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A Stefan problem on an
evolving surface
Amal Alphonse and Charles M. Elliott

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

We formulate a Stefan problem on an evolving
hypersurface and study the well posedness of weak
solutions given L1 data. To do this, we first develop
function spaces and results to handle equations on
evolving surfaces in order to give a natural treatment
of the problem. Then, we consider the existence of
solutions for L∞ data; this is done by regularization
of the nonlinearity. The regularized problem is solved
by a fixed point theorem and then uniform estimates
are obtained in order to pass to the limit. By using
a duality method, we show continuous dependence,
which allows us to extend the results to L1 data.

1. Introduction
The Stefan problem is the prototypical time-dependent
free boundary problem. It arises in various forms in many
models in the physical and biological sciences [1–4].
In this paper, we present the theory of weak solutions
associated with the so-called enthalpy approach [1] to the
Stefan problem on an evolving curved hypersurface.

Our interest is in the existence, uniqueness and
continuous dependence of weak solutions to the Stefan
problem

∂•e(t) − �Ω(t)u(t) + e(t)∇Ω(t) · w(t) = f (t) in Ω(t),

e(0) = e0 on Ω(0)

and e ∈ E(u)

⎫⎪⎪⎬
⎪⎪⎭
(1.1)

posed on a moving compact hypersurface Ω(t) ⊂ R
n+1

evolving with (given) velocity field w, where the energy
E : R →P(R) is defined by

E(r) =

⎧⎪⎪⎨
⎪⎪⎩

r for r < 0,

[0, 1] for r = 0,

r + 1 for r > 0.

Note that E is a maximal monotone graph in the sense of
Brézis [5].

In (1.1), ∂•e means the material derivative of e (which
we shall also write as ė), and ∇Ω(t) and �Ω(t) are,
respectively, the surface gradient and Laplace–Beltrami
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operators on Ω(t). The novelty of this work is that the Stefan problem itself is formulated on a
moving hypersurface and our chosen method to treat this problem, which we believe is naturally
suited to equations on moving domains, requires the use of some new function spaces and results
that we shall introduce, building upon the spaces and concepts presented in [6,7]. There is, as
alluded to above, a rich literature associated to Stefan-type problems [8–13]. We will show that
arguments similar to those used in the standard setting are also amenable to our problem on a
moving hypersurface, thanks in part to the function spaces we decide to use. Let us remark that
the techniques and functional analysis we develop here can be directly applied to study many
other nonlinear PDE problems posed on moving domains.

Let us work out a possible pointwise formulation of (1.1). Start by supposing Ω(t) = Ωl(t) ∪
Ωs(t) ∪ Γ (t), where Ωl(t) and Ωs(t) divide Ω(t) into a liquid and a solid phase (respectively) with
an a priori unknown interface Γ (t). The quantity of interest is the temperature u(t) : Ω(t) → R,
which we suppose satisfies

u(t) > 0 in Ωl(t),

u(t) = 0 in Γ (t)

and u(t) < 0 in Ωs(t),

and thus u = 0 is the critical temperature where the change of phase occurs. Define

Ql =
⋃

t∈(0,T)

Ωl(t) × {t} and S =
⋃

t∈(0,T)

Γ (t) × {t},

and Qs similarly. Given f and u0, we formally elucidate in remark 2.12 the relationship between
(1.1) and the following model describing the temperature u:

∂•u − �Ωu + (u + 1)∇Ω · w = f in Ql,

∂•u − �Ωu + u∇Ω · w = f in Qs,

−(∇Ωul − ∇Ωus) · μ = V on S,

u = 0 on S

and u(0) = u0 on Ω(0),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.2)

where us denotes the trace of the restriction u|Ωs to the interface Γ (likewise with ul), V(t) is the
conormal velocity of Γ (t) and μ(t) is the unit conormal vector pointing into Ωl(t) (this vector is
tangential to Ω(t) and normal to ∂Ωl(t)).

We now introduce some notions of a weak solution, similar to [10]. The function spaces Lp
X

below will be made precise in §2 but for now can be thought of as generalizations of Bochner
spaces Lp(0, T; X0), where now u ∈ Lp

X implies u(t) ∈ X(t) for almost all t (for a suitable family
{X(t)}t∈[0,T]).

Definition 1.1 (Weak solution). Given f ∈ L1
L1 and e0 ∈ L1(Ω0), a weak solution of (1.1) is a pair

(u, e) ∈ L1
L1 × L1

L1 such that e ∈ E(u) and there holds

−
∫T

0

∫
Ω(t)

η̇(t)e(t) −
∫T

0

∫
Ω(t)

u(t)�Ωη(t) =
∫T

0

∫
Ω(t)

f (t)η(t) +
∫
Ω0

e0η(0)

for all η ∈ W(L∞ ∩ H2, L∞) with �Ωη ∈ L∞
L∞ and η(T) = 0.

Definition 1.2 (Bounded weak solution). Given f ∈ L∞
L∞ and e0 ∈ L∞(Ω0), a bounded weak

solution of (1.1) is a pair (u, e) ∈ L2
H1 × L∞

L∞ such that (u, e) is a weak solution of (1.1) satisfying

−
∫T

0

∫
Ω(t)

η̇(t)e(t) +
∫T

0

∫
Ω(t)

∇Ωu(t)∇Ωη(t) =
∫T

0

∫
Ω(t)

f (t)η(t) +
∫
Ω0

e0η(0) (1.3)

for all η ∈ W(H1, L2) with η(T) = 0.
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We prove the following results.

Theorem 1.3 (Existence of bounded weak solutions). If f ∈ L∞
L∞ , e0 ∈ L∞(Ω0) and |Ω| :=

sups∈[0,T] |Ω(s)| < ∞, then there exists a bounded weak solution to (1.1).

Theorem 1.4 (Uniqueness and continuous dependence of bounded weak solutions). If for
i = 1, 2, (ui, ei) are two bounded weak solutions of (1.1) with data (f i, ei

0) ∈ L∞
L∞ × L∞(Ω0), then

‖e1(t) − e2(t)‖L1(Ω(t)) ≤
∫ t

0
‖f 1(τ ) − f 2(τ )‖L1(Ω(τ )) + ‖e1

0 − e2
0‖L1(Ω0)

for almost all t.

Theorem 1.5 (Well posedness of weak solutions). If f ∈ L1
L1 , e0 ∈ L1(Ω0) and |Ω| :=

sups∈[0,T] |Ω(s)| < ∞, then there exists a unique weak solution to (1.1). Furthermore, if for i = 1, 2,

(ui, ei) ∈ L1
L1 × L1

L1 are two weak solutions of (1.1) with data (f i, ei
0) ∈ L1

L1 × L1(Ω0), then

‖e1 − e2‖L1
L1

≤ CT(‖f 1 − f 2‖L1
L1

+ ‖e1
0 − e2

0‖L1(Ω0)).

Below, we shall use the notation ↪→ and
c

↪−→ to denote (respectively) a continuous embedding
and a compact embedding. We will at times refer to the electronic supplementary material where
more explanation can be found for the interested reader.

2. Preliminaries

(a) Abstract evolving function spaces
In [6], we generalized some concepts from [14] and defined the Hilbert space L2

H given a
sufficiently smooth parametrized family of Hilbert spaces {H(t)}t∈[0,T]. We need a generalization
of this theory to Banach spaces.

For each t ∈ [0, T], let X(t) be a real Banach space with X0 := X(0). We informally identify the
family {X(t)}t∈[0,T] with the symbol X. Let there be a linear homeomorphism φt : X0 → X(t) for
each t ∈ [0, T] (with the inverse φ−t : X(t) → X0) such that φ0 is the identity. We assume that there
exists a constant CX independent of t ∈ [0, T] such that

‖φtu‖X(t) ≤ CX‖u‖X0 ∀ u ∈ X0

and ‖φ−tu‖X0 ≤ CX‖u‖X(t) ∀ u ∈ X(t).

}
(2.1)

We assume for all u ∈ X0 that the map t �→ ‖φtu‖X(t) is measurable.

Definition 2.1. Define the Banach spaces

Lp
X =

⎧⎨
⎩u : [0, T] →

⋃
t∈[0,T]

X(t) × {t}, t �→ (û(t), t) | φ−(·)û(·) ∈ Lp(0, T; X0)

⎫⎬
⎭ for p ∈ [1, ∞)

L∞
X =

{
u ∈ L2

X | ess sup
t∈[0,T]

‖u(t)‖X(t) < ∞
}

endowed with the norm

‖u‖Lp
X

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∫T

0
‖u(t)‖p

X(t)

)1/p

for p ∈ [1, ∞),

ess sup
t∈[0,T]

‖u(t)‖X(t) for p = ∞.

(2.2)

Note that we made an abuse of notation after the definition of the first space and identified
u(t) = (û(t), t) with û(t). That (2.2) defines a norm is easy to see once one checks that the integrals
are well defined (the case p = ∞ is easy), which can be shown by a straightforward adaptation
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of the proof of theorem 2.8 in [6] for the case when each X(t) is separable (see also electronic
supplementary material, S1) and the proof of lemma 3.5 in [14] for the non-separable case. The
fact that Lp

X is a Banach space follows from lemma 2.3 below.

Important notation 2.2. Given a function u ∈ Lp
X, the notation ũ will be used to mean the

pullback ũ(·) := φ−(·)u(·) ∈ Lp(0, T; X0), and vice versa.

Lemma 2.3. The spaces Lp(0, T; X0) and Lp
X are isomorphic via φ(·) with an equivalence of norms:

1
CX

‖u‖Lp
X

≤ ‖φ−(·)u(·)‖Lp(0,T;X0) ≤ CX‖u‖Lp
X

for all u ∈ Lp
X.

Proof. We show the case p = ∞ here; an adaptation of the p = 2 case done in [6] easily proves the
lemma for p ∈ [1, ∞) (see also electronic supplementary material, S2). Let u ∈ L∞

X . Measurability
of ũ follows as u ∈ L2

X. Now, by definition, we have that for all t ∈ [0, T]\N, ‖u(t)‖X(t) ≤ A, where N
is a null set and A = ‖u‖L∞

X
. This means that for all t ∈ [0, T]\N, C−1

X ‖ũ(t)‖X0 ≤ ‖u(t)‖X(t) ≤ A by the
assumption (2.1), i.e.

‖ũ‖L∞(0,T;X0) = ess sup
t∈[0,T]

‖ũ(t)‖X0 ≤ CXA = CX‖u‖L∞
X

,

so ũ ∈ L∞(0, T; X0). Similarly, we conclude that if ũ ∈ L∞(0, T; X0), then u ∈ L∞
X . �

Remark 2.4. The dual operator φ∗
−t : X∗

0 → X∗(t) is also a linear homeomorphism with ‖φ∗
−t‖ =

‖φ−t‖ and (φ∗
−t)

−1 = φ∗
t [15, theorem 4.5-2 and §4.5], and if X0 is separable, t �→ ‖φ∗

−t f‖X∗(t) is
measurable for f ∈ X∗

0; thus, in the separable setting, the dual operator also satisfies the same
boundedness properties as φt. This means that the spaces Lp

X∗ are also well-defined Banach spaces
given separable {X(t)}t∈[0,T] (the map φ∗

−(·) plays the same role as φ(·) did for the spaces Lp
X).

The following subspaces will be of use later:

Ck
X = {ξ ∈ L2

X | φ−(·)ξ (·) ∈ Ck([0, T]; X0)} for k ∈ {0, 1, . . .}
and

DX = {η ∈ L2
X | φ−(·)η(·) ∈D((0, T); X0)}.

(i) Dual spaces

In this subsection, we assume that {X(t)}t∈[0,T] is reflexive. In order to retrieve weakly convergent
subsequences from sequences that are bounded in Lp

X, we need Lp
X to be reflexive. This leads us

to consider a characterization of the dual spaces. We let p ∈ [1, ∞) and (p, q) be a conjugate pair in
this section.

Theorem 2.5. The space (Lp
X)∗ is isometrically isomorphic to Lq

X∗ , and hence we may identify (Lp
X)∗ ≡

Lq
X∗ and the duality pairing of f ∈ Lq

X∗ with u ∈ Lp
X is given by

〈f , u〉Lq
X∗ ,Lp

X
=

∫T

0
〈f (t), u(t)〉X∗(t),X(t).

To prove this theorem, although we can exploit the fact that the pullback is in a Bochner space,
showing that the natural duality map is isometric is not so straightforward because φ(·) is not
assumed to be an isometry. In fact, we have to go back to the foundations and emulate the proof
for the dual space identification for Bochner spaces [16, §IV].

Lemma 2.6. For every g ∈ Lq
X∗ , the expression

l( f ) =
∫T

0
〈g(t), f (t)〉X∗(t),X(t) for all f ∈ Lp

X (2.3)

defines a functional l ∈ (Lp
X)∗ such that ‖l‖ = ‖g‖Lq

X∗ .
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Proof. Let g ∈ Lq
X∗ and define l : Lp

X → R by (2.3); the integral is well defined by similar reasoning
as before (see lemma 2.13 in [6] and the electronic supplementary material, S3). By Hölder’s
inequality, we have |l(f )| ≤ ‖g‖Lq

X∗ ‖f‖Lp
X

, so l ∈ (Lp
X)∗ and ‖l‖ ≤ ‖g‖Lq

X∗ . We now show the reverse
inequality. First suppose g has the form g(t) =∑

x∗
i,tχEi (t), where the x∗

i,t ∈ X∗(t) and the Ei are
measurable, pairwise disjoint and partition [0, T]. It is clear that ‖g(t)‖X∗(t) =∑‖x∗

i,t‖X∗(t)χEi (t). Let

h(t) = ‖g(t)‖q/p
X∗(t)/‖g‖q/p

Lq
X∗

which satisfies ‖h‖p
Lp(0,T) = 1 and

∫T
0 ‖g(t)‖X∗(t)h(t) = ‖g‖Lq

X∗ , hence for any

ε > 0 we have ∫T

0
‖g(t)‖X∗(t)h(t) ≥ ‖g‖Lq

X∗ − ε

2
. (2.4)

Now choose xi,t ∈ X(t), ‖xi,t‖X(t) = 1 (see electronic supplementary material, S4) such that

‖x∗
i,t‖X∗(t) − 〈x∗

i,t, xi,t〉X∗(t),X(t) ≤ ε

2‖h‖L1(0,T)
. (2.5)

Define f ∈ Lp
X by f (t) =∑

xi,th(t)χEi (t) and note that ‖f‖p
Lp

X
= ‖h‖p

Lp(0,T). We obtain using (2.5) and

(2.4) that l( f ) ≥ ‖g‖Lq
X∗ − ε. This proves that ‖l‖ = ‖g‖Lq

X∗ whenever g(t) =∑
x∗

i,tχEi (t) is of the

stated form. Now suppose g ∈ Lq
X∗ is arbitrary. Then there exist g̃n(t) =∑

g̃i,nχEi (t) with g̃i,n ∈ X∗
0

such that g̃n → g̃ in Lq(0, T; X∗
0) and so the sequence gn(t) := φ∗

−tg̃n(t) =∑
φ∗

−tg̃i,nχEi (t) satisfies
gn → g in Lq

X∗ . Because the φ∗
−tg̃i,n ∈ X∗(t), we know by our efforts above that ln : Lp

X → R defined

by ln(f ) = ∫T
0 〈gn(t), f (t)〉X∗(t),X(t) has norm ‖ln‖ = ‖gn‖Lq

X∗ . We also have

‖ln − l‖ ≤ ‖gn − g‖Lq
X∗ → 0,

which implies limn→∞‖ln‖ = ‖l‖ and also limn→∞‖ln‖ = limn→∞‖gn‖Lq
X∗ = ‖g‖Lq

X∗ . �

We have shown that J : Lq
X∗ → (Lp

X)∗ defined by J (g) := l(·) = ∫T
0 〈g(t), (·)(t)〉X∗(t),X(t) is isometric:

‖J g‖(Lq
X)∗ = ‖l‖ = ‖g‖Lq

X∗ . We now show that J is onto. Given l ∈ (Lp
X)∗, define L̃ : Lp(0, T; X0) → R

by L̃(ṽ) = l(φ(·)ṽ(·)) = l(v) for all ṽ ∈ Lp(0, T; X0). It is obvious that L̃ ∈ Lp(0, T; X0)∗, and by the dual
space identification for Bochner spaces, there exists an L̃∗ ∈ Lq(0, T; X∗

0) such that

〈l, v〉(Lp
X)∗,Lp

X
= 〈L̃, ṽ〉Lp(0,T;X0)∗,Lp(0,T;X0) =

∫T

0
〈φ∗

−tL̃
∗(t), v(t)〉X∗(t),X(t),

so J (φ∗
−(·)L̃

∗(·)) = l, where φ∗
−(·)L̃

∗(·) ∈ Lq
X∗ . Hence J is onto, and we have proved theorem 2.5.

(b) Function spaces on evolving surfaces
We now make precise the assumptions on the evolving surface Ω(t) our Stefan problem is
posed on and we discuss function spaces in the context of the previous subsections. For each
t ∈ [0, T], let Ω(t) ⊂ R

n+1 be an orientable compact (i.e. no boundary) n-dimensional hypersurface
of class C3, and assume the existence of a flow Φ : [0, T] × R

n+1 → R
n+1 such that for all t ∈

[0, T], with Ω0 := Ω(0), the map Φ0
t (·) := Φ(t, ·) : Ω0 → Ω(t) is a C3-diffeomorphism that satisfies

d/dtΦ0
t (·) = w(t, Φ0

t (·)) and Φ0
0 (·) = Id(·) for a given C2 velocity field w : [0, T] × R

n+1 → R
n+1,

which we assume satisfies the uniform bound |∇Ω(t) · w(t)| ≤ C for all t ∈ [0, T]. A C2 normal vector
field on the hypersurfaces is denoted by ν : [0, T] × R

n+1 → R
n+1. It follows that the Jacobian

J0
t := det DΦ0

t is C2 and is uniformly bounded away from zero and infinity.
For u : Ω0 → R and v : Ω(t) → R, define the pushforward φtu = u ◦ Φt

0 and pullback φ−tv = v ◦
Φ0

t , where Φt
0 := (Φ0

t )−1. We showed in [7] that φt : L2(Ω0) → L2(Ω(t)) and φt : H1(Ω0) → H1(Ω(t))
are linear homeomorphisms (with uniform bounds) and (thus) with L2 ≡ {L2(Ω(t))}t∈[0,T], H1 ≡
{H1(Ω(t))}t∈[0,T] and H−1 ≡ {H−1(Ω(t))}t∈[0,T], the spaces L2

L2 , L2
H1 and L2

H−1 are well defined (see
[7,17] for an overview of Lebesgue and Sobolev spaces on hypersurfaces) and we let L2

H1 ⊂ L2
L2 ⊂

L2
H−1 be a Gelfand triple.
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A function u ∈ C1
L2 has a strong material derivative defined by u̇(t) = φt(d/dt(φ−tu(t))). Given a

function u ∈ L2
H1 , we say that it has a weak material derivative g ∈ L2

H−1 if

(u, η̇)L2
L2

= −〈g, η〉L2
H−1 ,L2

H1
− (u, η∇Ω · w)L2

L2
∀ η ∈DH1

holds, and we write u̇ or ∂•u instead of g. Define the Hilbert spaces (see [6,7] for more details)

W(H1(Ω0), H−1(Ω0)) = {u ∈ L2(0, T; H1(Ω0)) | u′ ∈ L2(0, T; H−1(Ω0))}
W(H1, H−1) = {u ∈ L2

H1 | u̇ ∈ L2
H−1}

endowed with the natural inner products. For subspaces X ↪→ H1 and Y ↪→ H−1, we also define
the subset W(X, Y) ⊂ W(H1, H−1) in the natural manner.

Lemma 2.7 (See [6,7]). Let either X = W(H1, H−1) and X0 =W(H1(Ω0), H−1(Ω0)), or X =
W(H1, L2) and X0 =W(H1(Ω0), L2(Ω0)). For such pairs, the space X is isomorphic to X0 via φ−(·) with
an equivalence of norms:

C1‖φ−(·)v(·)‖X0 ≤ ‖v‖X ≤ C2‖φ−(·)v(·)‖X0 .

We showed in [6,7] that, for u, v ∈ W(H1, H−1), the map t �→ (u(t), v(t))L2(Ω(t)) is absolutely
continuous, and

d
dt

∫
Ω(t)

u(t)v(t) = 〈u̇(t), v(t)〉 + 〈v̇(t), u(t)〉 +
∫
Ω(t)

u(t)v(t)∇Ω · w(t)

holds for almost all t, where the duality pairing is between H−1(Ω(t)) and H1(Ω(t)).

(i) Some useful results

In this subsection, p and q are not necessarily conjugate. The first part of the following lemma is
a particular realization of lemma 2.3. Consult the electronic supplementary material, S5–S7, for
more details of the next three results.

Lemma 2.8. For p, q ∈ [1, ∞], the spaces Lp
Lq and Lp(0, T; Lq(Ω0)) are isomorphic via the map φ(·) with

an equivalence of norms. If q = ∞, the spaces are isometrically isomorphic. The embedding L∞
L∞ ⊂ Lp

Lq is
continuous.

Lemma 2.9. The space W(H1, H−1) is compactly embedded in L2
L2 .

Theorem 2.10 (Dominated convergence theorem for Lp
Lq ). Let p, q ∈ [1, ∞). Let {wn} and w be

functions such that {w̃n} and w̃ are measurable (e.g. membership of L1
L1 will suffice). If for almost all

t ∈ [0, T],

wn(t) → w(t) almost everywhere in Ω(t)

∃g ∈ Lp
Lq : |wn(t)| ≤ g(t) almost everywhere in Ω(t) and for all n,

then wn → w in Lp
Lq .

Lemma 2.11. If u ∈ W(H1, H−1), then

2
∫T

0
〈u̇(t), u+(t)〉H−1(Ω(t)),H1(Ω(t)) =

∫
Ω(T)

u+(T)2 −
∫
Ω0

u+(0)2 −
∫T

0

∫
Ω(t)

u+(t)2∇Ω · w. (2.6)

Proof. By density, we can find {un} ⊂ W(H1, L2) with un → u in W(H1, H−1). It follows that
∂•(u+

n ) = u̇nχun≥0 ∈ L2
L2 (this is sensible because w ∈ H1(Ω) implies w+ ∈ H1(Ω)) and therefore (2.6)

holds for un (see electronic supplementary material, S8). As W(H1, H−1) ↪→ C0
L2 , it follows that

u+
n (t) → u+(t) in L2(Ω(t)) (for example see [18, lemma 2.88] or [19, lemma 1.22]). So we can pass to

the limit in the first two terms on the right-hand side.
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Now we just need to show that u+
n → u+ in L2

H1 . It is easy to show the convergence in L2
L2 , so

we need only to check the convergence of the gradient. Let g(r) = χ{r>0}. Then, using g ≤ 1,

|∇Ωu+
n (t, x) − ∇Ωu+(t, x)| ≤ |∇Ωun(t, x) − ∇Ωu(t, x)| + |g(un(t, x)) − g(u(t, x))||∇Ωu(t, x)|.

For the second term, let us note that as un → u in L2
H1 , for almost all t, un(t, x) → u(t, x) almost

everywhere in Ω(t) for a subsequence (which we have not relabelled). Let us fix t. Then for almost
every x ∈ Ω(t), it follows that g(un(t, x))∇Ωu(t, x) → g(u(t, x))∇Ωu(t, x) pointwise (see electronic
supplementary material, S9). Because g ≤ 1, the dominated convergence theorem gives overall
∇Ωu+

n → ∇Ωu+ in L2
L2 . �

(c) Preliminary results
Remark 2.12. It is well known in the standard setting that a mushy region (the interior of

the set where the temperature is zero) can arise in the presence of heat sources [1,20]; with no
heat sources, the initial data may give rise to mushy regions. We will content ourselves with the
following heuristic calculations under the assumption that there is no mushy region.

Let the bounded weak solution of (1.1) (in the sense of definition 1.2) have the additional
regularity u ∈ W(H1, L2) and �Ωu ∈ L2

L2 , and suppose that the sets Ωl(t) = {u > 0} and Ωs(t) =
{u < 0} divide Ω(t) with a common interface Γ (t), which we assume is a sufficiently smooth n-
dimensional hypersurface (of measure zero with respect to the surface measure on Ω(t)). Then
the bounded weak solution is also a classical solution in the sense of (1.2). To see this, suppose
that (u, e) is a weak solution satisfying the equality in (1.3). The integration by parts formula on
each subdomain of Ω implies

∫T

0

∫
Ω(t)

∇Ωu(t)∇Ωη(t) = −
∫T

0

∫
Ω(t)

η(t)�Ωu(t) +
∫T

0

∫
Γ (t)

η(t)(∇Ωus(t) − ∇Ωul(t)) · μ. (2.7)

With e(t)η(t)∇Ω · w = ∇Ω · (e(t)η(t)w) − w · ∇Ω (e(t)η(t)) and the divergence theorem [17, §2.2],
∫T

0

∫
Ωs(t)

e(t)η(t)∇Ω · w =
∫T

0

∫
Γ (t)

e(t)η(t)w · μ +
∫T

0

∫
Ωs(t)

w · (e(t)η(t)νH − ∇Ω (e(t)η(t))).

We use this result in the formula for integration by parts over time over Ωs:
∫T

0

∫
Ωs(t)

η̇(t)e(t) =
∫T

0

d
dt

∫
Ωs(t)

e(t)η(t) −
∫T

0

∫
Ωs(t)

ė(t)η(t) −
∫T

0

∫
Γ (t)

e(t)η(t)w · μ

−
∫T

0

∫
Ωs(t)

e(t)η(t)w · νH +
∫T

0

∫
Ωs(t)

w · ∇Ω (e(t)η(t)).

A similar expression over Ωl can also be derived this way, the difference being that the term with
μ has the opposite sign. Then, using ė = ∂•(E(u)) = u̇, es(t)|Γ (t) = 0, and el(t)|Γ (t) = 1, we get

∫T

0

∫
Ω(t)

η̇(t)e(t) =
∫T

0

d
dt

∫
Ω(t)

e(t)η(t) −
∫T

0

∫
Ω(t)

u̇(t)η(t) +
∫T

0

∫
Γ (t)

η(t)w · μ

−
∫T

0

∫
Ω(t)

e(t)η(t)w · νH +
∫T

0

∫
Ω(t)

w · ∇Ω (e(t)η(t)). (2.8)

Since by the partial integration formula
∫

Ω(t) Di(g) = ∫
Ω(t) gHνi, we have (with g = wie(t)η(t)) that

the fourth term in the right-hand side of (2.8) is
∫
Ω(t)

e(t)η(t)w · νH =
∑

i

∫
Ω(t)

e(t)η(t)wiνiH =
∫
Ω(t)

∇Ω (e(t)η(t)) · w +
∫
Ω(t)

η(t)e(t)∇Ω · w,

so the calculation (2.8) becomes
∫T

0

∫
Ω(t)

η̇(t)e(t) =
∫T

0

(
d
dt

∫
Ω(t)

e(t)η(t) −
∫
Ω(t)

(u̇(t)η(t) + η(t)e(t)∇Ω · w) +
∫
Γ (t)

η(t)w · μ

)
. (2.9)
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Now, taking the weak formulation (1.3) and substituting (2.9) together with the expression for the
spatial term (2.7), we get for η with η(T) = η(0) = 0

∫T

0

∫
Ω(t)

f (t)η(t) = −
∫T

0

∫
Ω(t)

η̇(t)e(t) +
∫T

0

∫
Ω(t)

∇Ωu(t)∇Ωη(t)

=
∫T

0

∫
Ω(t)

(u̇(t) + e(t)∇Ω · w − �Ωu(t))η(t)

+
∫
Γ (t)

η(t)((∇Ωus(t) − ∇Ωul(t)) · μ − (w · μ)).

Taking η to be compactly supported in Qs, and afterwards taking η compactly supported in Ql,
we recover exactly the first two equations in (1.2). So we may drop the first integral on the left-
and the right-hand side. Then with a careful choice of η, we will obtain precisely the interface
condition in (1.2).

Lemma 2.13. Given ξ ∈ C1(Ω0) and α̃ ∈ C2([0, T] × Ω0) satisfying 0 < ε ≤ α ≤ α0 a.e., there exists a
unique solution ϕ ∈ W(H1, L2) with �Ωϕ ∈ L2

L2 to

ϕ̇ − α(x, t)�Ωϕ = 0

and ϕ(x, 0) = ξ (x)

}
(2.10)

satisfying ‖ϕ‖L∞
L∞ ≤ ‖ξ‖L∞(Ω0) and (cf. [21, ch. V, §9])

∫ t

0

∫
Ω(τ )

(ϕ̇(τ ))2 +
∫ t

0

∫
Ω(τ )

α|�Ωϕ|2 +
∫
Ω(t)

|∇Ωϕ(t)|2 ≤ (1 + α0)(1 + e2Cw(1+α0)t)
∫
Ω0

|∇Ωξ |2. (2.11)

Proof. Define the bilinear form a(t; ϕ, η) = ∫
Ω(t) α(x, t)∇Ωϕ∇Ωη + ∫

Ω(t) ∇Ωα(x, t)∇Ωϕη which

is clearly bounded and coercive on H1(Ω(t)). Split a(t; ·, ·) into the forms as(t; ϕ, η) :=∫
Ω(t) α(x, t)∇Ωϕ∇Ωη and an(t; ϕ, η) := ∫

Ω(t) ∇Ωα(x, t)∇Ωϕη. One sees that as(t; η, η) ≥ 0 and that

both an(t; ·, ·) : H1(Ω(t)) × L2(Ω(t)) → R and as(t; ·, ·) : H1(Ω(t)) × H1(Ω(t)) → R are bounded. Also,
letting χ t

j := φtχ
0
j , where χ0

j are the normalized eigenfunctions of −�Ω0 , we have for η ∈ C̃1
H1 :=

{u | u(t) =∑m
j=1 αj(t)χ t

j , m ∈ N, αj ∈ AC([0, T]) and α′
j ∈ L2(0, T)}

d
dt

as(t; η(t), η(t)) = 2as(t; η̇(t), η(t)) + r(t; η(t)),

where r is such that |r(t; η(t))| ≤ C‖η(t)‖2
H1(Ω(t)) (see [17, lemma 2.1]; note that α̃ ∈ C1([0, T]; C1(Ω0))

and thus α ∈ C1
H1 ). Hence by [6, theorem 3.13], we have the unique existence of ϕ ∈ W(H1, L2).

Rearranging equation (2.10) shows that α�Ωϕ ∈ L2
L2 . As α is uniformly bounded by positive

constants, it follows that �Ωϕ ∈ L2
L2 .

The L∞ bound. Let K := ‖ξ‖L∞(Ω0). Test the equation with (ϕ − K)+:

1
2

d
dt

‖(ϕ(t) − K)+‖2
L2(Ω(t)) +

∫
Ω(t)

α(t)∇Ω ((ϕ(t) − K)+)∇Ωϕ(t)

= 1
2

∫
Ω(t)

((ϕ(t) − K)+)2∇Ω · w −
∫
Ω(t)

∇Ωα(t)∇Ωϕ(t)(ϕ(t) − K)+

which becomes, through the use of Young’s inequality with δ,

1
2

d
dt

‖(ϕ(t) − K)+‖2
L2(Ω(t)) ≤

(
Cw

2
+ ‖∇Ωα‖L∞ Cδ

)
‖(ϕ(t) − K)+‖2

L2(Ω(t)).

An application of Gronwall’s inequality and noticing (ϕ(0) − K)+ = (ξ − ‖ξ‖L∞ )+ = 0 yields ϕ(t) ≤
‖ξ‖L∞(Ω0). Repeating this process with (−ϕ(t) − K)+ allows us to conclude.
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The inequality (2.11). Multiply equation (2.10) by �Ωϕ and integrate: formally,

∫ t

0

∫
Ω(τ )

α|�Ωϕ|2 = −
∫ t

0

∫
Ω(τ )

∇Ωϕ̇∇Ωϕ = −
∫ t

0

1
2

d
dτ

∫
Ω(τ )

|∇Ωϕ|2

+ 1
2

∫ t

0

∫
Ω(τ )

|∇Ωϕ|2∇Ω · w −
∫ t

0

∫
Ω(τ )

D(w)∇Ωϕ∇Ωϕ

≤ 1
2

∫
Ω0

|∇Ωξ |2 − 1
2

∫
Ω(t)

|∇Ωϕ(t)|2 + Cw

∫ t

0

∫
Ω(τ )

|∇Ωϕ|2. (2.12)

See [17, lemma 2.1] or [7] for the definition of the matrix D(w). This calculation is merely formal
because we have not shown that ϕ̇(t) ∈ H1(Ω(t)); however, the end result of the calculation is still
valid by lemma 2.14. We also have by squaring (2.10), integrating and using (2.12):

∫ t

0

∫
Ω(τ )

(ϕ̇(τ ))2 ≤ α0

∫ t

0

∫
Ω(τ )

α(�Ωϕ)2 ≤ α0

2

∫
Ω0

|∇Ωξ |2 + α0Cw

∫ t

0

∫
Ω(τ )

|∇Ωϕ|2.

Adding the last two inequalities then we obtain

∫ t

0

∫
Ω(τ )

(ϕ̇(τ ))2 +
∫ t

0

∫
Ω(τ )

α|�Ωϕ|2 + 1
2

∫
Ω(t)

|∇Ωϕ(t)|2

≤ 1 + α0

2

∫
Ω0

|∇Ωξ |2 + Cw(1 + α0)
∫ t

0

∫
Ω(τ )

|∇Ωϕ|2.

Gronwall’s inequality can be used to deal with the last term on the right-hand side. �

Lemma 2.14. With ϕ ∈ W(H1, L2) from the previous lemma, the following inequality holds:

∫ t

0

∫
Ω(τ )

α|�Ωϕ|2 ≤ 1
2

∫
Ω0

|∇Ωξ |2 − 1
2

∫
Ω(t)

|∇Ωϕ(t)|2 + Cw

∫ t

0

∫
Ω(τ )

|∇Ωϕ|2. (2.13)

Proof. Let C∞
H2 := {η | φ−(·)η(·) ∈ C∞([0, T]; H2(Ω0))}. We start with a few preliminary results.

Let us show C∞
H2 ⊂ W(H2, H1). Take η ∈ C∞

H2 so that η̃ ∈ C∞([0, T]; H2(Ω0)) ⊂W(H2, H1). By

smoothness of Φ
(·)
0 , it follows that η = φ(·)η̃ ∈ L2

H2 , and η̇ = ∂•(φ(·)η̃) = φ(·)(η̃′) ∈ L2
H1 because η̃′ ∈

C∞([0, T]; H2(Ω0)) ⊂ L2(0, T; H1(Ω0)). So η ∈ W(H2, H1).
Let us also prove that C∞

H2 ⊂ W(H2, L2) is dense. Let w ∈ W(H2, L2); then w̃ ∈W(H2, L2) since

w̃ ∈ L2(0, T; H2(Ω0)) by smoothness of Φ
(·)
0 and since w̃′ = φ−(·)ẇ ∈ L2(0, T; L2(Ω0)) (because ẇ ∈

L2
L2 ). By [22, lemma II.5.10], there exists w̃n ∈ C∞([0, T]; H2(Ω0)) with w̃n → w̃ in W(H2, L2). Then,

wn := φ(·)w̃n ∈ C∞
H2 (by definition) and

‖wn − w‖W(H2,L2) ≤ C(‖w̃n − w̃‖L2(0,T;H2(Ω0)) + ‖w̃′
n − w̃′‖L2(0,T;L2(Ω0))) → 0,

where we used the smoothness of Φ
(·)
0 and the reasoning behind assumption 2.37 of [6] (see also [6,

theorem 2.33]).
Given ϕ ∈ W(H2, L2), by the density result, there exists ϕn ∈ C∞

H2 ⊂ W(H2, H1) such that ϕn → ϕ

in W(H2, L2) with ϕn satisfying (2.13):

∫ t

0

∫
Ω(τ )

α|�Ωϕn|2 ≤ 1
2

∫
Ω0

|∇Ωϕn(0)|2 − 1
2

∫
Ω(t)

|∇Ωϕn(t)|2 + Cw

∫ t

0

∫
Ω(τ )

|∇Ωϕn|2. (2.14)

We know that ϕ̃n → ϕ̃ in W(H2, L2) (this is just how we construct the sequence ϕn; see above), and
W(H2, L2) ↪→ C0([0, T]; H1(Ω0)) [22, lemma II.5.14] implies ϕn(t) → ϕ(t) in H1(Ω(t)). Now we can
pass to the limit in every term in (2.14). �
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3. Well posedness
We can approximate E by C∞ bi-Lipschitz functions Eε such that (e.g. [12,13])

Eε → E uniformly in the compact subsets of R\{0},
E−1

ε → E−1 uniformly in the compact subsets of R,

Eε(0) = 0 and Eε = E on (−∞, 0) ∪ (ε, ∞),

1 ≤ E ′
ε(r) ≤ 1 + Lε and (1 + Lε)−1 ≤ (E−1

ε (r))′ ≤ 1 for all r ∈ R

(where Lε =O(1/ε) is the Lipschitz constant of the approximation to the Heaviside function). We
write U := E−1 and Uε := E−1

ε . In order to prove theorem 1.3, that of the well posedness of L∞
weak solutions given bounded data, we consider the following approximation of (1.1).

Definition 3.1. Find for each ε > 0 a function eε ∈ W(H1, H−1) such that

∂•eε − �Ω (Uεeε) + eε∇Ω · w = f in L2
H−1

and eε(0) = e0.

}
(Pε)

Theorem 3.2. Given f ∈ L2
H−1 and e0 ∈ L2(Ω0), the problem (Pε) has a weak solution eε ∈ W(H1, H−1).

Proof. Using the chain rule on the nonlinear term leads us to consider for fixed w ∈ W(H1, H−1)

〈∂•(Sw), η〉L2
H−1 ,L2

H1
+ (U ′

ε(w)∇Ω (Sw), ∇Ωη)L2
L2

+ (Sw, η∇Ω · w)L2
L2

= 〈f , η〉L2
H−1 ,L2

H1

and Sw(0) = e0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(P(w))

If S denotes the solution map of (P(w)) that takes w �→ Sw, then we seek a fixed point of S. First,
note that, since the bilinear form involving the surface gradients is bounded and coercive, the
solution Sw ∈ W(H1, H−1) of (P(w)) does indeed exist by [6, theorem 3.6], and, moreover, it satisfies
the estimate

‖Sw‖W(H1,H−1) ≤ C(‖f‖L2
H−1

+ ‖u0‖L2(Ω0)) =: C∗, (3.1)

where the constant C does not depend on w because U ′
ε(w(t)) is uniformly bounded from below

(in w). Then the set E := {w ∈ W(H1, H−1) | w(0) = e0, ‖w‖W(H1,H−1) ≤ C∗}, which is a closed, convex
and bounded subset of X := W(H1, H−1), is such that S(E) ⊂ E by (3.1). We now show that S is
weakly continuous. Let wn ⇀ w in W(H1, H−1) with wn ∈ E. From the estimate (3.1), we know that
Swn is bounded in W(H1, H−1), so for a subsequence

Swnj ⇀ χ in W(H1, H−1)

and

Swnj → χ in L2
L2

by the compact embedding of lemma 2.9. Now we show that χ = Sw. Due to W(H1, H−1) ↪→ C0
L2 ,

Swnj ⇀ χ in C0
L2 . This implies Swnj (0) ⇀ χ (0) in L2(Ω0) (to see this consider for arbitrary f ∈ L2(Ω0)

the functional G ∈ (C0
L2 )∗ defined by G(un) = ∫

Ω0
fun(0)). As Swnj (0) = e0, it follows that

χ (0) = e0. (3.2)

On the other hand, as wn are weakly convergent in W1(H1, H−1), they are bounded in the

same space. Now, W(H1, H−1)
c

↪−→ L2
L2 , hence wn → w in L2

L2 . It follows that the subsequence
wnj → w in L2

L2 too, and so there is a subsequence such that, for almost every t ∈ [0, T], wnjk
(t) →

w(t) a.e. in Ω(t). By continuity, for a.a. t, U ′
ε(wnjk

(t))∇Ωη(t) → U ′
ε(w(t))∇Ωη(t) a.e., and also we

have |U ′
ε(wnjk

)∇Ωη| ≤ |∇Ωη| with the right-hand side in L2
L2 . Thus, we can use the dominated
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convergence theorem (theorem 2.10), which tells us that U ′
ε(wnjk

)∇Ωη → U ′
ε(w)∇Ωη in L2

L2 . Now
we pass to the limit in the equation (P(w)) with w replaced by wnjk

to get

∫T

0
〈∂•χ (t), η(t)〉 +

∫
Ω(t)

U ′
ε(w(t))∇Ωχ (t)∇Ωη(t) +

∫
Ω(t)

χ (t)η(t)∇Ω · w =
∫T

0
〈f (t), η(t)〉,

which, along with (3.2), shows that χ = S(w), so Swnj ⇀ S(w). However, we have to show that
the whole sequence converges, not just a subsequence. Let xn = S(wn) and equip the space X =
W(H1, H−1) with the weak topology. Let xnm = S(wnm ) be a subsequence. By the bound of S, it
follows that xnm is bounded, hence it has a subsequence such that

xnml
⇀ x∗ in X and xnml

→ x∗ in L2
L2 .

By similar reasoning as before, we identify x∗ = S(w), and theorem 3.3 tells us that indeed xn =
S(wn) ⇀ S(w). Then by the Schauder–Tikhonov fixed point theorem [23, theorem 1.4, p. 118], S has
a fixed point. �

Theorem 3.3. Let xn be a sequence in a topological space X such that every subsequence xnj has a
subsequence xnjk

converging to x ∈ X. Then the full sequence xn converges to x.

(a) Uniform estimates
We set uε = Uε(eε). Below we denote by M a constant such that ‖u0‖L∞(Ω0) ≤ M.

Lemma 3.4. The following bound holds independent of ε :

‖uε‖L∞
L∞ + ‖Eε(uε)‖L∞

L∞ ≤ 2e‖∇Ω ·w‖∞T(T‖f‖L∞
L∞ + ‖u0‖L∞(Ω0) + 1) + 1.

Proof. We substitute w(t) = e−λteε(t) in (Pε) and use ∂•(eλtw(t)) = λeλtw(t) + eλtẇ(t) to get

ẇ(t) − e−λt�Ω (Uε(eλtw(t))) + λw(t) + w(t)∇Ω · w = e−λtf (t).

Let α = ‖f‖L∞
L∞ and β = ‖e0‖L∞(Ω0) and define v(t) = αt + β. Note that v̇(t) = α and v(0) = β.

Subtracting v̇(t) from the above and testing with (w(t) − v(t))+, we get

〈ẇ(t) − v̇(t), (w(t) − v(t))+〉H−1(Ω(t)),H1(Ω(t))

+
∫
Ω(t)

e−λt∇Ω (Uε(eλtw(t)))∇Ω (w(t) − v(t))+ +
∫
Ω(t)

(λ + ∇Ω · w)w(t)(w(t) − v(t))+

=
∫
Ω(t)

(e−λtf (t) − α)(w(t) − v(t))+. (3.3)

Note that e−λt∇Ω (Uε(eλtw(t)))∇Ω (w(t) − v(t))+ = U ′
ε(eλtw(t))|∇Ω (w(t) − v(t))+|2 because ∇Ωv(t) =

0. Set λ := ‖∇Ω · w‖L∞ , then the last term on the left-hand side of (3.3) is non-negative because, if
w > v, w > 0 since v ≥ 0. So we can throw away that and the gradient term to find

〈ẇ(t) − v̇(t), (w(t) − v(t))+〉H−1(Ω(t)),H1(Ω(t)) ≤
∫
Ω(t)

(e−λtf (t) − α)(w(t) − v(t))+.

Integrating this and using lemma 2.11, we find

1
2

∫
Ω(T)

((w(t) − v(t))+)2 ≤ 1
2
‖∇Ω · w‖

∫T

0

∫
Ω(t)

((w(t) − v(t))+)2

as e−λtf (t) − α = e−λtf (t) − ‖f (t)‖L∞(Ω(t)) ≤ 0 and w(0) − v(0) = e0 − ‖e0‖L∞(Ω0) ≤ 0. The use of
Gronwall’s inequality gives w(t) ≤ T‖f‖L∞

L∞ + (1 + M) almost everywhere on Ω(t). So we have
shown that for all t ∈ [0, T]\N1, w(t, x) ≤ C for all x ∈ Ω(t)\Mt

1, where μ(N1) = μ(Mt
1) = 0. A similar

argument yields for all t ∈ [0, T]\N2, w(t, x) ≥ −C for all x ∈ Ω(t)\Mt
2, where μ(N2) = μ(Mt

2) = 0.
Taking these statements together tells us that for all t ∈ [0, T]\N, |w(t, x)| ≤ C on Ω(t)\Mt, where
N = N1 ∪ N2 and Mt = Mt

1 ∪ Mt
2 have measure zero. This gives ‖w‖L∞

L∞ ≤ T‖f‖L∞
L∞ + (1 + M).
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From this and uε = Uε(eλ(·)w(·)) ≤ eλT|w|, we obtain the bound on uε . The bound on Eε(uε) follows
from Eε(uε) ≤ 1 + |uε |. �

Lemma 3.5. The following bound holds independent of ε :

‖∇Ωuε‖L2
L2

+ ‖∂•(Eεuε)‖L2
H−1

≤ C(T, Ω , M, w, f ). (3.4)

Proof. Testing with Eε(uε) in (Pε), using ∇Ωuε∇Ω (Eε(uε)) = (Eε)′(uε)|∇Ωuε |2 ≥ |∇Ωuε |2, integrating
over time and using the previous estimate, we find

1
2
‖Eε(uε(T))‖2

L2(Ω(T)) +
∫T

0

∫
Ω(t)

|∇Ωuε(t)|2 ≤ 1
2

(1 + M)2|Ω0| + C1(T, M, w, f ).

The bound on the time derivative follows by taking supremums. See the electronic supplementary
material, S10, for more details. �

Lemma 3.6. Define ũε = φ−(·)uε . The following limit holds uniformly in ε :

lim
h→0

∫T−h

0

∫
Ω0

|ũε(t + h) − ũε(t)| = 0.

Proof. We follow the proof of theorem A.1 in [8] here. Fix h ∈ (0, T) and consider

∫T−h

0
(Eε(ũε(t + h)) − Eε(ũε(t)), ũε(t + h) − ũε(t))L2(Ω0) dt

=
∫T−h

0

∫ t+h

t

d
dτ

(Eε(ũε(τ )), ũε(t + h) − ũε(t))L2(Ω0) dτ dt

≤
√

h‖(Eε(ũε))′‖L2(0,T;H−1(Ω0))

∫T−h

0
(‖ũε(t + h)‖H1(Ω0) + ‖ũε(t)‖H1(Ω0)) dt

≤ C1(T, Ω , M, w, f )
√

h‖(Eε(ũε))′‖L2(0,T;H−1(Ω0)) (by the uniform estimates)

≤ C2(T, Ω , M, w, f )
√

h‖∂•(Eε(uε))‖L2
H−1

(see the proof of theorem 2.33 in [6])

≤ C3(T, Ω , M, w, f )
√

h, (3.5)

with the last inequality by (3.4). Now, as the U ′
ε are uniformly bounded above, they are uniformly

equicontinuous. Therefore, for fixed δ, there is a σδ (depending solely on δ) such that

if |y − z| < σδ , then |Uε(y) − Uε(z)| < δ for any ε. (3.6)

So in the set {|ũε(t + h) − ũε(t)| > δ} = {|Uε(Eε(ũε(t + h))) − Uε(Eε(ũε(t)))| > δ}, we must have
|Eε(ũε(t + h)) − Eε(ũε(t))| ≥ σδ (this is the contrapositive of (3.6)). This implies from (3.5) that

∫T−h

0

∫
Ω0

|ũε(t + h) − ũε(t)|χ{|ũε (t+h)−ũε (t)|>δ} ≤ C3
√

h
σδ

.

Writing Id = χ{|ũε (t+h)−ũε (t)|>δ} + χ{|ũε (t+h)−ũε (t)|≤δ}, note that

∫T−h

0

∫
Ω0

|ũε(t + h) − ũε(t)| ≤
∫T−h

0

∫
Ω0

|ũε(t + h) − ũε(t)|χ{|ũε (t+h)−ũε (t)|>δ} + δ|Ω0|(T − h)

≤ C3
√

h
σδ

+ δ|Ω0|T.

Taking the limit as h → 0, using the arbitrariness of δ > 0 and the fact that the right-hand side of
the above does not depend on ε gives us the result. �
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(b) Existence of bounded weak solutions
With all the uniform estimates acquired, we can extract (weakly) convergent subsequences. In
fact, we find (we have not relabelled subsequences)

uε → u in Lp
Lq for any p, q ∈ [1, ∞),

∇Ωuε ⇀ ∇Ωu in L2
L2

and Eε(uε) ⇀ χ in L2
L2 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7)

where only the first strong convergence listed requires an explanation. Indeed, the point is to

apply [24, theorem 5] with H1(Ω0)
c

↪−→ L1(Ω0) ⊂ L1(Ω0), which gives us a subsequence ũεj → ρ̃

strongly in L1(0, T; L1(Ω0)). It follows that uεj → ρ in L1
L1 , whence, for a.a. t, uεjk

(t) → ρ(t) a.e. in
Ω(t). We also know that, for a.a. t, |uεjk

(t)| ≤ C a.e. in Ω(t) by lemma 3.4, and so, for a.a. t, the limit

satisfies |ρ(t)| ≤ C a.e. in Ω(t) too. By theorem 2.10, uεjk
→ ρ in Lp

Lq for all p, q ∈ [1, ∞). As uεjk
⇀ u

(subsequences have the same weak limit), it must be the case that ρ = u.

Proof of theorem 1.3. In (Pε), we can test with a function η ∈ W(H1, L2) with η(T) = 0, integrate by
parts and then pass to the limit to obtain

−
∫T

0

∫
Ω(t)

η̇(t)χ (t) +
∫T

0

∫
Ω(t)

∇Ωu(t)∇Ωη(t) =
∫T

0

∫
Ω(t)

f (t)η(t) +
∫
Ω0

e0η(0)

and it remains to be seen that χ ∈ E(u) or equivalently u = U(χ ). By monotonicity of Eε , we have
for any w ∈ L2

L2 ∫T

0

∫
Ω(t)

(Eε(uε) − w)(uε − Uε(w)) ≥ 0.

Because Uε → U uniformly, for a.a. t, Uε(w(t)) → U(w(t)) a.e. in Ω(t), and |Uε(w)| ≤ |w|, and the
dominated convergence theorem shows that Uε(w) → U(w) in L2

L2 . Using this and (3.7), we can
easily pass to the limit in this inequality and obtain

∫T

0

∫
Ω(t)

(χ − w)(u − Uw) ≥ 0 for all w ∈ L2
L2 .

By Minty’s trick we find u = U(χ ); see the electronic supplementary material, S11, for more
details. To see why χ ∈ L∞

L∞ , we have from the estimate in lemma 3.4 that, for a.a. t ∈ [0, T],

‖Eε(ũε(t))‖L∞(Ω0) ≤ C, giving Eε(ũε(t))
∗
⇀ ζ̃ (t) in L∞(Ω(t)) and (by weak-* lower semi-continuity)

‖ζ̃ (t)‖L∞(Ω(t)) ≤ C for a.a. t, and we just need to identify ζ̃ ∈ E(ũ). It follows from (3.7) that
Eε(uε) → χ in L2

H−1 by Lions–Aubin, and so, for a.e. t and for a subsequence (not relabelled),
Eε(uε(t)) → χ (t) in H−1(Ω(t)). This allows us to conclude that χ = ζ (the weak-* convergence of
Eε(ũε(t)) to ζ̃ (t) also gives weak convergence in any Lp(Ω(t)) to the same limit). �

(c) Continuous dependence and uniqueness of bounded weak solutions
The next lemma, which has an extended proof in the electronic supplementary material, S12,
allows us to drop the requirement for our test functions to vanish at time T.

Lemma 3.7. If (u, e) is a bounded weak solution (satisfying (1.3)), then (u, e) also satisfies
∫
Ω(T)

e(T)η(T) −
∫T

0

∫
Ω(t)

η̇(t)e(t) +
∫T

0

∫
Ω(t)

∇Ωu(t)∇Ωη(t) =
∫T

0

∫
Ω(t)

f (t)η(t) +
∫
Ω0

e0η(0)

for all η ∈ W(H1, L2).

Proof. To see this, for s ∈ (0, T], consider the function χε,s(t) = min(1, ε−1(s − t)+) which has
a weak derivative χ ′

ε,s(t) = −ε−1χ(s−ε,s)(t). Take the test function in (1.3) to be χε,Tη, where
η ∈ W(H1, L2), send ε → 0 and use the Lebesgue differentiation theorem. �
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We can finally prove theorem 1.4. See the electronic supplementary material, S13–S16, for
additional comments on the proof.

Proof of theorem 1.4. We can prove the continuous dependence as in [21, ch. V, §9]. As explained
in lemma 3.7, we drop the requirement η(T) = 0 in our test functions and we now suppose that
�Ωη ∈ L2

L2 . Suppose for i = 1, 2 that (ui, ei) is the solution to the Stefan problem with data (fi, ui
0), so

∫
Ω(t)

(ei(t) − e2(t))η(t) −
∫ t

0

∫
Ω(τ )

η̇(τ )(e1(τ ) − e2(τ )) −
∫ t

0

∫
Ω(τ )

(u1(τ ) − u2(τ ))�Ωη(τ )

=
∫ t

0

∫
Ω(τ )

(f1(τ ) − f2(τ ))η(τ ) +
∫
Ω0

(e1
0 − e2

0)η(0). (3.8)

Define a = (u1 − u2)/(e1 − e2) when e1 �= e2 and a = 0 otherwise, and note that 0 ≤ a(x, t) ≤ 1. Let ηε

solve in
⋃

τ∈(0,t){τ } × Ω(τ ) the equation

∂•
τ ηε(τ ) + (aε(x, τ ) + ε)�Ωηε(τ ) = 0

and ηε(t) = ξ on Ω0

}
(3.9)

with ξ ∈ C1(Ω0) and where aε satisfies φ−(·)aε ∈ C2([0, T] × Ω0) and 0 ≤ aε ≤ 1 a.e. and ‖aε −
a‖L2(Q) ≤ ε. This is well posed by lemma 2.13. Equation (3.8) can be written in terms of aε , and
if we choose η = ηε and use (3.9), we find

∫
Ω(t)

(e1(t) − e2(t))ξ ≤ ‖e1 − e2‖L∞
L∞

∫ t

0

∫
Ω(τ )

(|a(x, τ ) − aε(x, τ )| + ε)|�Ωηε(τ )|

+ ‖ξ‖L∞(Ω0)

∫ t

0
‖f1(τ ) − f2(τ )‖L1(Ω(τ )) + ‖ξ‖L∞(Ω0)

∫
Ω0

|e1
0 − e2

0| (3.10)

using the L∞ bound from lemma 2.13. We can estimate the first integral on the right-hand side:

∫ t

0

∫
Ω(τ )

|a(x, τ ) − aε(x, τ )||�Ωηε(τ )| ≤ √
ε‖a − aε‖L2

L2

√
(2 + ε)(1 + e2Cw(2+ε)t)‖∇Ωξ‖L2(Ω0)

and ∫ t

0

∫
Ω(τ )

|ε�Ωηε | ≤
√

t|Ω|ε(2 + ε)(1 + e2Cw(2+ε)t)
(∫

Ω0

|∇Ωξ |2
)1/2

by the results in lemma 2.13. Sending ε → 0 in (3.10) gives us (recalling ξ ≤ 1)

∫
Ω(t)

(e1(t) − e2(t))ξ ≤
∫ t

0
‖f1(τ ) − f2(τ )‖L1(Ω(τ )) + ‖e1

0 − e2
0‖L1(Ω0).

Now pick ξ = ξn, where ξn(x) → sign(e1(t, x) − e2(t, x)) ∈ L2(Ω(t)) a.e. in Ω(t). �

(d) Well posedness of weak solutions
Proof of theorem 1.5. Suppose (e0, f ) ∈ L1(Ω0) × L1

L1 are data and consider functions e0n ∈ L∞(Ω0)
and fn ∈ L∞

L∞ satisfying

(fn, e0n) → (f , e0) in L1
L1 × L1(Ω0).

The existence of fn holds because, by density, there exist f̃ n ∈ C0([0, T] × Ω0) such that f̃ n → f̃ in
L1((0, T) × Ω0) ≡ L1(0, T; L1(Ω0)). Denote by (un, en) the respective (bounded weak) solutions to
the Stefan problem with the data (e0n, fn). By virtue of these solutions satisfying the continuous
dependence result, it follows that {en}n is a Cauchy sequence in L1

L1 and thus en → χ in L1
L1 for

some χ . Recall that |un| = |U(en)| ≤ |en|, so, by consideration of an appropriate Nemytskii map,
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we find un = U(en) → U(χ ). Now we can pass to the limit in

−
∫T

0

∫
Ω(t)

η̇(t)en(t) −
∫T

0

∫
Ω(t)

un(t)�Ωη(t) =
∫T

0

∫
Ω(t)

fn(t)η(t) +
∫
Ω0

en0η(0)

and doing so gives

−
∫T

0

∫
Ω(t)

η̇(t)χ (t) −
∫T

0

∫
Ω(t)

U(χ (t))�Ωη(t) =
∫T

0

∫
Ω(t)

f (t)η(t) +
∫
Ω0

e0η(0);

overall this shows that there exists a pair (χ , E−1(χ )) ∈ L1
L1 × L1

L1 which is a weak solution of the
Stefan problem. For these integrals to make sense, we need η ∈ W1(L∞ ∩ H2, L∞) with �Ωη ∈ L∞

L∞ .
Now suppose that (u1, e1) and (u2, e2) are two weak solutions of class L1 to the Stefan

problem with data ( f 1, e1
0) and ( f 2, e2

0) in L1
L1 × L1(Ω0), respectively. We know that there exist

approximations ( f 1
n , e1

0n), ( f 2
n , e2

0n) ∈ L∞
L∞ × L∞(Ω0) of the data satisfying

( f 1
n , e1

0n) → ( f 1, e1
0) and ( f 2

n , e2
0n) → ( f 2, e2

0) in L1
L1 × L1(Ω0).

These approximate data give rise to the approximate solutions e1
n and e2

n, both of which are
elements of L∞

L∞ . It follows from above that e1
n → e1 and e2

n → e2 in L1
L1 . Now consider the

continuous dependence result that e1
n and e2

n satisfy:

‖e1
n − e2

n‖L1
L1

≤ T(‖f 1
n − f 2

n ‖L1
L1

+ ‖e1
0n − e2

0n‖L1(Ω0)). (3.11)

Regarding the right-hand side, by writing e1
0n − e2

0n = e1
0n − e1

0 + e1
0 − e2

0 + e2
0 − e2

0n (and similarly
for the f i

n) and using triangle inequality, along with the fact that e1
n − e2

n → e1 − e2 in L1
L1 , we can

take the limit in (3.11) as n → ∞ and we are left with what we desired. �

Funding. A.A. was supported by the Engineering and Physical Sciences Research Council (EPSRC) grant no.
EP/H023364/1 within the MASDOC Centre for Doctoral Training.
Acknowledgements. This work was initiated at the Isaac Newton Institute in Cambridge, UK during the Free
Boundary Problems and Related Topics programme (January–July 2014). The authors are grateful to the referees
for their useful feedback and encouragement.

References
1. Elliott CM, Ockendon JR. 1982 Weak and variational methods for moving boundary problems.

Research Notes in Mathematics, no. 59. Boston, MA: Pitman.
2. Friedman A. 1982 Variational principles and free-boundary problems. New York, NY: John Wiley

and Sons, Inc.
3. Meirmanov AM. 1992 The Stefan problem. Translated from the Russian by Marek Niezgódka

and Anna Crowley. de Gruyter Expositions in Mathematics, 3. Berlin, Germany: Walter de
Gruyter and Co.

4. Rodrigues J-F. 1987 Obstacle problems in mathematical physics. North-Holland Mathematics
Studies, no. 134. Amsterdam, The Netherlands: North-Holland Publishing Co.

5. Brézis H. 1973 Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces
de Hilbert. North-Holland Mathematics Studies, no. 5. Amsterdam, The Netherlands: North-
Holland Publishing Co.

6. Alphonse A, Elliott CM, Stinner B. 2015 An abstract framework for parabolic PDEs on
evolving spaces. Port. Math. 72, 1–46. (doi:10.4171/PM/1955)

7. Alphonse A, Elliott CM, Stinner B. In press. On some linear parabolic PDEs on moving
hypersurfaces. Interfaces Free Bound.

8. Blanchard D, Porretta A. 2005 Stefan problems with nonlinear diffusion and convection.
J. Differ. Equ. 210, 383–428. (doi:10.1016/j.jde.2004.06.012)

9. Friedman A. 1968 The Stefan problem in several space variables. Trans. Am. Math. Soc. 133,
51–87. (doi:10.1090/S0002-9947-1968-0227625-7)

10. Kamenomostskaja SL. 1961 On Stefan’s problem. Mat. Sb. (N.S.) 53, 489–514.
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