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Cities are characterized by concentrating population, economic activity and

services. However, not all cities are equal and a natural hierarchy at local,

regional or global scales spontaneously emerges. In this work, we introduce

a method to quantify city influence using geolocated tweets to characterize

human mobility. Rome and Paris appear consistently as the cities attracting

most diverse visitors. The ratio between locals and non-local visitors turns

out to be fundamental for a city to truly be global. Focusing only on urban resi-

dents’ mobility flows, a city-to-city network can be constructed. This network

allows us to analyse centrality measures at different scales. New York and

London play a central role on the global scale, while urban rankings suffer

substantial changes if the focus is set at a regional level.
1. Introduction
Ever since Christaller proposed the central place theory in the 1930s [1], research-

ers have worked to understand the relations and competition between cities

leading to the emergence of a hierarchy. Christaller envisioned an exclusive

area surrounding each city at a regional scale to which it provided services

such as markets, hospitals, schools, universities, etc. The services display different

level of specialization, inducing thus a hierarchy among urban areas according to

the type of services offered. In addition, this idea naturally brings an equidistant

distribution of urban centres of similar category as long as no geographical con-

straints prevent it. Still, in the present globalized world relations between cities go

beyond mere geographical distance. In order to take into account this fact, it was

necessary to introduce the concept of world city [2]. These are cities that concen-

trate economic warehouses such as the headquarters of large multinational

companies or global financial districts, of knowledge and innovation as the cut-

ting edge technological firms or universities, or political decision centres, and

that play an eminent role of dominance over smaller, more local, counterparts.

The concept of global city is, nevertheless, vague and in need of further math-

ematical formalization. This is attained by means of so-called world city

networks, in which each pair of cities is linked whether they share a common

resource or interchange goods or people [3–7]. For instance, a link can be estab-

lished if two cities share headquarters of the same company [7–9], if both are part

of good production chains [10], interchange finance services [11], Internet data

[12] or if direct flights or boats connect them [4,13–15]. Centrality measures are

then applied to the network and a ranking of the cities naturally emerges. Due

in great part to their geographical locations and traditional roles as trans-Atlantic

bridges, New York and London are typically the top rankers in many of these

studies [5,9,14]. There are, however, inconsistencies in terms of the meaning

and stability of the results obtained from different networks or with different

centrality measures [14,16] and a more organic and stable definition is needed.

Here, we use information and communication technologies (ICT) to approach

the problem from a different perspective. How long would information originat-

ing from a given city reach any other city if it were to pass from person to person

only through face to face conversations? Or, in other words, what is the likelihood

that information reaches a certain distance away after a given time period. In this

experiment, the most central place in the world would simply be the place from
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Figure 1. Positions of the geolocated tweets. Each tweet is represented as a point on the map from where it was posted. (Online version in colour.)
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which a message could reach everywhere else in the shortest

amount of time. This view allows us to easily define a temporal

network of influence.

We perform this analysis by empirically observing how

people travel worldwide and using that as a proxy for

how quickly our message would be able to spread. The recent

popularization and affordability of geolocated ICT services

and devices such as mobile phones, credit or transport cards

generates a large quantity of real-time data on how people

move [17–25]. This information has been used to study ques-

tions such as interactions in social networks [26–29],

information propagation [30], city structure and land use

[23,31–40], or even road and long-range train traffic [41]. It is

bringing a new era in the so-called science of cities by providing

a basis for systematic comparison of the structure of urban areas

of different sizes or in different countries [37,38,40,42–47]. Data

from credit cards and mobile phones are usually constrained to

a limited geographical area such as a city or a country, whereas

those generated from online social media as Twitter, Flickr or

Foursquare can refer to the whole globe. This is the reason we

focus here on geolocated tweets, which have already proven

to be an useful tool to analyse mobility between countries

[48] and provide the ideal framework for our analysis.

In particular, we select 58 of the most populated cities in the

world and analyse their influence in terms of the average radius

travelled and the area covered by Twitter users visiting each of

them as a function of time. Differences in the mobility for local

residents and external visitors are taken into account, in such a

way that cities can be ranked according to the extension covered

by the diffusion of visitors and residents, taken both together and

separately, and by the attractiveness they exhibit towards visitors.

Finally, we also consider the interaction between cities, forming a

network that provides a framework to study urban communities

and the role cities play within their own community (regional)

versus a global perspective.
2. Material and methods
2.1. Twitter dataset
Our database contains 21 017 892 tweets geolocated worldwide

written by 571 893 users in the temporal period ranging from
October 2010 to June 2013 (1000 days). There are on average 36

tweets per user. Non-human behaviour or collective accounts

have been excluded from the data by filtering out users travelling

faster than a plane (750 km h21). For this, we have computed the

distance and the time spent between two successive geolocated

tweets posted by the same user. The geographical distribution

of tweets is plotted in figure 1. The distribution matches popu-

lation density in many countries, although it is important to

note that some areas are under-represented such as, for example,

most of Africa and China.

We take as reference 58 cities around the world (see electronic

supplementary material, table S1, for a detailed account) that are

both highly populated (most are among the 100 most populated

cities in the world) and have a sufficiently large number of geo-

located Twitter users. To avoid distortions imposed by different

spatial scales and urban area definitions that can be problematic

[49,50], we operationally defined each city to be a circle of radius

50 km around the respective city hall.

In order to assess the influence of a city, we need to charac-

terize how users travel after visiting it. To do so, we consider

the tweets posted by user y Dt days after visiting city c. In

figure 2, the locations of geolocated tweets are plotted according

to the number of days since the first visit in Paris and New York

as an example. Not surprisingly, a large part of the tweets are

concentrated around these cities but one can observe how

users eventually diffuse worldwide.

2.2. Definition of the user’s place of residence
To identify the Twitter users’ place of residence, we start by dis-

cretizing the space. To do so, we divide the world using a grid

composed of 100 � 100 km2 cell in a cylindrical equal-area pro-

jection. In total, there are approximately 5000 inhabited cells in

our dataset. The place of residence of a user is a priori given by

the cell from which he or she has posted most of his/her

tweets. However, to avoid selecting users who did not show

enough regularity, we consider only those users who posted at

least one-third of their tweets form the place of residence (repre-

senting more than 95% of the overall users). For each city, the

number of valid users as well as the number of tweets posted

from their first passage in the city are provided in electronic

supplementary material, table S1.

We can now determine for each city whether a user is resi-

dent (local user) or a visitor (non-local user). To do so, we

compute the average position of the tweets posted from his/

her cell of residence. If this position falls within the city



starting from Paris(a)

starting from New York(b)

Figure 2. Geolocated tweets of users who have been at least once in Paris (a) and New York (b). The colour changes according to the number of days Dt since the
first passage in the city. In red, 1 day; in yellow, between 1 and 10 days; in green, between 10 and 100 days; and in blue, more than 100 days.
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boundaries (circle of radius 50 km around the city hall), the user

is considered as a local and as a non-local user otherwise.

2.3. Metrics to assess city influence
We select a fixed number of users u in each city at random and

track their displacements in a given period of time Dt as their

first tweet from it. As the results might depend on the specific

set of users chosen, we average over 100 independent user extrac-

tions. As shown in electronic supplementary material, figure S2,

the longer Dt is, the lower the population of users who remain

active, so we must establish a trade-off between number of

users and activity time. Unless otherwise stated, we set u ¼ 300

and Dt ¼ 350 days in the discussion that follows.

2.3.1. Average radius
There are different aspects to take into account when trying to

define how to properly measure the influence of a city due to

human mobility. We start our discussion by considering the
average radius travelled by Twitter users since their first tweet

from a city c. We tracked for each user the positions from which

he or she tweeted after visiting c, and compute the average distance

from these locations to the centre of c. The average radius, R, is then

defined as the average over all the u users of their individual radii.

The average radius is informative but can be biased by the

geography. Cities that are in relatively isolated positions such as

islands may have a high average radius just because a long trip is

the only option to travel to them. To avoid this effect, we define

the normalized average radius ~R of a city c as the ratio between

R(c) and the average distance of all the Twitter users’ places of

residence to c (electronic supplementary material, figure S4).

2.3.2. Coverage
One possible way to overcome the limitation of the average ratio

defined above is to discard geographical coherence all together

and simply measure the area covered by those users, regardless

of the distance at which it might be located from the originating
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Figure 3. Evolution of the average radius. Each curve represents the evolution
of the average radius R averaged over 100 independent extractions of a set of
u ¼ 300 users as a function of the number of days Dt since the first passage
in the city. In order to show the general trend, each grey curve corresponds to
a city. The evolution of the radius for several cities is highlighted, such as the
top and bottom rankers or representatives of the two main detected beha-
viours. Curves with a linear and square root growth are also shown as a guide
for the eye. The dashed lines represent the standard deviation.
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city. In order to estimate the area cover by the users, the world

surface has been divided into cells of 100 � 100 km2 as we have

done to identify the users’ place of residence. By tracking the

movements of the set of users passing through each city, we

count the number of cells from which at least a tweet has been

posted and define coverage as this number. This metric has the

clear advantage of not being sensitive to isolated locations but

it still does not consider how specific cells, specifically those cor-

responding to other important cities, are visited much more often

than others.
3. Results
3.1. Comparing the influence of cities
We start by taking the perspective from the city to the world

and compare how effective the cities are as starting points for

the Twitter users’ diffusion. The evolution of the average

radius as a function of the time is plotted in figure 3 for the

58 cities. The curves of the log–log plot show an initial fast

increase followed by a much slower growth after approxi-

mately 15–20 days. The presence of these two regimes is

mainly due to the presence of non-local users as it can be

observed in electronic supplementary material, figure S5. In

the initial phase, the radius grows for all the cities at a

rhythm faster than the square root of time, which is the classical

prediction for 2D Wiener diffusion [51]. This is not fully sur-

prising as the users’ mobility is better described by Levy

flights than by a Wiener process. Still the differences between

cities are remarkable. There are two main behaviours: the

radius for cities such as Detroit grows slowly, whereas others

like Paris show an increase that is close to linear. After this

initial transient, the average radius enters in a regime of slow

growth for all the cities that is even slower than
ffiffiffiffiffi

Dt
p

. This

implies that the long displacements by the users are concen-

trated in the first month, period during which the non-local
users come back home, after which the exploration becomes

more localized. Even though the curves of different cities

may cross in the first regime, they reach a relatively stable con-

figuration in the second one. We can see that the top ranker in

terms of capacity of diffusion is Hong Kong for the whole time

window considered and the bottom one is Bandung (West

Java, Indonesia).

The top 10 cities according to the average radius are plotted

in figure 4a. It is worth noting that New York only appears in

the last position, in contrast to previously published rankings

based on different approaches [5,9,14]. Many cities on the top

are in the Pacific Basin (Hong Kong, Sydney, Beijing, Taipei,

San Francisco and Shanghai), which is clear evidence for the

impact of geography on R. We take geographical effects into

account by calculating the normalized radius ~R as shown in

figure 4b. With this correction, the top cities are Rome, Paris

and Lisbon. These cities are located in densely populated

Europe but still manage to send travellers further away than

any other, proof of their aptitude as sources for the spread of

information as described in the introduction. Actually, all

cities in the top 10 set are also able to attract visitors at a world-

wide scale, some are relatively far from other global cities and/

or they may be the gate to extensive hinterlands (China). The

same ranking for the coverage is shown in figure 4c. Even

though these two metrics are strongly correlated (see electronic

supplementary material, figure S6), there are still some signifi-

cant differences indicating that they are able to capture

different information. The top cities, however, are again

Rome, Paris and Lisbon probably due to a combination of the

factors explained above. It should also be noted that even

though the users extraction is stochastic and the rankings can

vary slightly from one realization to another (see electronic sup-

plementary material, figure S7), the ranking is stable when

averaged over several realizations (electronic supplementary

material, figure S8).
3.2. Local versus non-local Twitter users
We have yet to take into account that individuals residing in

a city might behave differently from visitors. We consider a

user to be a resident of a city if most of his/her tweets are

posted from it. Otherwise, he/she is seen as an external visitor.

Residents of the 58 cities we consider have a significantly lower

coverage (about 96) than visitors (about 260). This means that

the locals move towards more concentrated locations, such

as places of work or the residences of family and friends,

while visitors have a comparatively higher diversity of origins

and destinations.

The difference between locals and non-locals is even more

dramatic when the normalized radius, ~R, for each city is plotted

as a function of the coverage for both types of users in figure 5a.

Two clusters clearly emerge showing that the locals tend to

move less than the visitors. This difference between users is

likely to be behind the change of behaviour in the temporal

evolution of the average radius detected in figure 3, and

introduces the ratio of visitors over local users as a relevant

parameter to describe the mobility from a city. Indeed, visitors

contribute the most to the radius and the area covered (see

figure 5b for the coverage) while residents contribute most to

the local relevance of a city (figure 5c for the coverage

and electronic supplementary material, figure S10a, for ~R).

The top rankers in this classification are Hong Kong and

San Francisco in ~R and Moscow and Beijing in the coverage.
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All of them are cities that may act as gates for quite extensive

hinterlands. The rankings based on non-locals (figure 5d for

the coverage and electronic supplementary material, figure

S10b, for ~R) get us back the more common top rankers such

as Paris, New York and Lisbon.
3.3. City attractiveness
Thus far, we have considered a city as an origin and analysed

how people visiting it diffuse across the planet. We now con-

sider the attractiveness of a city by taking the opposite point

of view and analysing the origins of each user seen within the

confines of a city. We modify the two metrics defined above
to consider the normalized average distance of the users’ resi-

dences (represented by the centroid of the cell of residence) to

the centre of the considered city c and the number of different

cells where these users come from. In this case, the two

metrics are averaged over 100 independent extractions of

u ¼ 1000 Twitter users per city. The resulting rankings

depict the attractiveness of each city from the perspective of

external visitors: how far are people willing to travel to visit

this city? The top 10 cities are shown in figure 6 for the cover-

age (see electronic supplementary material, figure S11, for the

normalized average radius). Rome, Paris and Lisbon are also

quite consistently the top rankers in terms of attractiveness to

external visitors.
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3.4. A network of cities
Finally, we complete our analysis by considering travel

between the 58 selected cities. We build a network connecting

the 58 cities under consideration where the directed edge from

city i to city j has a weight given by the fraction of local Twitter

users in the city i which were observed at least once in city j. For

simplicity, in what follows, we consider only local users who

left their city at least once. This network captures the strength

of connections between cities allowing us to analyse the com-

munities that naturally arise due to human mobility. Using

the OSLOM clustering detection algorithm [52,53], we find

six communities as shown in figure 7. These communities

follow approximately the natural boundaries between conti-

nents: two communities in North and Central America, one

community in South America, another in Europe, two commu-

nities in Asia (Japan and rest of Asia plus Sydney), indicating

that they correspond to economic, cultural and geographical

proximities. Similar results were obtained using the Infomap

[54] cluster detection algorithm, confirming the robustness of

the communities detected.

With these empirical communities in hand, we can now

place each city into a local as well as a global context. In a net-

work context, the importance of each node can be measured

in different ways. Two classical measures are the strength of a

node [55] and the weighted betweenness [56,57]. Given the

way we defined our network above, these correspond,

roughly, to the fraction of local users that travel out of a

city and how important that city is in connecting travellers

coming from other cities to their final destinations. In the

inset of the figure 7, we analyse the ranking resulting from

these two metrics and identify New York and London as

the most central nodes in terms of degree and betweenness

and, particularly, New York for the weighted degree at a

global scale. However, when we restrict our analysis to just

the regional scene of each community, the relative importance

of each city quickly changes. The rankings for the regional

weighted degree are similar to the global ones as this metric

depends only on the population of each city and not on who

it is connected to. The most central cities occupy the same pos-

itions except for San Diego, which slipped down three places.

On the other hand, the weighted betweenness is a property

that depends strongly on the network topology, a property

that can be seen by the dramatic shifts we observe when
considering only the local community of each city with most

cities moving several positions up or down (see details in

table 1 and electronic supplementary material, table S2). For

example, San Diego went down nine places meaning that this

city has a global influence due to the fact that San Diego is a

communication hub between United States and Central Amer-

ica. Dallas went up six places, indicating that its influence is

higher at the regional scale rather than in the international

arena. In the same way, Madrid went down four places,

whereas Barcelona stayed at the same place, this means that

Madrid is more influential than Barcelona on a global scale

as an international bridge connecting Europe and Central

and South America but not on a regional (European) scale.
4. Discussion
The study of competition and interactions between cities has

a long history in fields such as geography, spatial economics

and urbanism. This research has traditionally been based on

information from finance exchanges, sharing of firm head-

quarters, number of passengers transported by air or tons

of cargo dispatched from one city to another. One can

define a network relying on these data and identify the so-

called world cities, those with a higher level of centrality as

the global economic or logistic centres. Here, we have taken

a radically different approach to measure quantitatively the

influence of a city in the world. Nowadays, geolocated

devices generate a large quantities of real-time and geolo-

cated data permitting the characterization of people

mobility. We have used Twitter data to track users and classify

cities according to the mobility patterns of their visitors. Top

cities as mobility sources or attraction points are identified as

central places at a global scale for cultural and information

exchanges. This definition of city influence makes possible its

direct measurement instead of using indirect information

such as firm headquarters or direct flights. Still, the quality of

the results depends on the capacity of geolocated tweets to

describe local and global mobility. Indeed, observing the

World through Twitter data can lead to possible distortions,

economic and sociodemographic biases, the Twitter pen-

etration rate may also vary from country to country leading

to an under-representation of the population, for example,

from Africa and from China. The cities selected for this work

are those that, on one hand, concentrate large populations

and, on the other, have sufficient tweets to be part of the analy-

sis. There are biases acting against our work, such as the lack of

coverage in some areas of the world, and others in favour, such

as the fact that younger and wealthier individuals are more

likely to both travel and use Twitter. The estimated mobility

patterns are naturally partial as they only refer to selected

cities. Still, as long as the users provide a significant sample

of the external urban mobility, the flow network is enough

for the performed analysis. Furthermore, several recent

works have proven the capacity of geolocated tweets to

describe human mobility, comparing different data sources

as information collected from cell phone records, Twitter,

traffic measure techniques and surveys [23,24,41].

More specifically and assuming data reliability, we con-

sider the users’ displacements after visiting each city. The

urban areas are ranked according to the area covered and the

radius travelled by these users as a function of time. These

metrics are inspired by the framework developed for random
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Table 1. Comparison of the regional and the global betweenness rankings.
In parenthesis the total global ranking position of each city.

global ranking regional ranking

North America

1. New York (1) 1. New York

2. Miami (6) 2. Los Angeles

3. San Francisco (8) 3. Chicago

4. Los Angeles (9) 4. Toronto

5. Chicago (18) 5. Detroit

6. Toronto (19) 6. Miami

7. San Diego (23) 7. Dallas

8. Detroit (25) 8. San Francisco

9. Montreal (26) 9. Washington

10. Atlanta (27) 10. Atlanta

Europe

1. London (2) 1. London

2. Paris (3) 2. Paris

3. Madrid (10) 3. Moscow

4. Barcelona (11) 4. Barcelona

5. Moscow (16) 5. Berlin

6. Berlin (20) 6. Rome

7. Rome (21) 7. Madrid

8. Amsterdam (24) 8. Lisbon

9. Lisbon (38) 9. Amsterdam

10. Milan (40) 10. Saint Petersburg
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walks and Levy flights, which allows us to characterize the

evolution of the system with well-defined mathematical tools

and with a clear reference baseline in mind. Previous literature

rankings usually find a hierarchy captained by New York and

London as the most central world cities. The ranks dramatically

change when one has taken into account users’ mobility.
A triplet formed by Rome, Paris and Lisbon consistently

appear on the top of the ranking by extension of visitor’s mobi-

lity but also by their attractiveness to travellers of very diverse

origin. A combination of economic activity appealing to tour-

ism and diversity of links to other lands, in some cases the

product of recent history, can explain the presence of these

cities on the top. These three cities are followed by others

such as San Francisco, which without being one of the most

populated cities in the US extends it influence over the large

Pacific basin, or Hong Kong, Beijing and Shanghai, which repli-

cates that on the other side of the Pacific region. These cities are

in some cases gates to broad hinterlands. This is relevant as our

metrics have into account the diversity in the visitors’ origins.

These results rely on the full user population, discriminat-

ing only by the place of residence between locals and non-

locals to each city. The influence of cities measured in this

way includes their impact on rural as well as on other

urban areas. However, the analysis can be restricted to

users residing in an urban area and to their displacements

towards other cities. In this way, we obtain a weighted

directed network between cities, whose link weights rep-

resent the (normalized) fluxes of users travelling from one

city to another. This network provides the basis for a more

traditional centrality analysis, in which we recover London

and New York as the most central cities on a global scale.

The match between our results and those from previous

analysis brings further confidence on the quality of the flow

measured from online data. The network framework permits

clustering techniques to be performed and divides the world

city network into communities or areas of influence. When

the centrality is studied only within each community, we

obtain a regional perspective that induces a new ranking of

cities. The comparison between the global and the regional

ranking provides important insights into the change of

roles of cities in the hierarchies when passing from global

to regional.

In summary, we have introduced a new method to

measure the influence of cities based on Twitter user displa-

cements as proxies for mobility flows. The method, despite

some possible biases due to the population using online
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social media, allows for a direct measurement of a city’s influ-

ence in the World. We proposed three types of rankings

capturing different perspectives: rankings based on ‘city-to-

world’ and ‘world-to-city’ interactions and rankings based on

‘city-to-city’ interaction. It is interesting to note that the most

influential cities are very different according to the perspective

and the scale (regional and global). This introduces the possi-

bility of studying relations among cities and between cities

and rural areas with unprecedented detail and scale.
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Städtischen Funktionen, Fischer Verlag, Jena (1933).
(English translation: Christaller W, Baskin CW.
Central places in Southern Germany, Prentice Hall,
Englewood Cliffs, NJ).

2. Friedmann J, Wolff G. 1982 World city formation: an
agenda for research and action. Int. J. Urban Reg.
Res. 6, 309 – 344. (doi:10.1111/j.1468-2427.1982.
tb00384.x)

3. Berry B. 1964 Cities as systems within a systems of
cities. Papers Reg. Sci. Assoc. 13, 147 – 163. (doi:10.
1111/j.1435-5597.1964.tb01283.x)

4. Knox PL, Taylor PJ. 1995 World cities in a
world-system. Cambridge, UK: Cambridge University
Press.

5. Rimmer P. 1998 Transport and telecommunications
among world cities. In Globalization and the
world of large cities (eds FC Lo, YM Yeung),
pp. 433 – 470. Tokyo, Japan: United Nations
University Press.

6. Pumain D. 2000 Settlement systems in the
evolution. Geografiska Ann. 82B, 73 – 97. (doi:10.
1111/j.0435-3684.2000.00075.x)

7. Taylor JP. 2001 Specification of the world city
network. Geogr. Anal. 33, 181 – 194. (doi:10.1111/j.
1538-4632.2001.tb00443.x)

8. Derudder B, Taylor PJ, Witlox F, Catalano G. 2003
Hierarchical tendencies and regional patterns in the
world city network: a global urban analysis of 234
cities. Reg. Stud. 37, 875 – 886. (doi:10.1080/
0034340032000143887)

9. Derudder B, Witlox F. 2004 Assessing central places
in a global age: on the networked localization
strategies of advances producer services. J. Retail.
Consum. Serv. 11, 171 – 180. (doi:10.1016/S0969-
6989(03)00023-7)

10. Brown E, Derudder B, Parnreiter C, Pelupessy W,
Taylor PJ, Witlox F. 2010 World city networks and
global commodity chains: towards a world-systems’
integration. Glob. Netw. 10, 1470 – 2266. (doi:10.
1111/j.1471-0374.2010.00272.x)

11. Bassens D, Derudder B, Witlox F. 2010 Searching for
the Mecca of finance: Islamic financial services and
the world city network. Area 42, 35 – 46. (doi:10.
1111/j.1475-4762.2009.00894.x)

12. Neal Z. 2011 Differentiating centrality and power
in the world city network. Urban Stud. 48,
2733 – 2748. (doi:10.1177/0042098010388954)

13. Zook MA, Brunn SD. 2005 Hierarchies, regions and
legacies: European cities and global commercial
passenger air travel. J. Contemp. Eur. Stud. 13,
203 – 220. (doi:10.1080/14782800500212459)

14. Derudder B, Witlox F. 2005 On the use of
inadequate airline data in mappings of a global
urban system. J. Air Transp. Manage. 11, 231 – 237.
(doi:10.1016/j.jairtraman.2005.01.001)

15. Derudder B, Witlox F. 2008 Mapping world city
networks through airline flows: context, relevance,
an problems. J. Transp. Geogr. 16, 305 – 312.
(doi:10.1016/j.jtrangeo.2007.12.005)

16. Allen J. 2010 Powerful city networks: more than
connections, less than domination and control.
Urban Stud. 47, 2895 – 2911. (doi:10.1177/
0042098010377364)

17. Brockmann D, Hufnagel L, Geisel T. 2006 The scaling
laws of human travel. Nature 439, 462 – 465.
(doi:10.1038/nature04292)

18. Gonzalez MC, Hidalgo CA, Barabasi A-L. 2008
Understanding individual human mobility patterns.
Nature 453, 779 – 782. (doi:10.1038/nature06958)

19. Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ,
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