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The community matrix measures the direct effect of species on each other in an

ecological community. It can be used to determine whether a system is stable

(returns to equilibrium after small perturbations of the population abun-

dances), reactive (perturbations are initially amplified before damping out),

and to determine the response of any individual species to perturbations of

environmental parameters. However, several studies show that small errors

in estimating the entries of the community matrix translate into large errors

in predicting individual species responses. Here, we ask whether there are

properties of complex communities one can still predict using only a crude,

order-of-magnitude estimate of the community matrix entries. Using empiri-

cal data, randomly generated community matrices, and those generated by

the Allometric Trophic Network model, we show that the stability and reactiv-

ity properties of systems can be predicted with good accuracy. We also provide

theoretical insight into when and why our crude approximations are expected

to yield an accurate description of communities. Our results indicate that even

rough estimates of interaction strengths can be useful for assessing global

properties of large systems.
1. Introduction
Ecological communities can be modelled through a set of deterministic differen-

tial equations keeping track of population growth as a function of the (biotic and

abiotic) environment. One central question in the study of communities is their

stability [1]: when perturbing the population abundances slightly, does the com-

munity tend to return to its original state? This question naturally follows from the

fact that, in nature, populations undergo constant perturbations, which they have

to withstand to avoid extinction. Mathematically, a community equilibrium is

locally stable if the Jacobian matrix, evaluated at that equilibrium, has eigenvalues

with all negative real parts.

The Jacobian evaluated at an equilibrium point is called the community

matrix [1,2], whose (i,j )th entry measures the change in the total population

growth rate of species i in response to a (small) change in species j’s abundance,

in units of inverse time. This matrix has many useful properties in addition to

determining local stability. For instance, a stable equilibrium is reactive [3,4] if

perturbations, before damping, are initially amplified in a transient manner.

Reactivity is measured by the leading eigenvalue of the Hermitian part of the

community matrix, with positive values signalling reactive systems. In

addition, the inverse community matrix can be used to determine the response

of any species in the community to perturbations of the environment (i.e. not

the abundances) via a community-wide sensitivity formula [5–10].

However, studies have revealed [7,11–13] that even small uncertainties in esti-

mating the entries of the community matrix translate into large errors of prediction.

The problem is that small perturbations to the matrix can have large effects on the

inverse matrix, to the point where even the directionality of the species’ responses

to environmental perturbations are predicted erroneously. Since the eigenvalues of

the inverse matrix are the inverses of the eigenvalues, we do not expect the inverse
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matrix to be ill-behaved as long as all eigenvalues are far from

the origin of the complex plane. But problems arise when

some eigenvalues are close to zero: then the slightest error

in measurement may lead to qualitatively different outcomes.

Suppose the leading eigenvalue of a community matrix is

(20.01+0.02)/year; its inverse is then either smaller than

233.3 years, or larger than 100 years. A slight measurement

error can make the difference in whether the inverse matrix is

deemed to have a large negative or a large positive eigenvalue.

We do not know for certain whether community matrices of

large natural systems possess eigenvalues that are close to

zero, but a heuristic argument can be made that this is indeed

the case based on the shape of the species-abundance curve

[14], which shows that rare species are always overrepresented

in natural communities. Since even small perturbations of the

abundances could knock such rare species to extinction, the

system must lie close to a transcritical bifurcation, meaning

that some eigenvalues are necessarily very close to zero.

In large systems, it is already logistically impossible to

measure every pairwise interaction (a community of 100

species with connectance 0.1 has 1000), let alone doing so

with high accuracy. This fact, combined with the above argu-

ment, seems to imply the futility of relying on the ‘inverse

problem’ to obtain species’ responses to environmental per-

turbations. What one can do, however—and this is the

focus of our work—is to use imperfect information about

the system to estimate properties that do not rely on inverting

the community matrix, such as stability and reactivity.

By avoiding the matrix inversion, small errors no longer

translate into large ones, and so even crude estimates may

provide useful information about a system.

Here we ask how well one can approximate the eigen-

value distribution of community matrices based on only an

order-of-magnitude knowledge of interaction coefficients.

Even though accurate measurement of all matrix entries is

impossible, ecologists with extensive field experience can fre-

quently rely on their intuition to classify interactions as

‘strong’ or ‘weak’. We assume that the magnitude of the

strongest interactions are known (reasoning that, since they

are strong, they are the most likely to be noticed and possibly

the easiest to measure), and coarse-grain each matrix entry

into bins, based on their relative magnitudes in comparison

to the strongest interactions. We show that the eigenvalue

structure of complex community matrices can be captured

well using this procedure, and therefore such qualitative

information can be used to approximate system properties

not relying on the inverse.

Below, after describing how we construct approximate

matrices using imperfect data, we show how this procedure

works on empirical datasets. We then apply the procedure to

matrices that are randomly generated, as well as those gener-

ated by the Allometric Trophic Network model [15]. We then

go on to give a theoretical justification to our method, building

on the theory of random matrices [16] and pseudospectra [17].

We end by discussing the limitations of our approach and

its relevance for the classic stability–complexity debate in

community ecology.
2. Constructing approximate matrices
We are given a community matrix A, and we would like to

know its eigenvalues, but information on A’s entries is
limited. Quantitatively, we assume we know only the magni-

tudes of the largest positive and negative entry (denoted by p
and n, respectively), and the zero entries of A, i.e. we know

which interactions are absent. Apart from this quantitative

information, we assume a qualitative knowledge of all

other matrix entries: based on expert opinion or other indirect

information, we know whether a given entry is strong or

weak compared to n and p. Based on this, we assign numeri-

cal bins into which the entries of A will be lumped. Let B
denote this binned approximation to A. We ask how well

the spectrum of B approximates that of A.

We thus need to specify a binning procedure. First, we

choose a number of bins. We then assign numerical values to

these bins. Finally, each entry of B is set to the value of the

bin closest to the value of the corresponding entry in A. For a

given binning, we use the notation

ðx1, x2, . . . , xkÞ,

meaning that the first bin goes from x1 to halfway between x1

and x2, the second goes from halfway between x1 and x2 to half-

way between x2 and x3, and so on, until the last bin going from

halfway between xk21 and xk to xk. As an example, consider

the matrix

A ¼

7:8 6:7 3:7 �1:2
�7:5 2:6 �7:4 0
�10:0 �6:9 0:4 5:8

0 0 10:0 �8:7

0
BB@

1
CCA:

Its strongest negative entry is n ¼ 210; its strongest positive

entry is p ¼ 10. If we now decide to construct B using three

bins with values (n, 0, p), we get

A ¼

7:8 6:7 3:7 �1:2
�7:5 2:6 �7:4 0
�10:0 �6:9 0:4 5:8

0 0 10:0 �8:7

0
BB@

1
CCA )

B ¼

10 10 0 0
�10 0 �10 0
�10 �10 0 10

0 0 10 �10

0
BB@

1
CCA:

In principle, the choice for the number of bins and their

values is arbitrary. Here we consider the following, more

specific procedure. Let the number of bins be k � 3 an odd

integer. Let us specify a binning resolution constant b
whose powers help define the bins; in effect, b fixes the defi-

nition of an order of magnitude. The k bins are then given by

ðn, nb�1, nb�2, . . . , nb�ðk�1Þ=2, 0, pb�ðk�1Þ=2, . . . , pb�2, pb�1, pÞ:

Using our previous example for A, we can bin A with k ¼ 5

and binning resolution b ¼ 10. Since n ¼ 210 and p ¼ 10,

the bins are (210, 21, 0, 1, 10):

A ¼

7:8 6:7 3:7 �1:2
�7:5 2:6 �7:4 0
�10:0 �6:9 0:4 5:8

0 0 10:0 �8:7

0
BB@

1
CCA )

B ¼

10 10 1 �1
�10 1 �10 0
�10 �10 0 10

0 0 10 �10

0
BB@

1
CCA:

Our scheme for binning matrix entries involves exponen-

tially shrinking bin sizes. Any number of other schemes may

be implemented—e.g. linear binning, where adjacent bins are
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equally spaced. The reason for choosing the exponential scheme

is that there is both theoretical [18] and empirical [19] evidence

that the interaction strengths in large ecological networks

follow a distribution close to lognormal. Therefore, the expo-

nential binning strategy is expected to yield better resolution

of the underlying data than a linear one. This is not to say

that different binning schemes are not better suited to different

problems. However, regardless of the problem at hand, one

should make sure that the procedure does not depend on the

particular choice of units the matrix entries are expressed in,

which means that the procedure should only be sensitive to

the relative magnitudes of the matrix entries, not their actual

numerical values which are unit-dependent. The exponential

scheme obviously satisfies this requirement.
1
Let A be a normalized matrix, with entries having zero mean and unit var-

iance. Denote its eigenvalues by lA and their variance by Var(lA). Now let

B ¼ aA with a . 0 a scaling constant. B’s entries then have zero mean and var-

iance a2, its eigenvalues are lB ¼ alA, and their variance is Var(lB) ¼

Var(alA) ¼ a2Var(lA). In other words, increasing/decreasing the variance of

the matrix entries increases/decreases the variance of the eigenvalues as well.

Interface
12:20150218
3. Exploratory analysis: some empirical datasets
We show the eigenvalues (red dots) of community matrices

from nine different empirical interaction webs in figure 1,

parametrized using allometric scaling relationships [18].

These matrices were binned with b ¼ 4, k ¼ 7; the eigenvalues

of the binned matrices (blue circles) are also shown. The

number of species in each web is indicated in the panel titles.

To interpret the eigenvalue distributions correctly, note the

scale discrepancy between the real and imaginary axes.

The spectra of the binned matrices capture general features

of the original ones, such as a larger bulk of eigenvalues

near the origin of the complex plane, and semicircular arcs

composed of a handful of eigenvalues protruding from this

bulk towards the left half plane. More quantitatively, one

may consider the Kolmogorov–Smirnov distance (a number

between 0 and 1, corresponding to the maximum vertical

distance between two empirical cumulative distribution func-

tions) between the original and binned matrices’ eigenvalue

distributions as a measure of how well the distributions

approximate each other. Since the Kolmogorov–Smirnov

distance is defined for univariate samples, we consider the dis-

tance between the real and the imaginary parts of the

eigenvalues separately. Their numerical values are shown in

the panel insets of figure 1 (top two lines).

From the point of view of local stability, the leading

eigenvalue (that with the largest real part) is of crucial impor-

tance: the sign of the real part of this eigenvalue determines

whether the system is stable (negative) or unstable (positive).

We consider the difference between the leading eigenvalues

of the binned and original matrices to see how well it is cap-

tured. However, the raw difference itself is not informative,

since the numerical value of this eigenvalue difference

simply depends on the choice of units we measure the

matrix entries in. A better question is how well the leading

eigenvalue of the original matrix is approximated compared

to the total spread of the eigenvalues; that is, can we say

that the leading eigenvalue of the binned matrix is close to

that of the original one, compared to the total range of the

real parts of all the eigenvalues of the original matrix?

These values are included in the panels under ‘D(Re)’. We

can see that, for the datasets presented, the binning approxi-

mation always errs on the conservative side, overestimating

the actual leading eigenvalue. This conservatism is due to

the fact that our method of matrix binning include both lar-

gest entries of the matrices as bins, and also the zero bin.

The binning procedure will lump several entries into these
extreme bin values. Therefore, the variance of the entries of

the binned matrix will in general exceed that of the original

matrix, which leads to a higher variance in the eigenvalue

distribution as well.1

Note that none of the matrices in figure 1 are stable. This

is because the empirical studies which they are based on only

document trophic links, with no data on self-interactions.

Owing to this lack of information, we set all diagonal entries

to zero. However, since the sum of the diagonal entries of a

matrix is also the sum of its eigenvalues, such matrices

cannot be stable. Their instability is therefore likely an artefact

of our ignorance rather than an actual phenomenon. How-

ever, since we are interested in the ability of binned

matrices to approximate spectra (whether they are stable or

not), this lack of information is not a problem for us here.

Just as with stability, we can also examine reactivity,

measured by the leading eigenvalue of A’s Hermitian part

HðAÞ ¼ ðAþ A`Þ=2; A` is the transpose of A. We therefore

calculate H(A) and H(B), and ask how well the leading

eigenvalue of the latter approximates that of the former in

comparison with the total spread of the eigenvalues of

H(A). The results, for the empirical webs of figure 1, are

shown under ‘D(H)’.

Let us highlight some of the general conclusions from

these motivating examples. First, the eigenvalue distributions

of the original and binned matrices roughly overlap: their

means and variances are very similar in both the real and

imaginary directions. Second, some of the finer structure of

the eigenvalues distributions is also captured: more eigen-

values near the origin, and a few ones protruding in arcs

towards the left half plane. Third, despite these features,

the match between the actual and predicted values for stab-

ility and reactivity is not always very close—cautioning that

the approximation could fail to capture specific numerical

estimates for these properties. The method therefore reveals

the general features of the system and gives a rough idea of

the quantitative details.
4. Randomly generated interaction matrices
Here we test the binning procedure on randomly generated

interaction matrices. For each matrix, we first fixed the

number of species S and the connectance C. We then gener-

ated two uniform random numbers between 0 and 1 to

determine the types of all non-zero interactions. The first

number is the fraction of trophic interactions, the second

the fraction of mutualistic ones out of those that were

non-trophic (the rest of the interactions were designated com-

petitive). For each of the three interaction types, there was an

associated probability distribution from which the matrix

entries pertaining to the interaction type in question were

drawn. The procedure for generating the probability distri-

bution was the same in all cases: first, the shape of the

probability distribution was determined: either lognormal

or gamma. (We did this to check the robustness of our results

to the choice of the underlying distribution. The results are



KS(Re): 0.25
KS(Im): 0.06

D(Re) 0.03
D(H): 0.29

KS(Re): 0.28
KS(Im): 0.11

D(Re) 0.12
D(H): 0.1

KS(Re): 0.3
KS(Im): 0.15

D(Re) 0.15
D(H): 0.09

KS(Re): 0.32
KS(Im): 0.16

D(Re) 0.14
D(H): 0.05

KS(Re): 0.36
KS(Im): 0.21

D(Re) 0.45
D(H): 0.07

KS(Re): 0.43
KS(Im): 0.23

D(Re) 0.36
D(H): 0.15

KS(Re): 0.44
KS(Im): 0.25

D(Re) 0.11
D(H): 0.29

KS(Re): 0.45
KS(Im): 0.27

D(Re) 0.35
D(H): 0.04

KS(Re): 0.5
KS(Im): 0.3

D(Re) 1.51
D(H): 0.31

Broadstone (32 species) BSQ (218 species) CSM (201 species)

EPB (268 species) Kongsfjorden (252 species) Lough Hyne (326 species)

reef (213 species) Weddell (358 species) Ythan (91 species)

−2

−1

0

1

2

−10

0

10

−20

−10

0

10

20

−10

0

10

−20

0

20

−40

0

40

−100

0

100

−50

0

50

−10

0

10

−0.4 0 0.4 −4 0 4 −5 0 5

−2.5 0 2.5 −2 0 2 −10 −5 0 5 10

−20 0 20 −10 −5 0 5 10 −2 −1 0 1 2

im
ag

in
ar

y
im

ag
in

ar
y

im
ag

in
ar

y

real real real

Figure 1. Eigenvalues of community matrices (red dots) and their binned counterparts (blue circles) from nine different empirical interaction webs. Datasets used
(left – right, top – bottom): Broadstone stream, Baja San Quintin, Carpinteria Salt Marsh, Estero de Punta Banda, Kongsfjorden, Lough Hyne, caribbean reef, Weddell
Sea, and Ythan Estuary (see Tang et al. [18] and references therein). The Kolmogorov – Smirnov distance between the original and binned eigenvalue distributions
are given in each panel (top right), as well as the relative difference in the leading eigenvalues of the matrices and their Hermitian parts (bottom right). (Online
version in colour.)
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indeed robust; see the electronic supplementary material,

figures S23–S26.) Second, the mean and standard deviation

of the distribution were uniformly sampled: for the mean,

from [0.1,10], and for the standard deviation, from [1,10].

For the trophic interactions, a random conversion efficiency

was uniformly sampled from [0.05, 0.2] to take into account

the limited energy flow between trophic levels. To set the

diagonal of the matrix, we sampled each diagonal entry

from either a lognormal or a gamma distribution, times 21

to keep the diagonal entries negative. The mean and standard

deviation of the distribution were randomly drawn as in the

off-diagonal case. See the electronic supplementary material

for a more detailed breakdown of our method for generating

these matrices.

We repeated the parametrization for four different values

of the species richness S (50, 100, 250 and 500) and of the con-

nectance C (0.1, 0.25, 0.5 and 1), in all possible combinations.
Then, 300 replicates of all cases were generated. All resulting

matrices were binned, based on all possible combinations of

the following three variables. First, the number of bins was

chosen to be either 3, 5, 7 or 9. Second, the binning resolution

was set to 2, 4, 6, 10 and 14. Third, we took into account the

effect of accidentally misclassifying matrix entries. In empirical

situations, it seems likely that strong interactions may acciden-

tally be deemed weak (or vice versa), given the insufficient,

qualitative information one uses to generate approximate

matrices. We therefore explored what happens when we delib-

erately misclassify some fraction of the matrix entries. In doing

so, we assumed that zero interaction strengths do not get mis-

classified (absent interactions cannot ever be observed, and so

will not be accidentally classified as present), and that the bin

category of a non-zero interaction can only move up or down

one bin (a strong interaction may be misclassified as weak,

but not as zero). We used three rates of misclassification: 0,
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10 and 20%. Our results were not strongly affected by misclassi-

fication (electronic supplementary material, figures S1–S5).

Here in the main text we always show results with a 10%

misclassification rate.

First, we explored how accurately the leading eigenvalue

is captured depending on the number of bins k, the binn-

ing resolution b and the species richness S (figure 2). It is

apparent that b ¼ 4, 6 and k ¼ 7, 9 yield the best results. For

instance, 90% of all results with b ¼ 4 and k ¼ 7 have a

difference between rB and rA less than 16% of sA, the total

spread of the real parts of A’s eigenvalues. Higher values

of k leading to better predictions was expected—the more

bins we use, the more accurate the predictions will be. Note

though that there are diminishing returns. In a sense, this is

fortunate, because using more than seven to nine bins is

probably not feasible in practice (seven bins means that,

apart from zero, we have a ‘strong’, a ‘medium’ and a

‘weak’ category both for positive and negative interactions).

The result that b � 4 is optimal concerns the ‘best’ choice for

the definition of an order of magnitude. This suggests one
should consider interactions sufficiently different if they differ

by a factor of about four. Importantly, this choice proves to be

consistently the best through various models and various

metrics considered (see the next section and the electronic

supplementary material).

Instead of the relative, quantitative measure of how well

the leading eigenvalue is approximated, we may also ask

how often is it true that if a matrix A is stable, then its

binned counterpart B is also stable? Of most interest are

those matrices whose leading eigenvalues lie close to the ima-

ginary axis, since in these cases a small perturbation to the

spectrum may in principle change their stability properties.

Once again, being ‘close’ to the imaginary axis should not

be measured on an absolute scale, since any given distance

is unit-dependent, and the binning procedure is itself scale-

invariant (§2). The relevant question is whether the leading

eigenvalue is close to the imaginary axis compared to the total

spread of all eigenvalues; i.e. whether jrAj/sA is small. The

result (electronic supplementary material, figures S19–S20)

depends on b and k; for example, when using only three bins,
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one is more likely to misjudge stability than not. However, for

b ¼ 4 and k ¼ 7, of those results for which jrAj/sA , 0.05, stab-

ility is accurately predicted in 90% of all cases. And, for jrAj/
sA , 0.1, this accuracy increases to 97%, after which it quickly

approaches 100%, always increasing.

Similar to the leading eigenvalue, one can also look at

reactivity and how well it is predicted (electronic supple-

mentary material, figures S3–S5). Just as before, b ¼ 4,6 and

k ¼ 7,9 provide the best approximations, with more than

90% of all results falling within 23% of the total spread of

the eigenvalues of H(A), the Hermitian part of A (electronic

supplementary material, figures S21–S22).

We also consider the effect of changing the connectance on

the efficiency of binning—it turns out however that this effect is

neither systematic nor very strong (electronic supplementary

material, figures S11–S18).
5. The Allometric Trophic Network
The previous section explored the effects of matrix binning on

randomly generated interaction matrices. Here we consider a

mechanistic model of multispecies communities, the Allo-

metric Trophic Network [15]. In this model, there are a

number of non-interacting abiotic resources (here we assume

there are two), primary producers using those resources and

consumers eating either the producers or other consumers.

The feeding network is generated using the niche model [20].

Consumers interact with their resources via generalized func-

tional responses, which may include consumer interference.

These interaction terms are functions of the organisms’ average

body masses, calculated based on species’ trophic levels and

simple allometric relationships.

We generated 10 000 different communities using the

Allometric Trophic Network model. In each simulation, we

started out from a food web generated by the niche model,

with 50 initial species whose abundances were uniformly dis-

tributed between 0.05 and 0.2. We followed the methodology

described by Berlow et al. [15] in every aspect to parametrize

the model, except in choosing the Hill exponents for the

trophic interactions: instead of randomly generating it for

every interaction, we assumed it had the constant value
of 2. This was done to make the system converge to a fixed

point instead of a limit cycle or chaotic attractor, which is

important because we are interested in predicting local

asymptotic stability (indeed, in our simulations we only

ever observed convergence to a fixed point). The model

was run until equilibrium was reached, at which point we

calculated the Jacobian to obtain the matrix A (see the elec-

tronic supplementary material for a detailed description of

our methods). Figure 3a shows a spectrum generated by the

procedure, along with that of its binned counterpart (b ¼ 6,

k ¼ 7). In the particular simulation shown, 24 species and

both abiotic resources survived to stably coexist out of the

initial 50 species and two resources. The number of species

plus resources persisting at equilibrium was variable between

runs, and approximately normally distributed with mean

13.6 and standard deviation 3.0.

The matrices were subsequently binned with the binning

resolution b running through 2, 4, 6, 10 and 14; the number of

bins k taking on the values 3, 5, 7 and 9, and the rate of mis-

classification being either 0, 10 or 20%. Since the number of

species one ends up with is highly variable in this model,

we do not factor the results based on the number of species.

Except for the case with three bins, the leading eigenvalue is

captured well (figure 4), with 90% of all other cases having a

relative error less than 13%, and in some cases less than 6%

(e.g. for b ¼ 4, k ¼ 7). Similarly, reactivity (electronic sup-

plementary material, figure S8–S10) is captured with

relative error less than 12% in 90% of all cases with b ¼ 4,

k ¼ 7 and misclassification rate 10%.
6. Theoretical underpinning
Here, we connect the matrix binning procedure with more

rigorous mathematical concepts, to give a theoretical under-

pinning to why and when the method is supposed to work.

We employ two arguments, one based on the theory of

random matrices, the other on the concept of pseudospectra.

6.1. Random matrices
Although empirical interaction webs are manifestly not
random, an intuition for why the matrix binning procedure
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works may be gained by connecting it with random matrix

theory [16]. There are several results in the theory of random

matrices concerning the distribution of matrix eigenvalues

in the complex plane, such as the circular [21,22] and elliptic

[23] laws, which have found ecological applications as

well [18,24]. Here we only consider the simplest version of the

circular law; more complexity can be incorporated analogously

(see the electronic supplementary material). Suppose the entries

of the S � S matrix A are drawn independently from the same

underlying probability distribution pA(x), which has mean zero

and variance VA. Then the law states that for S large, the eigen-

values are uniformly distributed in a circle of radius
ffiffiffiffiffiffiffiffiffi
SVA
p

in

the complex plane, centred at the origin.

Note that the circle’s radius only depends on the variance

of pA(x) but not its shape. This important property [22] means

that two completely different underlying probability distri-

butions will lead to the same eigenvalue distribution as

long as their mean is zero and their variances are equal (in

the limit of S going to infinity, the distributions would con-

verge to be exactly the same; for S large but finite, there are

slight but negligible differences). Even if the variances are

not equal, the only difference between the eigenvalue
distributions will be in the radii of the circles within which

the eigenvalues are found.

The key idea concerning matrix binning is as follows.

Consider a random matrix A whose entries are drawn from

some distribution pA(x). We create its binned counterpart B.

But the binned matrix B is just another random matrix with

a different underlying probability distribution: we essentially

replace the original pA(x) with a discrete distribution pB(x),

one which we can calculate from pA(x) and the bin positions.

We will then know the eigenvalue distribution of B as well,

since that only depends on pB(x)’s variance VB. The spectra

of A and B may then be compared analytically.

As an example, let the entries of A come from the uniform

distribution pAðxÞ ¼ U½�1, 1�, which has variance VA ¼ 1/3.

Let us bin A with three bins (21, 0, 1). The probability, on aver-

age, of any one entry being lumped into the 21 or 1 bins is 1/4,

while the probability of being lumped into the 0 bin is 1/2,

defining the discrete distribution pB(x). This distribution has

variance VB ¼ 1/2. The eigenvalues of A are therefore uni-

formly distributed in a circle of radius rA ¼
ffiffiffiffiffiffiffiffi
S=3

p
, and those

of B in a circle of radius rB ¼
ffiffiffiffiffiffiffiffi
S=2

p
(figure 3b). If we now ask

how well the leading eigenvalue is approximated, we first
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note that they are simply given by rA and rB (since the eigen-

values fall in a circle). We therefore take the ratio of the

two radii to assess the goodness of the approximation:

rB=rA ¼
ffiffiffiffiffiffiffiffi
3=2

p
� 1:22: The binned matrix overestimates the

leading eigenvalue by this factor.

One could repeat the analysis with a more refined binning

scheme, for instance with k ¼ 5 and b ¼ 2. We then have five

bins (21, 20.5, 0, 0.5, 1) instead of the original three, leading

to VB ¼ 3/8 (see the electronic supplementary material).

Then the ratio of the circles’ radii (and that of the leading

eigenvalues) is rB=rA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VB=VA

p
¼

ffiffiffiffiffiffiffiffi
9=8

p
� 1:06, a near-

perfect match brought about by the refinement of the binning

resolution (figure 3c).

In summary, certain classes of random matrices allow for a

simple analytical evaluation of the effects of matrix binning.

Although real-world matrices are not going to conform to true

random matrices exactly, there are nevertheless good reasons

to make use of them anyway. Most importantly, random

matrix theory serves as a theoretically well-understood bench-

mark, a reference model, which, when not fitting real-world

data, reveals properties of the empirical system that are causing

the departure from the random expectation, thus facilitating a

better understanding of the system. Quite apart from this justifi-

cation, random matrix theory actually does have some success in

interpreting empirical data as well [18], suggesting its use may

prove more than purely theoretical.
6.2. Pseudospectra
The spectrum of a matrix A is the set of complex numbers that

are eigenvalues of A. In contrast, its 1-pseudospectrum [17] is the

set of complex numbers that are eigenvalues of all possible per-

turbed matrices A þ P, with kPk , 1 (the matrix norm kPk is

defined as the square root of the largest eigenvalue of P*P,

where P* is the conjugate transpose of P). Although the spec-

trum is composed of discrete points in the complex plane,

the 1-pseudospectrum comprises the union of regions of

various sizes around the original eigenvalues. See the elec-

tronic supplementary material for an algorithm to compute

pseudospectral regions.

An important result ([17], theorem 2.2) states that the

1-pseudospectrum of normal matrices (i.e. matrices A for

which A*A ¼ AA*) is the union of circular discs of radius 1

around A’s unperturbed eigenvalues. Moreover, such

matrices have the smallest possible pseudospectra. Any devi-

ation from normality will increase the size of this set, with

strongly non-normal matrices potentially having very large

pseudospectral regions even for small values of 1.

Pseudospectra provide a rigorous and general measure of

the effect of perturbations on the eigenvalues of matrices.

Importantly, the binning procedure can be thought of as

applying a certain perturbation P to the underlying commu-

nity matrix A, with A þ P ¼ B, where B is the binned matrix.

The pseudospectrum reveals how sensitively the eigenvalues

respond to the perturbation induced by binning. In figure 5,

the blue regions show the 1-pseudospectrum for each of the

nine empirical webs of figure 1, with 1 ¼ kPk being the

appropriate perturbation norm for each web; the red dots

are the unperturbed eigenvalues of A.

Pseudospectra measure the union of the effects of all poss-

ible perturbations of a given norm, which is why the blue

regions are much wider than the positions of the binned eigen-

values in figure 1 would warrant them to be. Importantly, since
normal matrices are the least sensitive to perturbations, the

comparison of the actual pseudospectrum with the smaller

one that would have been obtained if the matrix had been

normal carries useful information: pseudospectral regions

much larger than the one obtained under the assumption of

normality signal a matrix whose spectrum is oversensitive to

perturbing its entries. The red regions in figure 5 were com-

puted as the union of discs of radius 1 ¼ kPk, i.e. it is what

the pseudospectrum would look like if the matrices were in

fact normal. Since the blue regions barely exceed the red

ones, the empirical matrices are ‘almost normal’ and therefore

their spectra are not overly sensitive to perturbations of

their entries.

Calculating pseudospectra is straightforward but computa-

tionally expensive. In the electronic supplementary material,

we therefore introduce a much simpler metric, the scaled depar-
ture from normality depn(A), which characterizes matrix

sensitivity with a single number such that depn(A) � 1 guaran-

tees low sensitivity to perturbations. The value of depn(A) for

each empirical matrix is reported in the panel titles of figure 5.

All are significantly lower than one, implying their spectra are

not sensitive to perturbations—in line with what we see on

their pseudospectra.
7. Discussion
Our results show that certain global community properties,

such as stability [1] and reactivity [3,4], can be predicted

using crude, order-of-magnitude estimates of community

matrix entries. These properties depend, broadly speaking,

on the distribution of eigenvalues (stability depends only on

the leading eigenvalue; reactivity on their whole ensemble),

which was reasonably captured by the crude approximation.

We gave theoretical justification to when and why this would

be so, one based on the theory of random matrices, the other

on the concept of pseudospectra. To check the robustness

of our method, we applied it to three very different scenarios:

empirical interaction webs parametrized via allometric

relationships [18], randomly generated matrices and those gen-

erated by the Allometric Trophic Network model [15]. Though

the degree to which the method produced accurate results was

situation-dependent, on the whole, it was able to make reliable

predictions in each of these cases.

This predictability appears to be at variance with earlier

work emphasizing that even small errors in measuring the

entries of the community matrix translate into large errors of

prediction [7,9,11–13,25]. If the spectrum of the community

matrix is well approximated, why would this be the case?

The answer, we believe, is that the response of species to

press perturbations depends on the inverse spectrum. Owing

to the preponderance of rare species in natural communities,

such systems are necessarily close to a transcritical bifurcation

point (small perturbations of the abundances may drive rare

species extinct), implying that some eigenvalues are close to

zero, making the inverse overly sensitive to measurement

errors. One may try to ignore the rare species from a commu-

nity model, reasoning that—since they are rare—their impact

on the community is slight. But unfortunately, owing to the

general shape of the species-abundance curve [14], there is no

natural cut-off point for doing that. Therefore, one should try

to approximate properties that do not depend on inverting

the community matrix.
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One property we have not yet mentioned is feasibility, i.e.

whether a community equilibrium has all-positive species

abundances. The stability or reactivity of unfeasible equilibria

is of no relevance. The reason we did not consider feasibility

separately is that we treat the community matrix as the

linearization of some arbitrary nonlinear dynamics around

some equilibrium state we observe in nature. Its feasibility

is therefore already guaranteed by the fact that we are observ-

ing the system. Apart from this, note that feasibility is a

property that depends on the inverse problem. For instance,

in a simple Lotka–Volterra model given by dn/dt ¼ n8(b þ
An) (where n is the vector of densities, b the vector of intrinsic

growth rates, A the matrix of interaction coefficients and (8)
denotes the Hadamard or element-by-element product), the

equilibrium densities are given by n ¼ 2A21b. Therefore, as

discussed, our method is ill-suited for determining

feasibility to begin with.
The accuracy of prediction was dependent on the number

of bins k the entries were classified into (fewer bins meant

larger errors), and on the choice of the binning resolution b.

In practice, a k of 7 to 9 is probably the largest feasible

number, since beyond this it becomes increasingly difficult to

assign weak interactions to correct bins. For the binning resol-

ution b, we found that values beyond 10 gave significantly

worse results; b � 4 was usually optimal, but the sensitivity

of the results was not very great, and b ¼ 2 and 6 performed

similarly (figures 2 and 4, electronic supplementary material,

figures S4 and S9). Interestingly, we have found b � 4 to per-

form the best regardless of whether we looked at the

empirical data, the randomly generated webs or the Allometric

Trophic Networks, and regardless of whether we estimated

stability or reactivity.

It may seem counterintuitive that the smallest value of b
is not the most accurate in recovering matrix properties.
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After all, the finer the resolution, the more accurate the binning.

The reason is that, because the number of bins is finite, this finer

resolution only applies to larger matrix entries but not necess-

arily to smaller ones. Consider the following example. A 100 �
100 matrix is generated by uniformly sampling all but two of its

entries from [22, 2], and then setting the remaining two entries

to 28 and 8, respectively. If we bin this matrix with b ¼ 2 and

k ¼ 5, the bins are (28, 24, 0, 4, 8). This means that all but the

two outliers will be classified in the binned matrix as zero—a

crude estimate if there ever was one. However, for b ¼ 4 the

bins become (28, 22, 0, 2, 8), resolving the underlying data

much better. In the end, the best binning is, of course, achieved

for b! 0 and b! 1. Since this is not feasible in practice, one

has to find the best compromise between a b that is not too

large but cannot be too small, and a k that is not too small

but cannot be too large.

We also checked what happens if, in estimating the stron-

gest interactions p and n, we use 10 empirically measured

results and take their average. This way, a single very

strong interaction that dominates the system will not artifi-

cially distort the binning. However, the results proved

insensitive to doing this. The implication is that one should

concentrate expensive and time-consuming empirical effort

wisely: very accurate measurement of a couple of interaction

coefficients does not improve predictive power much, while

qualitative knowledge of many matrix entries does.

It is easy to think of scenarios in which the binning pro-

cedure produces grossly inaccurate results. For instance, we

have seen that matrices with depnðAÞ � 1 will have sensitive

spectra, therefore even relatively slight perturbations of their

entries (e.g. introduced by binning) may lead to large

changes in their eigenvalue structure. We emphasize however

that our metric for the scaled departure from normality is

merely a proxy for matrix sensitivity: the complete picture

is gained by looking at the full pseudospectrum.

But the binning procedure may be inaccurate even when

the degree of non-normality is low. If the interaction strengths

span too many orders of magnitude or are dominated by a

small number of very large matrix entries, then even a reason-

ably fine-grained binning structure may classify all but the

handful of very large entries as zero, leading to an eigenvalue

distribution wildly different from the actual one. The reason

why low non-normality does not matter in this case is that

the perturbation induced by binning is in fact very large. In

practice, however, whenever a few interactions dominate the

system, instead of binning, one should concentrate just on

those very large entries to gain insight into its workings. In

other words, such systems naturally require different methods
of analysis than the one presented here, which works better for

complex interaction structures where many interactions

together shape the properties of the system.

Our results also shed light on the classic stability–

complexity debate from a slightly different angle. The original

‘conventional wisdom’ was that more complex systems (i.e.

ones with more species, higher variance in the strength of inter-

actions, and higher connectance) would be more stable in the

face of perturbations [26, p. 586]. This view was challenged by

the classic result of May [27] which argued that, all else being

equal, more complex systems have a lower probability of

being stable: the eigenvalues of the community matrices of

more complex systems are less likely to reside in the left half

of the complex plane. Whether May’s argument actually poses

a true challenge to the conventional wisdom has been heavily

debated [28]. Our findings contribute to this debate by showing

that large, complex systems, if not necessarily more stable, are

very robust against perturbations of the community matrix

entries. The binning of a matrix can be thought of as a structural

perturbation of the system: we are altering the matrix entries,

changing the strength of interactions between species. Since,

as we have seen, the binning of large complex interaction

matrices has only a small effect on the spectrum, the pertur-

bation induced by binning does not have a large effect on the

system’s large-scale properties. For instance, the stability and

reactivity properties were unchanged. This means that if the

system was actually stable, it was likely to stay that way, and

conversely, unstable systems remained unstable after the pertur-

bation induced by binning. In fact, the robustness interpretation

of the stability–complexity debate is closer to its original formu-

lation, where it was argued that the more pathways there are in

an interaction web, the less it matters if one of those links is lost,

since other pathways will compensate for the loss [29,30].

In summary, the results from approximating system prop-

erties using semiquantitative information point in the

direction of using such approximations in practice, where

obtaining precise quantitative information is hard, expensive

and time-consuming. The presented results show that such

crude parametrization of complex systems may still reveal

important global system properties of interest.
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