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Flower development is one of the major developmental processes that governs seed setting in angiosperms.
However, little is known about the molecular mechanisms underlying flower development in legumes.
Employing RNA-seq for various stages of flower development and few vegetative tissues in chickpea, we identi-
fied differentially expressed genes in flower tissues/stages in comparison to vegetative tissues, which are related
to various biological processes and molecular functions during flower development. Here, we provide details of
experimental methods, RNA-seq data (available at Gene Expression Omnibus database under GSE42679) and
analysis pipeline published by Singh and colleagues in the Plant Biotechnology Journal (Singh et al., 2013),
along with additional analysis for discovery of genes involved in shoot apical meristem (SAM) development.
Our data provide a resource for exploring the complex molecular mechanisms underlying SAM and flower
development and identification of gene targets for functional and applied genomics in legumes.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Specifications
Organism/cell line/tissue
 Cicer arietinum L. genotype ICC 4958

Sequencer or array type
 Illumina Genome Analyzer IIx

Data format
 Raw data: FASTQ files, analyzed data: txt files

Experimental factors
 Tissues/organs

Experimental features
 RNA-seq dataset for gene expression profiling in shoot

apical meristem and flower development in chickpea

Sample source location
 New Delhi, India
Direct link to deposited data

Deposited data can be found here: http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE42679.

Materials and methods

Sample collection and RNA isolation

Chickpea (Cicer arietinum L. genotype ICC 4958) seeds were grown
in culture room and field for collection of vegetative and reproductive
tissues as described [1]. Three vegetative tissues [germinating seedling
(GS), young leaves (YL) and shoot apical meristem (SAM)], and four
stages each of flower bud (FB1–FB4) and flower (FL1–FL4) were
harvested in at least three biological replicates (Fig. 1). Harvested tissues
. This is an open access article under
were snap frozen into liquid nitrogen and stored at −80 °C till RNA
isolation. Total RNA was extracted from each tissue using TRI reagent
(Sigma Life Science) according to manufacturer's instructions after grind-
ing tissues in pre-chilled (in liquid nitrogen) mortar and pestle. Total
RNA concentration and purity were determined using Nanodrop 1000
Spectrophotometer (Thermo Fisher Scientific) and microfludics-based
RNA nano chip on 2100 Bioanalyzer (Agilent Technologies).

Generation of RNA-seq data

To understand the global expression profiles during flower develop-
ment in chickpea, we performed RNA-seq analysis. Library for each
sample was constructed using mRNA-Seq Sample Prep kit and
single-end sequencing was performed following standard protocol of
Illumina so as to generate 54nucleotide long reads usingGenomeAnalyzer
IIx (Illumina Inc., San Diego, CA). High quality chastity-filtered reads were
obtained in FASTQ file format after filtering the raw data through standard
Illumina pipeline. Whole RNA-seq data were submitted to the Gene
Expression Omnibus (series accession number GSE42679). An outline of
strategy adopted for sample preparation and sequencing is provided in
Fig. 2a.

Data processing and differential expression quantification

The strategy used for data processing and differential gene expression
analysis is represented in Fig. 2b. The single-end chastity-filtered reads
obtained in FASTQ format were further subjected to stringent sequence
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1.Details of samples used for RNA-seq and summary of data after filtering low-quality (LQ) and primer/adaptor contaminated reads using NGS QC ToolKit. These data are taken from
Singh et al. [5].
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quality controls, using NGS QC Toolkit (v2.2.3) at default parameters [2].
This resulted into removal of 4–15% of low-quality sequences (Fig. 1).
The high-quality reads were then aligned to the chickpea transcriptome
(v1.0) available at Chickpea Transcriptome Database (v2.0; http://www.
nipgr.res.in/ctdb.html) [3] with a tolerance of up to two mismatches
using CLC Genomics Workbench (v4.7.2). The first round of alignment
resulted into mapping of 66–88% of reads for individual samples. For
the sequences that did not map to transcriptome, a second round of
alignment was performed, in which we trimmed 14 bases from the
3′-end of unmapped reads after optimization of trimming one base
recursively. This procedure enabled us to recover reads showing some
misalignments caused by spurious or low-quality bases present at the
read ends. After this step, total mapping percentage of reads increased
to N90% for each sample. Read count obtained after mapping was
normalized to ‘reads per kilobase of exon model per million mapped
reads (RPKM) for each sample. The genes having ≥1 RPKM at least in
one sample were considered to be expressed. In total, 33,584 genes
were found expressed in chickpea tissues analyzed, which represented
96.6% of the chickpea transcriptome.

Differential gene expression analysis was performed between
tissues considering total reads mapped to chickpea transcripts using
Bioconductor package DESeq (v1.5.24) [4]. DESeq uses a negative
binomial distribution to model total read counts for biological and
technical variation by a generalized Poisson distribution model. For
differential gene expression analysis, data were normalized across the
samples with size factors and variance. To estimate dispersion between
samples without replicates, method = “blind” together with
sharingMode = “fit-only” was used. Genes with P-value ≤ 0.05 and
fold change≥2were regarded as differentially expressed. This represent-
ed a 100% linear fold change i.e. log22 = 1 or 100%. The expression of
1572 genes was significantly different in floral tissues as compared
to vegetative tissues [5]. Among these, 1304 genes were up-regulated
and 269 genes were down-regulated in floral tissues. These data have
been integrated into the Chickpea Transcriptome Database (v2.0; http://
www.nipgr.res.in/ctdb.html).
Differentially expressed transcripts in shoot apical meristem

Using similar strategy mentioned above, gene expression in SAM
was compared with three combinations of other tissues to identify dif-
ferentially expressed transcripts. In the first combination, differentially
expressed genes in SAM were identified as compared to vegetative
tissues (GS + YL) only, leading to identification of 882 up- and 1031
down-regulated genes (Fig. 3a). In the second combination, SAM was
compared with vegetative tissues and first stage of flower bud develop-
ment (FB1), which resulted into 1143 up- and 1008 down-regulated
genes in SAM (Fig. 3a). Further, in the third combination, SAM was
compared with all the tissues (GS + YL + FB1–4 + FL1–4) and 546
exclusively up- and 354 exclusively down-regulated genes in SAM
were identified (Fig. 3a).

We performed gene ontology (GO) analysis using the BiNGO
(v3.0.2) tool with P-value cut-off of ≤0.05 after applying Benjamini
Hochberg correction to reveal functional categories enriched in the
up-regulated genes in SAM. We found genes involved in various
processes of SAM development, including G-protein coupled receptor
protein signaling pathway, RNA biosynthetic process, regulation of
RNA metabolic process, cell differentiation, stem cell differentiation
and maintenance, leaf proximal distal/pattern formation, abscisic acid
mediated signaling pathways, anatomical structure development, cell
differentiation, responses to organic substances, responses to hormone
stimulus, response to auxin stimulus and protein ubiquitination etc.
enriched in SAM (Fig. 3b). The biological process GO terms found
enriched in our study are in very good agreementwith previous reports.
For example, G-protein coupled receptor protein regulates cell prolifer-
ation, physiological responses of abscisic acid and gibberellins during
SAM development [6–10]. Auxin signaling has been shown to promote
leaf differentiation in SAM [11]. Furthermore, processes like abscisic
acid mediated signaling pathways, anatomical structure development,
responses to organic substances and responses to hormone stimulus
have found in up-regulated genes in shoot apex of Arabidopsis by
movement of WUSCHEL protein [12,13]. In addition, we found many
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Fig. 2.Workflow for RNA-seq experiments conducted in the study. (a) General strategy for sample preparation and sequencing. Total RNA was isolated from collected chickpea samples,
cDNA libraries were prepared and single-end sequencing was performed followed by image analysis to obtain sequence data. (b) Differential gene expression analysis pipeline.
Low-quality (LQ) reads were removed using NGS QC ToolKit (v2.2.3) and high-quality reads were mapped on chickpea transcriptome using CLC Genomics Workbench. Differentially
expressed genes in different tissues were identified using DESeq, followed by various analyses thereof.
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differentially expressed genes involved in regulation of processes
responsible for floral initiation, such as abscisic acid mediated signaling
pathway, activation of protein kinases, regulation of transcription,
nucleobase, nucleoside and nucleic acid metabolic processes and
maintenance of floral meristem identity (Fig. 3b) [14]. These genes
could be used to modulate flowering time in chickpea and may prove
to be of agronomic importance.

Discussion

Wedescribe here a RNA-seq dataset, which catalogs the transcriptome
of SAM and flower development in chickpea. This dataset revealed
differentially expressed genes during SAM and flower development,
involved in regulation of their various processes [5; this study]. This
dataset is of high quality and can help improve our understanding of
molecular mechanisms regulating SAM and flower development in
legumes and can be mined and integrated with results of other experi-
ments to explore regulatory networks, specific pathways or genes
active during development of SAM and flower in chickpea.
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Fig. 3.Differential gene expression analysis in shoot apical meristem (SAM) (a) The number of up- (upper side) and down-regulated (lower side) genes in SAM as compared to vegetative
tissues (GS+YL), vegetative (GS+YL) andflowerbud (FB1), and all other tissues (GS+YL+FB+FL) are shown. (b)Geneontology enrichment analysis of genes up-regulated in SAMas
compared to vegetative (GS + YL) and flower bud (FB1). Analysis was performed using BiNGO and the biological process terms showing significant enrichment are shown. Node size is
proportional to the number of transcripts in each category and colors according to the significance level (white—no significant difference; color scale, yellow—P-value= 0.05, orange—P-
value b 0.0000005).
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