
Abstract
Pharmacogenetics refers to the effect of single nucle
otide polymorphisms (SNPs) within human genes on 
drug therapy outcome. Its study might help clinicians to 
increase the efficacy of antiretroviral drugs by improving 
their pharmacokinetics and pharmacodynamics and by 
decreasing their side effects. HLAB*5701 genotyping to 
avoid the abacavir-associated hypersensitivity reaction 
(HSR) is a cost-effective diagnostic tool, with a 100% 
of negative predictive value, and, therefore, it has 
been included in the guidelines for treatment of human 
immunodeficiency virus (HIV) infection. HALDRB*0101 
associates with nevirapine-induced HSR. CYP2B6 SNPs 
modify efavirenz plasma levels and their genotyping 
help decreasing its central nervous system, hepatic 
and HSR toxicities. Cytokines SNPs might influence the 
development of drug-associated lipodystrophy. APOA5 , 
APOB , APOC3  and APOE  SNPs modify lipids plasma 
levels and might influence the coronary artery disease 
risk of HIV-infected individuals receiving antiretroviral 
therapy. UGT1A1*28  and ABCB1 (MDR1) 3435C  > T  
SNPs modify atazanavir plasma levels and enhance 
hyperbilirubinemia. Much more effort needs to be still 
devoted to complete large prospective studies with 
multiple SNPs genotyping in order to reveal more clues 
about the role played by host genetics in antiretroviral 
drug efficacy and toxicity.
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the near future for the treatment of human immunode
ficiency virus-infection, as exemplified by the HLAB*5701 
genotyping to prevent the abacavir-associated hypers-
ensitivity reaction. Diverse other single nucleotide 
polymorphisms have been described as related to certain 
pharmacokinetic characteristics and adverse effects of 
antiretroviral drugs. In this Editorial we summarize the 
current knowledge on this rapidly evolving field.
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INTRODUCTION 
Antiretroviral therapy (ART) has become so effective that 
human immunodeficiency virus (HIV) infection is not 
any more the deadly plague of the past, but a chronic, 
easy to handle condition. Although ART is much less 
toxic nowadays than it was in the past, it is still not free 
of side effects. The choice of the most effective and safe 
ART regimen is the daily task of HIV clinicians throughout 
the world. An aim that has been made easier by the 
existence of ART guidelines that are updated yearly by 
different agencies and societies. 

Another approach, much more cumbersome, is the 
use of pharmacogenetics to prescribe ART. The same 
antiretrovirals administered at the same doses produce 
different antiviral effects and toxicities in different 
individuals, suggesting that genetic factors of the host 
may also play a role. The term pharmacogenetics refers 
to the effect of polymorphisms within human genes on 
drug therapy outcome. Single-nucleotide polymorphisms 
(SNPs) are sequence variations in human DNA with 
single nucleotide changes occurring at an allele frequency 
greater than 1%. Nucleotide changes occurring with a 
lower frequency are referred to as mutations. 

SNPs are candidates for a causal role for a given 
phenotype when they are associated with changes in 
protein function, which occurs more likely when the SNP 
is located in an exon, a DNA protein-coding region, and 
lead to changes in the encoded amino acid. However 
more than 95% of SNPs are located in non-coding gene 
regions, such as those of the promoter, untranslated, 
introns and intergenic regions. Such non-exonic SNPs 
can still alter protein function or expression by changes 
in gene transcription, mRNA splicing, mRNA stability 
or alterations in translation and conformation of the 
protein. Therefore, pharmacogenetics gives ground to 
individualized therapy. 

This genetic tool might help clinicians to enhance ART 
efficacy by improving the pharmacokinetics and pharmaco
dynamics of antiretroviral drugs and by decreasing their 
side effects[1-10]. The use of HLAB*5701 genotyping to 
avoid the abacavir-associated hypersensitivity reaction 

(HSR) is a cost-effective diagnostic tool, which have a 
negative predictive value of 100% for all ethnic groups 
and, consequently, it has been included in all ART 
guidelines[11,12]. Unluckily, pharmacogenetics cannot offer 
so bright solutions to other ART problems at present, 
although it might still be of some help to the clinician, 
however. 

A major problem of the SNP-phenotype association 
studies in the field of ART is the lack of reproducibility. 
This might be related to the relatively small size of the 
populations genotyped, the lack of statistical power of the 
study or a selection bias. Other times the SNP association 
of the observed effect is found only within a specific 
ethnic group but not in others. Also, some of the reported 
positive associations might have been obtained after 
multiple statistical comparisons, giving place to potentially 
spurious associations due to chance. Likewise, only 
positive results are usually reported, which means that 
some published associations may not have been overtly 
refuted by other authors that found no such a relationship. 
On the other hand, a SNP-phenotype association might 
not be necessarily due to the functional effect of the 
gene variant, but to the presence of other variant on the 
same chromosome in linkage disequilibrium, combination 
that is referred to as a haplotype. Finally, most of the 
pharmacogenetic studies are retrospective or cross-
sectional. A large prospective study on a multiethnic 
population, with simultaneous genotyping of multiple SNPs 
known to be relevant in the general population, would be 
much more informative.

In the following lines we will focus on the most frequent 
associations of genetic variants with the pharmacokinetic 
changes and toxicity of antiretroviral drugs, the most 
relevant of which are summarized in Table 1.

ABACAVIR-ASSOCIATED HSR
As mentioned above, the use of HLAB*5701 genotyping 
to avoid the abacavir-associated HSR is the ideal 
example of a genotype-phenotype correlation in HIV 
medicine. The involvement of host genetic factors was 
first suggested by the observation of abacavirassociated 
HSR in members of the same family. Later, several 
groups demonstrated a strong association between 
abacavir and the haplotype comprising HLAB*5701, HLA-
DR7 and HLA-DQ3 genotypes[11]. 

The clinical utility of HLAB*5701 genotyping was 
confirmed in a large, randomized, double-blind, intern-
ational, multiethnic prospective study. HIV-infected patients 
with a positive HLAB*5701 genotype were excluded from 
abacavir prescription (prospective screening group) while 
other HIV-infected patients received abacavir without 
HLAB*5701 genotyping (control group). Patients with 
clinically suspected HSR underwent a confirmatory skin-
patch testing (immunologically confirmed HSR). Prospective 
HLAB*5701 screening eliminated immunologically 
confirmed HSR with a negative predictive value of 100% 
and significantly reduced the rate of clinically suspected 
HSR from 7.8% to 3.4%[12]. 
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Table 1  Summary of most relevant genetic determinants of antiretroviral drug pharmacokinetics and toxicity 

Drug/drug class Gene, allele(s)/SNPs SNP Reported associations Additional observations Ref.

Abacavir HLA-B*5701 2395029 ↑ risk of HSR Cost effective test and included in 
all ART guidelines

[11-13]

Tenofovir ABCC2 (MRP2)1249G > A 2273697 ↑ risk of renal proximal tubulopathy in 
French populations

To be confirmed in other 
populations

[14,15]

Lamivudine, 
Zidovudine

ABCC4 (MRP4) 3724G > A, 
4131T > G

2273697
3742106

↑ intracellular exposure of stavudine 
triphosphate 

Uncertain clinical significance [15,53]

NRTIs TNFα238G > A 361525 Earlier onset of lipoatrophy Negative findings reported by 
others

[16-20]

Stavudine, 
NRTIs

IL1β + 3954C > T 1143634 ↓ risk of lipodystrophy in Spanish 
populations

To be confirmed in other 
populations

[20]

NRTIs MMP1-16071G > 2G 1799750 ↑ risk of lipodystrophy in Spanish 
populations

To be confirmed in other 
populations

[21]

Stavudine, 
Zidovudine 

TS ↓ expression and 
MTHFR 1298 

A > C ↑ activity genotypes

1801131 ↑ risk of lipodystrophy and peripheral 
neuropathy in Spanish populations

To be confirmed in other 
populations

[24,25]

NRTIs LPS-binding protein (LBP) 
T > C

2232582 ↑ risk of lipodystrophy in Spanish 
population

To be confirmed in other 
populations

[22]

NRTIs Mitochondrial DNA 
(haplogroup T): 

MTND1*LHON4216C, 
MTND2*LHON4917G, 
7028C > T, 10398G > A, 

13368G > A

28357980 ↑ risk of peripheral neuropathy Tissue specific mitochondrial 
DNA depletion may also play 

some role in NRTI toxicity

[7,26,27]

NRTIs HFE845G > A ↓ risk of peripheral neuropathy Negative findings reported by 
others

[28,29]

NRTIs CFTR 1717-1G > A, 
IVS8 5T, SPINK-1 112C > T

↑ risk of pancreatitis Reported also in the general 
population

[30]

Nevirapine HLA-DRB1*0101 ↑ risk of HSR and hepatotoxicity CD4 cell % > 25% associated with 
↑ risk

[31,32]

Nevirapine HLA-cw8 ↑ risk of HSR in Italian and Japanese 
populations

[33,34]

Nevirapine CYP2B6 983T > C 28399499 ↑ risk of HSR in Malawian and Ugandan 
populations

Stevens-Johnson syndrome or 
toxic epidermal necrolysis, but no 

other HSR

[37]

Nevirapine, 
Efavirenz

ABCB1 (MDR1) 3435C > T 1045642 ↓ risk of hepatotoxicity [35,36]

Efavirenz ABCB1(MDR1) 3435C > T 1045642 ↓ plasma exposure Negative findings reported by 
some authors

[51-53]

Efavirenz CYP2B6 *1/*1 haplotype ↓ plasma concentrations In patients receiving 
antituberculosis treatment

[45]

Efavirenz ABCB1 (MDR1 3435C > T 1045642 ↑ HDL-cholesterol in Spanish populations To be confirmed in other 
populations

[60]

Efavirenz CYP2B6 516G > T, 
983T > C

3745274
28399499

↑ plasma exposure and ↑ risk of CNS side 
effects

Reports of successful efavirenz 
dose individualization

[39,42,44,
46,48,49]

Efavirenz CYP2A6 48T > G, 
UGT2B7 735A > G

28399433
28365062

↑ plasma concentrations in Black and 
White, but not in Hispanic individuals 

from the United States

To be confirmed in other 
populations

[47]

Efavirenz, 
Nevirapine

CYP2B6 516G > T, 
983T > C

28399499 ↑ plasma exposure in African populations To be confirmed in other 
populations

[43]

NNRTIs ABCA1/Hepatic Lipase 
(LIPC)/Cholesteryl Ester 
Transfer Protein (CETP)

4149313
173539
3764261

↑ LDL-cholesterol in Spanish populations To be confirmed in other 
populations

[61]

PIs ABCA1 2962A > G ↑ risk of hyperlipidemia [60]
PIs CETP 279A > G ↑ risk of hyperlipidemia [60]
PIs APOA5-1131T > C, 

64G > C
662799 ↑ risk of hyperlipidemia [60,62]

Antiretrovirals APOE/LDL Receptor 
(LDLR)

405509
2228671

↑ risk of trunk fat gain in Spanish 
populations

To be confirmed in other 
populations

[23]

PIs APOC3 482 C > T, 
455 C > T, 3238 C > G

2854117
2854116

5128

↑ risk of hyperlipidemia [18,63]

PIs APOE ε2 and ε3 haplotypes ↑ risk of hyperlipidemia [18]
Antiretrovirals Insulin Receptor Substrate 1 

(IRS1)
1801278 ↑ risk of limbs lipoatrophy in Spanish 

populations
To be confirmed in other 

populations
[23]

Raltegravir UGT1A1*28/*28 ↑ modestly plasma levels Clinically no significant [57]
Atazanavir, 
Indinavir

UGT1A1*28 Unconjugated hyperbilirubinemia and 
jaundice

[54,55]
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association of the TNFα238G > A SNP with the earlier 
onset of lipoatrophy in Caucasian HIV-infected patients 
under nucleoside reverse transcriptase inhibitors 
(NRTI)[16,17], findings that have not been reproduced by 
others and need further confirmation[18-20]. IL1β + 3954C 
> T SNP, which decreases TNF-α plasma levels, have 
been associated with protection against lipodystrophy in 
HIV-infected Spanish individuals on stavudine[20]. 

Metalloproteases (MMPs), involved in extracellular 
matrix remodeling, can modulate adipocyte differen-
tiation[8]. MMP1 - 16071G > 2G SNP induces increased 
MMP-1 plasma levels and has also been associated 
with lipodystrophy[21]. Increased lipopolysaccharide 
(LPS) plasma levels have been found in HIV-infected 
subjects. Lipopolysaccharide-binding protein (LBP), which 
transports LPS, has been linked to obesity and metabolic 
perturbations. LPS-binding protein (LBP)T > C SNP has 
been associated with lipodystrophy in Spanish HIV-
infected individuals[22]. 

Specific SNPs in APOE and LDL receptor (LDLR) 
genes (rs 405509 and rs 2228671) have been related to 
trunk fat gain in HIV-infected individuals on ART. Insulin 
Receptor Substrate 1 (IRS1) SNPs (rs 1801278) has 
been associated with increased risk of limbs lipoatrophy 
in the same Spanish Caucasian cohort[23]. Low-expression 
thymidylate synthase SNPs have also been associated 
with lipodystrophy in HIV-infected patients exposed to 
estavudine[24].

NRTI-ASSOCIATED PERIPHERAL 
NEUROPATHY AND PANCREATITIS
Low-expression thymidylate synthase SNPs have been 
related to increased stavudine triphosphate intracellular 
levels[24]. Methylenetetrahydrofolate reductase (MTHFR) 
1298 A > C SNP has been associated with decreased 
activity of this enzyme and abnormalities of folate 
metabolism. The conjunction of a low-expression thymi-
dylate synthase plus a MTHFR genotype in HIV-infected 
patients exposed to stavudine has been associated 
with the development of peripheral neuropathy and 
lipodystrophy in HIV-infected individuals[24,25]. Mitoch-
ondrial haplogroup T MTND1*LHON4216C and MTND2-
*LHON4917G genotypes and mitochondrial haplogroup 
T and 7028C > T, 10398G > A, and 13368G > A, SNPs 
were independently linked to increased susceptibility to 

A recent meta-analysis has quantified the utility 
of HLAB*5701 testing[13]. The pooled odds ratio to 
detect abacavir-induced hypersensitivity on the basis of 
clinical criteria was 33.07 (95%CI: 22.33-48.97), while 
diagnostic odds ratio for detection of immunologically 
confirmed abacavir hypersensitivity was 1141 (95%CI: 
409-3181). The meta-analysis also found that prosp-
ective HLA-B*5701 testing significantly reduced the 
incidence of abacavir-induced hypersensitivity.

These results strongly support the clinical value of 
HLAB*5701 screening to avoid this condition. Therefore, 
HLAB*5701 genotyping has proved to be cost-effective 
and is already included as a routine tool in all ART 
guidelines.

TENOFOVIR-ASSOCIATED RENAL 
PROXIMAL TUBULOPATHY
Tenofovir, the most widely prescribed antiretroviral 
nowadays, has shown to produce renal proximal tubulo-
pathy and bone toxicity in the long run. Tenofovir is 
introduced in the renal proximal tubular cell by the human 
organic anion transporters 1 and 3. Multidrug resistance-
associated proteins (ABCC/MRP) 2 and 4 are located in 
the apical membranes of the proximal renal tubules and 
transport different drugs from the tubular cells to the 
urine. Variations in the genes that encode ABCC2 (MRP2) 
and ABCC4 (MRP4) proteins might block tenofovir 
excretion, enhancing intracellular tenofovir levels and 
increasing the risk of renal tubular toxicity. 

In fact, ABCC2 (MRP2)1249G > A SNP has been 
linked to tenofovir-associated renal proximal tubulopathy 
in HIV-infected French patients[14], a genetic association 
that needs to be confirmed in other populations. 
However, this finding needs further explanation because 
tenofovir is not a substrate for ABCC2, although this 
genetic variant might be in linkage disequilibrium with 
other SNPs in genes coding for unidentified factors that 
might exacerbate tenofovir toxicity[15].

NUCLEOSIDE REVERSE TRANSCRIPTASE 
INHIBITORS-ASSOCIATED 
LIPODYSTROPHY
British and Australian researchers have reported an 
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Atazanavir ABCB1 (MDR1) 3435C > T 1045642 Unconjugated hyperbilirubinemia and 
jaundice

↑ plasma levels [57]

Atazanavir ABCB1 (MDR1) 2677 G > T 2032582 ↑ intracellular/plasma concentration 
ratios 

For GG homozygous as compared 
with GT and TT genotypes

[58]

Nelfinavir CYP2C19*2 (681G > A) 4244285 ↑ drug exposure in Italian and multiracial 
Americans

To be confirmed in other 
populations

[39]

Indinavir CYP3A5*3 (A6986G) ↑ oral clearance To be confirmed in other 
populations

[53]

Maraviroc CCR5WT/Δ32 No effect on virologic response Clinically not significant [7]

SNP: Single-nucleotide polymorphisms; HSR: Hypersensitive reaction; ART: Antiretroviral therapy; CNS: Central nervous system; NRTIs: Nucleoside 
reverse transcriptase inhibitors; NNRTIs: Non-nucleoside reverse transcriptase inhibitors; PIs: Protease inhibitors.
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NRTI-associated peripheral neuropathy[7,26,27]. 
Iron transport is dysregulated in HIV infection and 

disorders of iron metabolism are linked to mitochondrial 
dysfunction and other neurodegenerative disorders. 
Hemochromatosis (HFE) gene SNPs alter the structure 
of HFE protein dysregulating intestinal iron absorption 
and its cellular transport. The carriage of the hemochro-
matosis (HFE) 845G>A SNP decreased the risk of NRTI-
associated peripheral neuropathy, although this finding 
could not be reproduced by others[28,29]. 

Cystic fibrosis transmembrane conductance regulator 
(CFTR) and serine protease inhibitor Kazal-1 (SPINK-1) 
mutations have been reported to increase the risk of 
pancreatitis in the general population. CFTR 1717-1G 
> A, IVS8 5T, and SPINK-1 112C > T SNPs are also 
frequent among HIV-positive patients suffering from 
acute pancreatitis, what suggests that these mutations 
might increase the susceptibility to pancreatitis if the 
patients are exposed to environmental risk factors such 
as thymidine NRTIs (stavudine, didanosine)[30].

NON-NUCLEOSIDE REVERSE 
TRANSCRIPTASE INHIBITORS-
ASSOCIATED HSR AND HEPATITIS
Carriage of the class II allele HLA-DRB1*0101 has been 
linked with nevirapine-associated hepatotoxicity and 
HSR (but not with isolated rash) in HIV-infected Western 
Australians, especially in those individuals with a CD4 cell 
count > 25%[31]. A similar association with cutaneous 
hypersensitivity has also been reported for nevirapine 
and efavirenz in French Caucasian patients regardless of 
the CD4 values[32]. 

Additional HLA alleles (HLA-cw8/HLA-B14) have 
been recently associated with nevirapine hepatotoxicity 
in Sardinian[33] and Japanese[34] HIV-infected patients. 
On the other hand, ABCB1 (MDR1) 3435C > T SNP has 
been found to decrease the risk of nevirapine-associated 
hepatotoxicity in multiethnic South African and American 
individuals[35,36].

Likewise, an association between the CYP2B6 
c.983T > C SNP and the development of nevirapine-
induced Stevens-Johnson syndrome or toxic epidermal 
necrolysis, but not other hypersensitivity reactions, has 
been described in Malawian and Ugandan HIV-infected 
individuals[37]. Considering that this SNP is found in a small 
part of African populations, but not in Caucasians, these 
findings would point out to an ethnicspecific predisposing 
factor.

EFAVIRENZ DISPOSITION AND CENTRAL 
NERVOUS SYSTEM SIDE EFFECTS
The cytochrome P450 (CYP) enzyme CYP2B6, primarily 
expressed in the liver, is involved in the biotransformation 
of efavirenz. CYP2B6 is one of the most polymorphic CYP 
genes in humans and its variants have shown to affect 

transcriptional regulation, splicing, mRNA and protein 
expression and catalytic activity[38]. CYP2B6 516G > T, 
983T > C, 785A > G and 21563C > T SNPs have been 
associated with greater efavirenz plasma exposure and 
the development of more severe central nervous system 
(CNS) effects in different HIV-infected populations, 
including African and Thai patients[39-46]. 

Likewise, increased efavirenz concentrations were 
associated with CYP2A6 -48T > G and with GG homozy-
gosity for UGT2B7 735, a SNP of the microsomal enzyme 
uridine 5’-diphospho-glucuronosyltransferase (UGT), in 
Black and White, but not in Hispanic individuals from the 
United States[47].

Also, CYP2B6 *6/*6 and *6/*26 carriers have been 
found to be associated with extremely high plasma 
concentrations of efavirenz in Japanese patients receiving 
standard doses of the drug[48]. Efavirenz doses were 
substantially reduced down to 200 mg/d in these patients 
without loss of antiviral efficacy and improvement in CNS 
symptoms. In addition, CYP2B6 516G > T genotyping has 
been found to reduce treatment costs, even considering 
only the sparing related to efavirenz dose reduction[49]. 

These two reports constitute examples of practical 
applications of genotyping and how pharmacogenomics 
may be useful for the management of HIV-infected 
individuals receiving antiretroviral drugs. 

On the other hand, there are conflicting results about 
the effect of ABCB1(MDR1) 3435C > T SNPs in decreasing 
efavirenz plasma exposure[50-52], and an independent 
association between low efavirenz plasma concentrations 
and the CYP2B6 *1/*1 haplotype has also been found in 
patients receiving antituberculosis drugs[45]. 

SNPs in other CYP enzymes such as CYP3A5 SNPs 
have also been associated with faster clearance of other 
antiretroviral drugs such as indinavir[53].

ATAZANAVIR AND INDINAVIR-
ASSOCIATED HYPERBILIRRUBINEMIA
The most common side effect of atazanavir is hyper-
bilirubinemia (observed in 20%-50% of patients exposed to 
this drug), a mostly minor disturbance that in 6% of cases 
can reach the range of clinical jaundice. Bilirubin needs to 
be conjugated with glucuronic acid to be excreted in the 
bile. This step is mediated by the microsomal enzyme UGT, 
which can cause unconjugated hyperbilirubinemia when 
its activity is reduced. Fifteen UGT isoforms with different 
substrate specificities, including the bilirubinspecific isoform 
UGTA1, have been identified. UGT1A1*28 SNP has been 
associated with hyperbilirubinemia in HIV-infected Swiss 
and Spanish Caucasian individuals starting atazanavir or 
indinavir[54,55], and this SNP might modify raltegravir plasma 
levels as well[56]. 

Likewise, the Pglycoprotein, an efflux pump coded by 
the ABCB1 (MDR1) gene, is one of the most important 
transporters, especially expelling protease inhibitors 
outside the cell. ABCB1 (MDR1) SNPs might therefore 
influence atazanavir plasma concentration and, in fact, 
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ABCB1 (MDR1) 3435C > T SNP has been associated with 
increased atazanavir plasma levels and hyperbilirubinemia 
in Spanish patients[57]. Also, the intracellular/plasma 
concentration ratio of atazanavir was higher in GG carriers 
compared with those with GT and TT genotypes of the 
ABCB1 2677 G>T SNP in an Italian study[58].

PROTEASE INHIBITOR AND EFAVIRENZ-
ASSOCIATED LIPIDIC ABNORMALITIES 
AND CORONARY ARTERY DISEASE RISK
Hyperlipidemia is usually associated with ritonavir-
boosted protease inhibitor therapy, but also with efavirenz 
use. ABCA1 SNPs have been linked to hyperlipidemia 
in HIV-infected patients treated with protease inhibitors 
or efavirenz. Thus, ABCA1 2962A > G SNP has been 
associated with increased HDL-cholesterol plasma levels 
after efavirenz treatment in Spanish patients[59] and after 
ritonavir-boosted protease inhibitor therapy in the Swiss 
HIV cohort[60]. The contribution of other SNPs associated 
with plasma lipid levels in the general population has also 
been extensively studied in the same Swiss cohort and 
in other populations. APOA5, especially the -1131T > C 
and 64G > C SNPs, APOC3, especially the 482 C > T, 455 
C > T and 3238 C > G SNPs, and APOE, especially the 
APOE ε2 and ε3 haplotypes and APOB SNP have been 
shown to contribute to increased plasma triglyceride, HDL-
cholesterol and/or LDL-cholesterol levels during ART[18,60-63]. 

ABCA1, Hepatic Lipase (LIPC) and Cholesteryl Ester 
Transfer Protein (CETP) gene variant, especially the 279A 
> G SNP, were favorably associated with HDL-cholesterol 
when ART included non-nucleoside reverse transcriptase 
inhibitors (NNRTI). However an unfavorable effect on 
total-cholesterol and triglyceride levels was observed 
when ART included protease inhibitors[62].

Recently, a large meta-analysis has shown the role in 
HIV-infected patients on ART of 23 SNPs associated with 
coronary artery disease (CAD) in the general population. 
The authors report that the effect of unfavorable genetic 
background was similar to traditional CAD risk factors 
and certain adverse antiretroviral exposures. The authors 
concluded that genetic testing might provide prognostic 
information complementary to the family history of CAD[64].

DISCUSSION AND CONCLUSION
The field of pharmacogenetics is just beginning, but it 
will help the clinician to tailor and individualize ART for 
each HIV-infected patient. The gold standard to reach is 
currently the HLAB*5701 genotyping, which has proven 
to be highly efficacious to prevent the abacavirassociated 
HSR and, consequently, it has been included as a routine 
tool for the care of HIV-infected patients in all ART 
guidelines. 

In this short review we have focused more on the 
possible role of pharmacogenetics to prevent ART side 
effects than in pharmacokinetics. However, the reader must 
be aware of the value of pharmacogenetics to modulate 

the pharmacokinetic parameters of antiretroviral drugs. For 
instance, efavirenz dosage can be tailored for each individual 
knowing his/her CYP2B6 SNPs carriage, as CYP2B6 
genetic variants seem to substantially modify efavirenz 
absorption and plasma levels. Moreover, genotyping has 
even shown to be a cost-effective measure, as the costs of 
the determination are compensated by savings related to 
efavirenz dose reduction and management of side-effects. 
Therefore, the clinician might adjust efavirenz doses to 
achieve maximal antiviral efficacy with minimal side effects. 

The same train of thought can be applied to UGT1A1*28 
and ABCB1 genotypings, to control the plasma and 
intracellular concentrations of atazanavir and to decrease 
the atazanavir-associated hyperbilirubinemia without 
modifying its antiviral effect. 

The practical usefulness of other genetic testings is less 
clear at present, pending on the confirmation of the results 
observed in different studies and the discovery of new 
genetic variants associated with the pharmacokinetics and 
side-effects of antiretroviral drugs. Therefore, much more 
effort is needed to complete large size prospective studies 
with multiple SNPs genotyping, to reveal more clues about 
the role played by host genetics in ART response.
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