RYGB surgery was performed in DIOmice at 14 wks on HFD with body weight around 50g, and sham
operation was performed in the control mice. After surgery, the mice were fed chow diet (11% fat wt/wt, 5015 LabDiet) to mimic the dietary condition in
patients. A. Body weight change. B. Percentage change in body weight. C. Body composition. The composition test was conducted at 7 wks after surgery. D.
Food intake at 6 wks after surgery. The data are presented as mean ± SE (n = 7–8). * P<0.01, ** p<0.001 RYGB vs. sham by student’s t test.

doi:10.1371/journal.pone.0134728.g002
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cholesterol (1.6-fold), but not by the other nutrients (Fig 5B). The data suggests that glucose
and cholesterol are effective stimuli to K cells in the induction of GIP expression.

Postprandial GIP, PYY and ghrelin
Gut hormones (GIP, PYY, Ghrelin and GLP-1) were determined in the fasting and fed condi-
tions (30 mins chow meal) using serum samples collected at 6 wks post-surgery in cohort 3.
RYGB mice exhibited a higher level of GIP in the fasting condition, but had identical GIP to
sham mice in response to food intake (post-prandial) (Fig 6A). In cohort 4, serum GIP was
tested at 15 mins after oral glucose gavage, and no difference was found between RYGB and
sham mice (data not shown). RYGB mice and sham mice had identical serum PYY in the
fasting condition, but RYGB mice exhibited 100% more PYY at 30 min upon feeding (Fig
6B). RYGB mice exhibited no difference to sham mice in serum ghrelin in both fasting and
fed conditions (Fig 6C). The assay kit was not sensitive enough to detect serum GLP-1 in this
study.

Fig 3. RYGB effects on body weight, body composition, food intake and food choice (Cohort 4).Mice were on HFD for 12 weeks before surgery and
then on breeder chow and HFD for choice after surgery. A. Body weight change in gram and percentage after surgery. The percent body weight change was
calculated from baseline before surgery. B. Fat mass reduction after surgery. C. Adiposity index before and after surgery at 35 days. D. Food intake and diet
preference. Calorie intake was calculated in each mouse for combined HFD and breeder chow intake. Relative preference for breeder chow vs. HFD is
presented (inset). The data are presented as mean ± SE (n = 4). * p< 0.05 RYGB vs. sham.

doi:10.1371/journal.pone.0134728.g003
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Fig 4. GIPmRNA in DIOmice after RYGB surgery (Cohort 2).GIP mRNAwas measured in mice at 6 wks
after surgery when the body weight was stabilized. The intestine samples were collected in the non-fasting
condition. A. Intestine fragments are indicated in the diagram. B. GIP mRNA in different intestinal sections
after RYGB surgery. Data is presented as mean ± SE (n = 5). *p<0.05 RYGB vs. sham by student’s t test. C.
Histology of small intestine. The intestine fragments corresponding to Roux-limb are shown with microscope
images (10X) of HE staining.

doi:10.1371/journal.pone.0134728.g004
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Insulin sensitivity is improved by weight loss after RYGB
RYGB may improve insulin sensitivity with or without weight loss. In this study, we examined
weight loss-dependent insulin sensitization by RYGB. Beside fasting insulin, insulin sensitivity
was determined by insulin tolerance test at 6–8 wks after the surgery in cohort 3. Six weeks
after surgery, when RYGB mice had lost about 30% of body weight, fasting insulin was reduced
by more than 60% in RYGB mice, but postprandial insulin was not different between RYGB
and sham animals (Fig 7A). Insulin tolerance was examined at 8 wks in mice of sham, RYGB
and weight-matched groups. Weight-matched mice were generated in DIO mice through calo-
rie restriction for an identical weight loss to RYGB mice. Insulin tolerance was significantly

Fig 5. Induction of GIP expression by nutrients.GIP mRNA in tissue and protein in supernatant were examined in cultured jejunum tissues of chow-fed
mice after nutrient treatment for 2 hrs. A. GIP mRNA in the tissue. B. GIP peptide in the culture supernatant. The concentrations of nutrients are glucose (Glu,
20mM), cholesterol (CHO, 5mM), linoleic acid (300μM), palmitic acid (100μM), and BSA (3%). Data is presented as mean ± SE (n = 6). * p<0.05; **p<0.001
vs. control by one-way ANOVA.

doi:10.1371/journal.pone.0134728.g005

Fig 6. SerumGIP, PYY and ghrelin (Cohort 3). SerumGIP was tested together with PYY and ghrelin at 6 wks post-surgery. Serum was collected after
overnight fast or at 30 mins of free feeding following overnight fast. A. Serum GIP. B. Serum PYY. C. Serum ghrelin. The result is presented as mean ± SE
(n = 5–6). * p< 0.05 RYGB vs. sham by student’s test.

doi:10.1371/journal.pone.0134728.g006
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improved in both RYGB and the weight-matched mice over the sham mice (Fig 7B). Identical
weight loss generated the same level of improvement in insulin tolerance in RYGB and the
weight-matched groups.

Discussion
In the present study, we examined GIP mRNA in the intestine to understand serum GIP
response to RYGB surgery in a mouse RYGB model. We observed that GIP mRNA was ele-
vated dramatically by HFD in the small intestine of DIO mice, which correlates to elevated
serum GIP in obesity [17]. The expression was also induced by feeding. After RYGB, the feed-
ing-induced GIP expression was reduced in the Roux-limb, but not in other segments of small
intestine. The mRNA reduction was associated with the decrease in feeding-induced serum
GIP response. Interestingly, serum GIP was higher in RYGB mice in the fasting condition with
a higher basal level of serum GIP, which was identical to those of sham mice at 30 minutes dur-
ing feeding or at 15 minute post oral glucose gavage. However, food intake failed to induce
serum GIP in RYGB mice. Our data suggests that loss of stimulation by glucose and cholesterol
in Roux-limb is likely responsible for the reduced serum GIP responses in RYGB mice. Alter-
natively, a change in non-intestinal GIP secretion cells may also play a role. Although the intes-
tinal K cells are the major source of blood GIP proteins in mammalians [33], islet alpha-cells
may be a potential source of blood GIP [33] as GIP mRNA and protein are found in
islet alpha-cells in mouse and human [34]. Serum GIP is divided into active and inactive forms
[35]. To better determine overall GIP secretion, total GIP protein was measured in current
study.

Regarding the mechanism of GIP reduction in the Roux-limb of intestine in RYGB mice,
lack of pancreatic enzymes and bile acids may be responsible the reduced availability of glucose
and cholesterol in the stimulation of GIP expression. GIP expression and secretion are induced
by nutrients [36]. We examined different nutrients (glucose, cholesterol, linoleic and palmitic
acids) in the stimulation of GIP expression in intestinal tissue in tissue culture. The data sug-
gests that glucose and cholesterol are active in the induction of GIP mRNA. The activity was
not observed in linoleic and palmitic acids, suggesting that their activities in vivo [37] may be

Fig 7. Insulin sensitivity (cohort 3). A. Fasting and postprandial insulin (n = 5–6). B. Insulin tolerance test. The test was conducted with i.p. insulin injection
(0.8 U/kg) at 8 wks after RYGB surgery. Data is presented as mean ± SE (n = 7). * p<0.05; ** p<0.001 RYGB vs. sham by student’s test.

doi:10.1371/journal.pone.0134728.g007
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dependent on cholesterol in the bile acids [38]. Pancreatic enzymes and bile acids are not avail-
able in the Roux-limb due to surgery-induced anatomical changes in the small intestine. This
prevents breakdown of dietary starch into glucose, and cholesterol release from dietary fat,
which leads to reduced levels of glucose and cholesterol in the Roux-limb. The exposure to
undigested food likely contributes to the mucosal hypertrophy and villous surface reduction in
jejunum of Roux-limb in current study. The morphological change is consistent with that
reported in RYGB patients by Spak, et al [39]. The nutritional and structural factors provide an
explanation to the reduced GIP expression in the Roux-limb in RYGB mice. The elevated basal
GIP in fasting condition may be a result of hypertrophy of Roux-limb mucosa to increase K
cell numbers. Examination of K cells in Roux-limb will help to address this issue. Unfortu-
nately, we were unable to identify a relevant antibody for such an assay. In a study of jejunal-
ileal bypass (JIB), the bypass loop did not exhibit a difference from the control jejunum in rats
[40].

This study suggests that GIP expression in the gut is gradually decreased along the intestine
from duodenum to large intestine. It is known that GIP distribution in human gut follows this
order: duodenum, jejunum, ilium and large intestine [33]. GIP distribution in dog, rat and
mice are similar to that of human [33, 41, 42]. However, current study suggests that in mice,
jejunum may express more GIP than duodenum, which is similar to that of pig.

The data could not exclude GIP activity in the maintenance of weight loss by RYGB. Gut
hormones (GIP, GLP-1, PYY, etc) are actively studied in the mechanism of RYGB effects [11,
43]. In a recent study, we reported that GLP-1 is not required for RYGB-induced weight loss in
pharmacological models and GLP-1R knockout mice [16]. In current study, RYGB and sham
mice had identical serum GIP in postprandial condition although RYGB mice had a higher
basal GIP in the fasting condition. The role of GIP remains to be tested in the long-term effect
of RYGB. PYY was used as a positive control of RYGB-induced gut hormone. Our data con-
firms that serum PYY was increased in postprandial RYGB mice, which is consistent with find-
ings in mice, rats and humans by other groups [8, 13, 27].

The data suggests that the negative energy balance is a powerful factor in the maintenance
of sustained insulin sensitivity in RYGB mice. The improved insulin sensitivity was associated
with sustained fat loss in our DIO mice, which is in agreement with observations by other
groups [4, 5, 44]. The weight loss is a result of increased energy expenditure and fecal energy
loss in the absence of food reduction in our RYGB model [45]. In this study, weight-matched
mice were used to study the effect of weight loss on insulin sensitivity. Although the mecha-
nisms of weight loss are different in RYGB mice and weight-matched mice, identical weight
loss generated the same effects on insulin sensitivity in the two groups of mice. RYGB mice did
not exhibit any advantage over the calorie-restricted mice in insulin sensitization. Similar same
observations have been reported in patients [46, 47]. The weight-independent effect of RYGB
surgery [48, 49] was not examined in current study, but the weight-dependent effect was clearly
supported by our data.

In conclusion, the present study suggests that food-induced GIP expression was reduced in
Roux-limb of RYGB mice. The mechanism is related to the lack of glucose and cholesterols in
Roux-limb after re-routing of jejunum. The reduced mRNA is likely responsible for the
decreased serum GIP protein in response to feeding in RYGB mice. Although the post-prandial
GIP response was reduced, RYGB mice had an identical serum GIP to the sham mice in fed
conditions due to the higher basal level, which is likely a result of hypertrophy of mucosa in
Roux-limb. The role of GIP remains to be tested in the metabolic effects of RYGB. This study
supports that PYY nay play a role in the long-term effect of RYGB [13]. The study enforces
that the negative energy balance is required for the insulin sensitization by RYGB surgery.
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