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Abstract

Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regu-
lation of such alterations depends on their time scale, where short-time adaptations differ from perman-
ently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate
Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an
individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by
alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question
to which extend their expression follows environmental stimuli. To characterize environmental adapta-
tion in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize
transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first ana-
lysed for genes involved in the adaptive response to the altered environment. Secondly, we identified
groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically
controlled serotype system, suggesting that their gene expression pattern becomes manifested by simi-
lar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated
genes were stable among environmental changes and only heat-shock genes altered expression of
these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage
represents epigenetically controlled robustness counteracting short-time adaptation processes.
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1. Introduction

Alterations in gene expression patterns are the regulatory basis for
phenotypic plasticity: one single genome may produce quite different
phenotypes, thus representing an important mechanism to adapt for
alternating environmental conditions including morphological, physio-
logical and behavioural changes.! Similarly, differentiation processes
in developmental stages of multicellular organisms allow one single

genotype to differentiate into distinct tissues, representing the regulation
of gene expression patterns in the meaning of phenotypic plasticity: epi-
genetic mechanisms have the aim to fix these gene expression patterns
rather than to allow subsequent flexibility.>

Among the diverse mechanisms regulating alterations in gene ex-
pression during phenotypic variation, one can distinguish mechanisms
that evolved as a fast reaction to stresses, e.g. the heat-shock response,
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and adaptations to long-term changes in environments, e.g. such as
temperature and food availability. The molecular regulation of the
heat-shock proteins (HSPs) represents a tightly controlled transcrip-
tional activation of molecular chaperones that assist proper folding
of proteins.> Usually, this transcriptional activation of HSPs occurs
in minutes and only for a few minutes, thus being a rapid, pro-
grammed and reversible response to stress.

Although it is clear that short-time stress response and long-term
phenotypic plasticity are key players for survival during short-time
and long-term environmental changes, a general understanding
of the complex genetic and epigenetic mechanisms controlling
phenotypic plasticity as a response to environmental changes is still
missing.* Only few studies addressed the extent of phenotypic plasti-
city based on genome-wide transcriptomic profiling in response to
altered environments.

Adaptation to different environmental temperatures represents one
of the most important stress responses of organisms. As ectothermic
species may use any environmental heat source to regulate their
body temperature thus optimizing their metabolism, some organisms
are poikilothermic, meaning that their body temperature is equal to
the ambient environmental temperature which challenges the cellular
metabolism to work properly in a huge range of temperatures.
Depending on the level of temperature variation, adaptation processes
have to control survival critical functions like efficient metabolic turn-
over. In the past, much attention was spend on the composition of
membrane lipids during cold adaptation and heat-shocks,® but only
few studies investigated transcriptomic changes to identify general
metabolic pathways altered during temperature adaptation processes.

Paramecia are unicellular model organisms belonging to the ciliate
clade. These are distributed all over the world in all climate areas.
However, a single population may have to cope with drastic tempera-
ture alterations: on the one hand, these cells are so small that they can-
not prevent poikilothermy by increasing body mass/volume ratio, and
on the other hand, their natural ecosystem of small ponds undergoes
drastic short-time temperature alterations. It is not surprising that
paramecia in laboratory cultures can easily be cultivated at a broad
temperature range from 4°C to 32°C. Therefore, Paramecium repre-
sents an excellent model to investigate mechanisms of temperature
adaptation, and this ciliate has been subject of several studies investi-
gating heat-shock response of individual genes,®® but a genome-wide
analysis is still missing.

This unicellular model organism has become even more attractive
for the characterization of phenotypic plasticity as several epigenetic
mechanisms have been described that allow differentiation of lineages
into different cell states, which are reminiscent of developmental
differentiation processes in multicellular organisms. One prominent
example concerns the expression of the mating-type system,” and simi-
larly, but not by the same mechanisms, the antigenic system was
described to be epigenetically controlled a long time ago.'® Recent
studies indicate that the antigenic system is regulated by complex
mechanisms involving small RNAs and dynamic chromatin altera-

11,12 (see Cheaib et al., in preparation): Paramecium displays mu-

tions
tually exclusive expression of variable surface antigen genes similar to
the phenomenon of antigenic variation in pathogens.!® Serotypes,
meaning exclusive expression of one antigen gene of the surface anti-
gen gene (SAg) multigene family, are initially triggered by different
environmental conditions, e.g. temperature and food availability."*
They are stabilized by mechanisms similar to epigenetic differentiation
processes, which are under control of an RNAi mechanism likely in-
volved in transcriptional silencing.! It was shown that a telomere pos-
ition effect (TPE) is required for SAg regulation, suggesting that

spreading of telomeric heterochromatin is involved in RNAi-mediated
silencing.'? Differentiation into distinct serotypes therefore represents
an epigenetically controlled manifestation of gene expression patterns,
which interestingly can also be passed on to sexual progeny. In con-
trast to mating-type determination, serotype switches can occur any-
time without the need for sexual recombination. Hence, they represent
an important example of epigenetically controlled and heritable tran-
scriptomic variations of a single genotype.'>

To understand the processes of long-term and shocked tempera-
ture adaptations in the context of serotype expression, we analysed
the transcriptome information of serotype pure cultures to see to
which extent the transcriptome becomes altered during temperature
adaptation and how this is related to the epigenetically controlled
SAg multigene family. We furthermore analysed the subtelomeres of
SAg containing chromosomes to characterize a possible heterochro-
matic spreading from telomeric repeats by transcriptomic analysis.

2. Materials and methods

2.1. Paramecium culture conditions, serotype analysis
and heat-shocks

Paramecium tetraurelia strain 51 and d4-2 were grown in wheat grass
powder (WGP, Pines International Co., Lawrence, KS, USA) infusion
medium bacterized with Klebsiella pneumoniae supplemented with
0.8 pg/ml B-sitosterol, unless otherwise stated (serotype 51A, 51H of
strain 51) and 1: 1 diluted with Volvic® mineral water (serotype 51D,
51B of strain d4-2). To stabilize/trigger respective serotypes, different
cultivation temperatures were chosen: 51A at 31°C, 51B at 24°C/6°C,
51D at 24°C and 51H at 14°C. Serotype expression was verified by im-
mobilization with specific antibodies (1:100) (rabbit o-51A/-51B/-
51D/-51H) in depression slides. Only serotype-pure cultures (refers to
100% immobilization) were used for further analysis. For heat-shock
experiments, serotype-51D cultures were harvested, washed in Volvic®
mineral water and exposed to 39°C for 20 min.® 51B cells were selected
out of a 51D culture by immobilization with ¢-51D serum (1 : 100). In-
dividual survived cells were transferred to fresh WGP-medium bacter-
ized with K. pneumoniae after washing in Volvic® mineral water.
One hundred per cent serotype 51B expressing cultures were cultivated
at 24°C. They were then split, and the counterpart was cultivated at
14°C for 1 day before transfer to 6°C.

2.2. RNA isolation, cDNA library creation, lllumina
sequencing

A total of 150,000 P. tetraurelia cells per sample were harvested,
washed in Volvic® mineral water and incubated for 20 min at the
respective temperature in non-nutrient medium to reduce bacterial
occurrence in food vacuoles. Total RNA was isolated using TriRea-
gent® (Sigma-Aldrich, Seelze, Germany). After DNAse I (Invitrogen,
Karlsruhe, Germany) digestion and subsequent purification with
acid phenol, RNA integrity was verified on an Agilent Bioanalyzer
2100. Poly-A enrichment (NEBNext® Poly(A) mRNA Magnetic Iso-
lation Module) out of 1 pg total RNA and library preparation (NEB-
Next® Ultra™ Directional RNA Library Prep Kit for Illumina) were
carried out according to manufacturer’s recommendation using 11
PCR cycles of library enrichment. Multiplexed libraries were 100 nt
paired-end sequenced with an average of 14 Mio reads per sample
on Illumina HiSeq 2500 platform. Reads were demultiplexed with
bel2fastq (v1.8.4) and trimmed for adaptor contamination and low-
quality bases with the cutadapt (v1.4.1)'> wrapper trim_galore
(v0.3.3). All raw data were deposited at the European Nucleotide
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Archive (ENA, http:/www.ebi.ac.uk/ena) under study accession no.
PRJEB9464.

2.3. Annotation of HSP70 isoforms and phylogenetic
reconstruction

HSP70 candidates were identified by a proteome-wide search against
the Pfam library of hidden Markov models.'® Hits were extracted
for PF00012 (HSP70) using an E-value threshold of 3.6E-23. Amino
acid sequences were aligned with ClustalW, and neighbour-joining
trees were calculated with MEGA6'” with 1,000 bootstrap replicates,
based on the Poisson model and after complete deletion of gaps.

2.4. RNA-seq expression analysis
We quantified gene expression levels using the Sailfish algorithm.'®
Briefly, Sailfish uses transcript sequences to build a kmer index over
all annotated transcript sequences. RNA-seq reads are decomposed
into kmers and projected onto kmers of transcripts; then expression
levels of all transcripts are deconvoluted. Finally, transcript expression
levels of the same gene are summarized to give a gene expression esti-
mate. As a normalized expression metric for plots, we used Reads per
Kilobase per Million mapped reads (RPKM) reported by Saillfish. We
used Sailfish version 0.6.2 with the following command lines:
sailfish index -t <ref_transcripts> -0 <out_dir> -k 20 for building
transcriptome index file and

sailfish quant -i indexfile -1 ‘T=PE: O =><:S=AS’ -1 sample_R1.
fastq -2 R2.fastq -o Samplel for strand-specific quantification of read
files. We downloaded the P. tetraurelia cDNA file from the Ensembl pro-
tists database release 26 (assembly version GCA_000165425). The
quantification was done for 39,635 genes.

After gene expression quantification, differential gene expression
analysis was conducted using DESeq2 version 3'? in R. Following
the DESeq2 guidelines, absolute read counts per gene as obtained
from Sailfish were normalized between samples to account for differ-
ences in sequencing depth. Linear models to assess DE status were fit
for each gene with DESeq2 using a negative binomial distribution.
After multiple testing correction,? genes with false discovery rate
(FDR) <0.01 were considered as differentially expressed.

2.5. Transcriptome expression landscape visualization
and analysis

To visualize and compare the transcriptome expression landscape for
the different conditions, we applied a self-organizing map (SOM) ap-
proach using the oposSOM package.?’ An SOM is a machine learning
technique for dimensionality reduction, which transfers a high-
dimensional data matrix (expression of all genes across different sam-
ples) to a lower dimension.

The oposSOM package decomposes the data into clusters of cor-
related sets of genes, called metagenes, which are arranged in a fix
order (here we use a lattice with dimension 20 by 20). The expression
of a metagene represents the average expression of all genes in the clus-
ter. Metagene expression values in the individual samples provide mo-
saic pictures visualizing condition specific over- and under-expression
in terms of characteristic colour-coded textures, which allows the dir-
ect comparison of the expression of individual samples in a simple and
intuitive way.

TPM scale expression levels were log-transformed as pre-
processing step for training the SOM. After training, we had sample-
specific transcriptome expression landscapes as well over- and under-
expressed hot spots for every sample. Sample-specific transcriptome
landscapes represent the expression level of the metagenes at the

respective sample while preserving the topological order of the meta-
genes in high dimension. Metagenes are grouped into co-regulated hot
spots of similar up- or down-regulation using the following criteria: if
Ae > MaxEXP * 0.9, where Ae is the expression level of the metagene
under consideration and MaxEXP denotes the maximum expression
of all metagenes, then the metagene is classified as over expressed.
Analogously if Ae < MinEXP * 0.9, where MinEXP denotes the min-
imal expression of all metagenes, the metagene is classified as under-
expressed. Metagenes with the same classification that group together
in the SOM are called a regulated spot.

Hierarchical clustering (average linkage mode) of expression va-
lues was conducted using R, heatmap2 function. We used two differ-
ent setups for the creation. The first was based on Euclidean distance
computation, which measures the distance between all entries in the
expression vectors. The second was based on 1-Pearson correlation,
which measures if genes follow similar trends independent of their dif-
ferences in expression values. In all cases, no scaling was used.

2.6. Gene ontology enrichment

The gene ontology (GO) term association file has been created by pro-
cessing the parameciumDB.gff3 file, downloaded from the Parame-
ciumDB database.?? Differentially expressed genes (DEGs) for every
pairwise condition were divided into up- and down-regulated genes.
We conducted GO enrichment analysis using Ontologizer (version
2.1) software using the Parent-Child-Union method for each set of
up- or down-regulated genes in each pairwise comparison.>>

3. Results and discussion

3.1. Experimental design

It was the aim of this study to characterize gene expression patterns
following epigenetically stabilized serotype expression in P. tetraure-
lia. We therefore analysed the transcriptomes of four different serotype
pure cultures (51A, 51B, 51D, 51H) and furthermore characterized
transcriptome alteration during cold adaptation, starvation and
heat-shocks to compare epigenetically controlled gene expression pat-
terns to short-time adaptation processes.

All experiments were started with serotypically pure cultures,
meaning that 100% of cells expressed one single surface antigen obvi-
ously by 100% immobilization to a specific antiserum.

In this study, we analysed seven distinct conditions, three biologic-
al replicates each (Fig. 1):

(i) Serotype S1A expressing cultures cultivated at 31°C for >6
months (A.31).
(ii) Serotype 51D expressing cultures cultivated at 24°C for >6
months (D.24).
(ili) Serotype 51H expressing cultures cultivated at 14°C for >6
months (H.14).
(iv) Three aliquots of the D.24 cultures subjected to a 20 min heat-
shock at 39°C (D.HS).
Three cultures (B.24) were grown from 51B expressing indivi-
duals, which were selected from the D.24 cultures by immobil-
ization with anti-51D serum. Surviving individuals were

(v

subjected to autogamy and further cultivated at 24°C for 3
weeks.

Three aliquots of the 51B cultures that were gradually adapted
for lower temperatures (starting at 24°C, slow cool down to
14°C within 24 h, slow cool down to 6°C in 24 h) and then cul-
tivated 3 weeks with permanent food supply at 6°C (B.6).

(vi
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Figure 1. The experimental design and transcriptional landscape of individual cultures. The transcriptional landscape of analysed cultures is illustrated as a 3D
heatmap of grouped genes. On the left side, the actual serotype is shown, meaning the surface antigen to which antiserum 100% of the cultures showed
positive immobilization reaction at the time of RNA isolation. On the right side, the individual cultivation temperature is indicated (except the heat-shock

cultures that were cultured at 24°C and were transferred to 39°C only for 20 min).

(vii) Three aliquots of the D.24 cultures were subjected to autogamy
and subsequently starved at 24°C for 3 weeks (D.starv).

Replicate experiments are denoted with numeric suffixes, for example,
the three replicate cultures of B.6 are denoted B.6-1, B.6-2 and B.6-3.
As serotypes are expressed throughout the life cycle and usually in
most individuals of a population, all cultures analysed in this study re-
present vegetatively growing non-synchronous cultures, thus repre-
senting individuals of different cellular age.

To ensure that transcriptome differences do not result from activa-
tion of genes specifically activated during sexual recombination
(autogamy), all cultures were checked for fragmented nuclei by
DAPI staining prior to RNA isolation. In addition, Supplementary
Fig. S1 shows gene expression profiles of different (early, intermediate,
late induced) autogamy-related genes showing no significant activa-
tion in any culture.

3.2. Analysis of DEGs

As P. tetraurelia had at least three whole-genome duplications, there
are a number of genes that appear in more than one highly similar

copy in the genome.>* This complicates gene expression estimates as
reads may map to more than one location in the genome, potentially
biasing estimates of non-expressed genomic copies of a gene. We used
the Sailfish algorithm,'® which uses a global approach to optimize
read placements on genes, to avoid false-positive expression signals
of silent genes. We did a qualitative investigation by looking at the
two highly similar genes SAg 51D and 51J (92.2% sequence identity)
that we had previously measured with qPCR.'> Whereas the 51D gene
has the highest expression in D serotype cultures, the 51] gene is silent,
despite the highly similar sequence, and the same pattern is observed
for the Sailfish estimates and with qPCR.

After quantifying all gene expression values in the samples, we
used a dimensionality reduction approach with SOMs to compare
the expression landscapes between different conditions and their repli-
cates (see Section 2). Figure 1 shows the transcriptional landscapes of
all analysed cultures in 3D heatmaps. As expected, individual repli-
cates are highly similar over the complete landscape, but may differ
for smaller, individual gene groups, as seen for cultures A.31-3 and
B.24-3. We decided to proceed the subsequent analysis also with
these samples rather than to omit them as they represent biological
fluctuations that cannot be neglected, but we are aware that some
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DEGs may become masked in the subsequent analyses merging all
three replicates.

At first glance, a similar but not identical landscape can be ob-
served in the maps of the two cold-adapted experiments cultured at
6°C and 14°C (B.6 and H.14). More surprisingly, the serotype pure
B.24 and D.24 cultures show entirely different patterns although cul-
tivated under identical environmental conditions. In contrast, the
heat-shocked and the starved cultures still show similarity to their ori-
gin, the D.24 samples. To describe the relationship between the indi-
vidual cultures and conditions, we analysed DEGs in more detail.

Using estimated gene read counts from the Sailfish analysis, we
used the DESeq2 algorithm to compute pairwise DEGs between differ-
ent conditions (see Section 2) and set a cut-off for DEGs at an FDR
value of 0.01. Figure 2 shows complete numbers (Fig. 2A) and MA
plots (Fig. 2B) of interesting comparisons as a detailed analysis of
fold changes in relation to mean expression levels (further compari-
sons between conditions can be found in Supplementary Fig. S2).
The plots support observed differences between the B.24 and D.24
cultures with 2,202 genes being significantly down-regulated in sero-
type 51D cells. As single 51B cells spontaneously appeared in the 51D
cultures and were selected by immobilization, these differences suggest
that the altered SAg, specific for the serotype, is not the only DEG but
many more genes show altered gene expression. In contrast, the other
two sets of variants of the D.24 condition, heat-shock and starvation,
show less differences: in the former 587 up-regulated genes total in the
latter case of starvation 3,123 genes; however, most of them showing a
moderate down-regulation of ~log-fold change —2. The cold-adapted
transcriptome of the B.6 cultures shows 1,709 down- and 1,472 up-
regulated genes and therefore obviously a higher degree of alteration
during cold adaptation compared with starvation. However, there is
still a difference between the two sets of cold cultures B.6 and the
H.14, which were adapted for a much longer time. In addition, the
MA plot comparing A.31 and B.24 shows many genes that are differ-
entially regulated although the total number of significantly DEGs is
lower (639 up and 1,058 down) compared with the B.24 and D.24
comparison.

3.3. Comparison of individual transcriptome similarity
To get an overview of the global similarity between the different tran-
scriptomes, we used hierarchical clustering (Euclidean distance, aver-
age linkage) on the log-transformed TPM estimates. Figure 3 shows
the clustering result as a heatmap, indicating transcription levels of
all genes clustered according to their common expression behaviour
in all analysed libraries. The dendrogram above the heatmap reflects
the overall similarity between the transcriptome profiles. Excluding
the D.24 and D.starved cultures, this analysis clearly clusters the indi-
vidual biological replicates although few replicates (e.g. H.14-2 or D.
HS-2) show divergence as indicated by comparing transcriptomic
landscapes in Fig. 1. Comparing the D.24 and D.starv cultures, our
analysis indicates that these still have similar transcriptomes: the D.
starv cultures have been separated from the well-fed D.24 cultures
and maintained without feeding bacteria for 3 weeks (Fig. 1).

As a first insight in the general comparison of the transcriptomes,
the indication from the MA plots can be confirmed, because the two
serotypes B.24 and D.24 that were cultured both under identical envir-
onmental conditions show huge differences and are clearly separated
in the dendrogram (Fig. 3). This suggests indeed that the differences
observed here are not due to the environmental temperature or other
conditions, e.g. food or composition of medium, which were identical
for both. In support of the latter conclusion, the two cold-adapted

cultures B.6 and H.14 are clearly separated in Fig. 3 as the overall simi-
larity of the transcriptome reveals large differences and clusters the B.6
cultures close to the B.24 conditions, from which they were derived.

At first glance, the separation of the B.6 and H.14 transcriptomes in
the dendrogram appears to be in conflict with the fact that both share
the lowest number of DEGs (Fig. 2A). In comparison to the distance-
based clustering in Fig. 3, Supplementary Fig. S3 shows a clustering ob-
tained using Pearson correlation of gene expression values (see Section
2.5). Using correlation allows comparing gene expression patterns, des-
pite their absolute differences in expression. In agreement with the low
number of DEGs in the B.6/H14 comparison, both transcriptomes are
clustered together in the second cluster analysis. We therefore conclude
that a common mechanism of cold adaptation occurred in both the
H.14 and the B.6 cultures (indicated by the low number of DEGs and
clustering by Pearson correlation), but that expression of many genes in
the B.6 cultures remains similar to expression in the parental B.24 cul-
tures (see further analysis of these genes below).

The lowest number of DEGs can be seen between D.24 and its
heat-shocked portions D.HS. As the MA plot in Fig. 2 shows, the
heat-shock is characterized mainly by strong activation of a certain
number of genes, which explains the separation of the D.HS transcrip-
tomes from the two other conditions of the serotype D cultures at
24°C in the dendrogram (Fig. 3).

Figure 3 apparently shows that all cultures undergoing an environ-
mental change (B.6, D.starv and D.HS) still cluster to their originating
cultures. Although we did not necessarily expect a very high number of
DEGs in the heat-shocked cultures, one would have expected greater
differences in starvation and especially in the B.6 cultures. This sug-
gests that these changes in the 3-week period led only to a partial re-
arrangement of the previously governing gene expression patterns.

3.4. Cold adaptation by alterations of metabolic, DNA
metabolic and translational alterations

Figure 4 shows enrichment of GO terms for biological processes and
individual comparisons (complete lists of differential GOs for these
comparisons can be found in Supplementary File 5).

In all three warm/cold comparisons made here (B.6 vs. B.24; A.31
vs. B.6; A.31 vs. H.14), DNA metabolic GO terms including DNA
biosynthesis and replication (initiation) are strongly up-regulated in
the respective cold cultures. In addition, also oxidation/reduction pro-
cesses are up-regulated in all cold-adapted cultures (only in the B.6 vs.
B.24 comparison slightly below our set threshold). As this indicates
higher energy metabolism, maybe due to the cold temperatures, this
goes along with increased lipid catabolism in the B.6 cultures and
with increased carbohydrate catabolism in H.14 cultures. As the re-
presentation of GO terms in Fig. 4 often reduced individual processes
to parental GO terms (e.g. biological process), this indicates indeed
that temperature adaptation alters many different processes, which
require further investigation by subsequent experiments.

3.5. GO term enrichment in starvation, heat-shock
and serotype comparison
The GO analysis indicates that starvation most significantly triggers
microtubule-based processes and movement of cellular components,
thus suggesting rearrangements of the cytoskeleton, probably because
these starved cells do not undergo cell divisions. Up-regulated pro-
cesses are DNA catabolism and lipid metabolism, indicating increased
usage of lipids for energy metabolism.

In the heat-shocked cultures, the most significant up-regulated GO
term is ‘protein folding’ (GO: 0006457, Supplementary File 5), which
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Supplementary Fig. 2.

involves the heat-shock response chaperones in agreement with our ex-
pectations. The GO enrichment displayed in Fig. 4 clearly shows that
many other global processes are down-regulated. In the special situation
of the heat-shock, these down-regulations may not be necessarily consid-
ered as controlled regulation of gene expression but also a by-product of
thermal instability of individual mRNA species as discussed later.

In general, the B.24 and D.24 comparison shows that many pro-
cesses are down-regulated: the most significant one is again ‘oxidore-
ductase activity’ (GO: 0016491), indicating that the D.24 cultures
have a lower energy metabolism compared with the B.24 cells, despite
identical environmental cultivation conditions and thus food supply.
In this comparison, also GO terms concerning ‘chromatin assembly’
become apparent in Fig. 4. A closer look reveals that chromatin-

modifying enzymes are differentially expressed, namely genes of
three histone deacetylase isoforms, chromodomain containing pro-
teins and nuclear assembly proteins, and surprisingly the core histones
themselves (Supplementary Fig. S4A). Several isoforms of histone
genes H2A, H2B, H3 and H4 are down-regulated in the D.24 cultures.
Supplementary Fig. S4B and C show, for histone H3, that only
those isoforms are down-regulated that are constitutively expressed
throughout the life cycle and that the expression of developmental
specific isoforms is not affected.

Further wet lab work has to clarify whether the global down-
regulation of the core histones in our RNA-seq data indeed indicates
a genome-wide loss of nucleosome occupancy: histone gene expres-
sion was described to be complex and to occur at several levels
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Figure 3. Relationship between transcriptomes of cultures and their replicates.
Clustering heatmap showing expression levels (colour key on the left: green high
and blue low expression) of the entire transcriptome per sample (bottom label).
The dendrogram (top) indicates the global similarity of the transcriptome profiles
using hierarchical clustering (Euclidean distance, average linkage) on the
log-transformed expression values.

including post-transcriptional regulation.*® Therefore, our data do not
allow for conclusions that indeed histone protein levels are strongly
regulated here. However, if lower nucleosome occupancy would be
true in the D.24 cultures, the high number of DEGs to the B.24 cul-
tures might also be the result of a complex re-organization of the
macronuclear chromatin.

In yeast, cellular ageing was described to be accompanied by a loss of
nucleosomes and a global transcriptional up-regulation,”” which is differ-
ent to our observations as the D.24 cultures show more down-regulated
genes. As the cells of the D.24 cultures were not synchronized in cellular
age, we cannot rule out an age-dependent regulation of histones, al-
though the down-regulation is maintained in the D.starv cultures,
which represent 10-20 division old F1 individuals of the D.24 cultures.

A similar result of decreased expression of the core histones was
recently observed in P. tetraurelia by microarray analysis during silen-
cing of an RNA-dependent RNA polymerase 3 (RDR3), which re-
sulted in a co-expression of SAgs accompanied with decreased
expression of the core histones'” (M. Simon, unpublished data). As
these cultures were of the same cellular age as the controls, any age-
dependent influence can be ruled out in these experiments. Surprising-
ly, we observe a similar phenomenon of low core histone expression
here in wild-type cultures of different serotypes. As RDR3 silencing
is also accompanied with drastically decreased cells divisions,'! this

was also observed for D.24 cultures, which showed slightly fewer
cell divisions per day compared with the B.24 cultures (data not
shown). As reduced histone supply was described to extend the S
phase in Drosophila, the delivery with core histones turns out to be
a crucial component regulating the cell cycle.?® Although the ciliate
macronucleus divides amitotically, the prolonged cell cycle fits to
our observations in the D.24 cultures and RDR3-silencing cultures.

In support of this conclusion, the heat-shocked derivatives of the
D.24 samples show a down-regulation of the core histones (Supple-
mentary Fig. S4). Although we did not analyse the division rate of
the heat-shocked cells, the down-regulation of the histones is consist-
ent with a recent characterization of the heat-shock in the unicellular
algae Chlamydomonas showing decreased histone expression by
proteomic analysis; in this particular case, cells show an immediate
stop of cell divisions.*’

It seems tempting to speculate here that Paramecium controls cell
division also by histone supply although the underlying regulatory me-
chanisms and the involvement remain unclear, especially the involve-
ment of the RDR3-associated RNAi machinery. In this context, recent
work in the ciliate Stylonychia demonstrated that the knock down of
the Stylonychia Piwi resulted in down-regulation of individual H3 iso-
forms, thus providing another example for the connection of RNAi
and histone expression.>® Further studies have to clarify the role of his-
tone gene expression and RNAi components as this would represent a
powerful and new parameter of epigenetic influence to chromatin and
genome integrity.

3.6. Constitutive and regulated expression of HSP70
isoforms

Ten HSP70 isoforms have been described earlier for P. tetraurelia,®’
and we added six more to the annotation, which were identified by
a proteome-wide Pfam search (see Section 2 for details). Figure SA
shows the phylogenetic relationship between these isoforms
and their putative subcellular localization. Figure 5B illustrates the
TPM normalized expression levels of these HSP70 isoforms, where
heat-inducible up-regulation can only be observed in the cytosolic
group, in agreement with a previous analysis.” All other HSP70
isoforms show constitutive expression.

The only cytosolic HSP70 isoform that shows high expression in
all cultures is HSP70Pt-01, and interestingly this isoform also shows
a second expression peak in D.24 and D.starv cultures. This does
not seem to be due to the cultivation temperature, as lower expression
can be observed at the same cultivation temperature in B.24 cultures
(Fig. 5B). Similarly, also HSP70Pt-05 shows this activation in D.24
and D.starv cultures, however to a lower degree.

Interestingly, a continuous up-regulation of HSP70 isoforms was
recently also reported in Paramecium in response to endosymbionts,
another form of external stress to the cell. The transcriptome compari-
son of Paramecium bursaria without and with endosymbiotic Chlor-
ella ssp. algae revealed individual HSP70 isoforms up-regulated,®'
and similar findings were also reported for infections with bacterial en-
dosymbionts in Paramecium caudatum.>* Other studies suggest that
bacterial symbiont bearing paramecia show an increased stress resist-
ance,>® and the authors concluded that permanent HSP70 activation
awards increased stress tolerance. Interestingly, symbiont-induced
expression of HSP70 isoforms is shown to be permanent even after
the removal of bacteria by antibiotics, indicating an epigenetic mani-
festation of this acquired gene expression.>* Here, our results support
a permanent activation of an individual HSP70 isoform (HSP70Pt-01)
in D.24 as well as the D.starv cultures but not in other samples.
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Figure 4. GO enrichment analysis results. Principal component analysis (PCA) scatter plots of GO representatives of biological processes generated by the REVIGO
tool that summarizes the list of differential expressed GO terms (FDR < 0.02) by removing redundant terms.?® The distance between circles (representing individual
GO terms) indicates the relationship between terms: closer distance means closer relationship. Bubble colour indicates significance of differential expression of an
individual GO term (red low and blue high); the size (in log, P-value) indicates the percentage of genes annotated with a term in the reference database (UniProt) and
thus indicates more general terms (large) and more specific ones (small). Most significant terms are labelled in the individual plot as well as representatives for
groups of terms with lower significance. Green and red lateral arrows indicate the direction of regulation (up or down).

3.7. Expression pattern of the surface antigen
multigene family

As mentioned above, serotypes represent a special kind of differenti-
ation process manifesting a gene expression pattern of the SAg family
by epigenetic mechanisms: only one gene is expressed at a time.>* The
most dominant environmental factor triggering serotype expression
was described to be the temperature, and once induced they can be
transferred to different cultivation conditions without serotype
switches, thus indicating a self-stabilizing gene expression mechanism.
Recent studies demonstrated that the core family consists of eight
genes, some of them with a certain number of isoforms, indicated by
Greek letters.'? In all our experiments we started with serotype pure
cultures, meaning 100% of the cells responded to specific antiserum
in the immobilization reaction. Figure 6A shows the gene expression
levels based on TPM normalization. The figure shows high expression
levels of the individual SAg that corresponds to the antiserum with
which the cells reacted. This is not surprising for the A.31, B.24,
D.24 and H.14 cultures. However, the B.6 cultures, which represent
an aliquot of the B.24 cultures, still retain high expression of the
51B gene. This means that the expression of the 51B gene shows stable
expression, even after 3 weeks at a temperature of 6°C. Typically,
P. tetraurelia stock 51 expresses the S1H gene at low temperatures.>®
Our data show that the 51H gene indeed has increased expression in
the B.6 cultures, nevertheless the isolated cells still responded 100% to
the 51B antiserum. This means that the actual serotype persists even

drastically temperature changes. From our experience, it is likely
that some individuals of the B.6 cells will indeed shift to 51H after sev-
eral weeks more of cultivation at 14°C or 6°C, but production of sero-
type pure cultures will require the selection of 51H expressing
individuals. In such a case, serotype shifts can indeed be triggered
by temperature alterations, but the selection of individual transfor-
mants is required.

Comparing the B.24 and B.6 transcriptomes in the heatmap repre-
senting the entire transcriptome, Fig. 3 indicates that many genes
maintain their expression pattern, thus explaining the general high
similarity. Additionally, the D.24 cultures are still highly similar to
the D.starv cultures, and the serotype expression here indicates per-
manent expression of the 51D gene although slightly reduced
(Fig. 6A). For these two examples of environmental alterations
(food limitation: D.24 vs. D.starv) and extreme temperature shift
(B.24 vs. B.6), our data show that the transcriptomes are indeed
much more similar compared with the selected individuals of spon-
taneous transformants, namely the selected 51B expressing cells
from the D.24 cultures that were cultivated under identical condi-
tions.

This suggests that spontaneously occurring transcriptome altera-
tions, which may be regulated by epigenetic mechanisms similar to
the serotype system, alter gene expression in Paramecium to a much
higher degree compared with short-time adaptation to environmental
changes.
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Figure 5. Expression level of heat-shock (HSP70) genes. (A) Neighbour-joining tree of HSP70 proteins of Paramecium tetraurelia (with 1,000 bootstrap replicates).
The tree includes 10 previously described HSP70 genes (HSP70Pt01-10)%7 and additionally identified HSP70 isoforms (HSP70Pt11-16). Putative localization of
isoforms is based on similarity analysis to HSPs in other organisms and on the classification in Krenek et al.” ER-endoplasmic reticulum, CY-cytosol. (B) TPM
normalized expression values for all described HSP70 isoforms in all samples are shown, and cells are coloured according to high (red) or low (blue) expression.

3.8. Many genes show co-regulation with the dominant
SAg and sensitivity to heat-shocks

To see whether other genes are co-regulated with the surface antigens,
we defined ‘regulated spots’ in the transcriptomes, which are charac-
teristic sets of lowly or highly expressed genes per condition (Fig. 6B).
Genes that are part of a spot show not only coherent up- or down-
regulation in one individual sample, but moreover they are forming
a group of co-regulated genes that behave similarly among all analysed
conditions and samples.

These data show that a huge number of genes are indeed
co-regulated with individual antigens. These groups contain a large
number of genes: on average between the replicates 2,468 genes in
A.31, 1,180 in B.24 and 1,860 in D.24, thus representing a high per-
centage of the genome. In case of the B.24/D.24 comparison, the visu-
alization of the regulated spots almost shows a mirror image of one
another, thus explaining the clear separation of both states in the den-
drogram (Fig. 3); it is still surprising that this difference is not due to
environmental alterations but more likely due to spontaneous altera-
tions. The short-time derivatives of these cultures (B.6 and D.starv)
still show these spots (open arrow), although the pattern seems slightly
different (Fig. 6B), thus indicating that a huge number of genes follows
the expression behaviour of the SAg family and shows stability to en-
vironmental alterations within 3 weeks.

Surprisingly, only the heat-shocked cultures (D.HS) alter serotype
expression and, moreover, show a loss of the highly expressed spot of
regulated genes, which was characteristic for all 51D expressing cul-
tures. This means that a heat-shock of 20 min alters the expression
of genes, which we discussed to be co-regulated with the epigenetically
controlled SAg family.

Comparing the transcript level of the cytosolic HSP70 isoforms per
replicate to the expression levels of SAgs in Fig. 6C, the 51D mRNA is
drastically reduced after 20 min heat-shock. This is apparent in the D.
HS-1 and -3 cultures, and only to a lesser extent in the D.24-2 culture
(only ~50% reduction). Further, comparing this with the HSP expres-
sion data, an inverse correlation becomes apparent: culture D.HS-2
also shows the lowest activation of the cytosolic HSP70 isoforms,
thus indicating that this culture was only undergoing a moderate
heat-shock but shows the lowest reduction of SAg 51D transcripts.

As a consequence, SAg expression levels seem to be sensitive for
heat-shocks which is supported by studies in the close relative Tetra-
bymena thermophila, where mRNA of variable surface antigens
(Ser genes) was shown to be sensitive to heat-shocks; however, not ne-
cessarily because of physical instability but by active degradation by a
de novo synthesized protein factor.>”>® This finding fits also very well
to reports that a sudden change in temperature is much more efficient
to induce serotype shifts compared with gradual changes.'’
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Figure 6. Expression level of SAgs. (A) TPM normalized expression values for members of the SAg multigene family are shown in the table, and colour shading
indicates relative expression level (dark blue—low, red—high). (B) Identification of regulated spots (gene clusters showing co-regulation in all analysed samples) in
serotype pure cultures. Plots on the left show the global profile, plots on the right show regulated spots. (blue—low expression, red—high expression). The samples
are indicated above the plots, a representative replicate is shown. Black arrows indicate the regulated cluster containing exclusively the actual expressed SAg (SAg
51B in B.24; SAg 51D in D.24; SAg 51A in A.31). The open arrows in the second row (B.6, D.starv, D.HS) indicate the position of the regulated spot of the cultures
origin (B.24; D.24 and D.24). (C) Fold change expression level of cytosolic HSP70 isoforms and the 51D surface antigen gene of the individual three replicates of the

heat-shocked cultures.

In conclusion, we found that many genes in the Paramecium gen-
ome show expression patterns that correlate with serotype expression.
Their expression behaviour is characterized by high expression levels,
certain stability to environmental changes and the sensitivity to heat-
shocks (Fig. 6B).

As we know that heat-shocks induce serotype shifts more efficient-
ly compared with more gradual changes and that the newly manifested
serotype then becomes stabilized by epigenetic mechanisms, our find-
ing that the entire spot of genes co-regulated with the SAg suggests that
heat-shocks can induce widespread and long-term transcriptome al-
terations. In such case, the heat-shock could be interpreted as a kind
of epigenetic reset on a large class of genes in the genome and would
have an important influence on epigenetic memory.

3.9. Specific activation of SAgs in subtelomeric regions
A TPE was recently reported to control SAg expression and silencing
by RNA interference in P. tetraurelia.*> The classical TPE is believed
to silence genes by a spreading of the heterochromatic state from the
telomere into the subtelomeric regions, and this is believed to be in-
volved in the regulation of variant surface antigens in a series of patho-
genic microbes.>* However, it remains unknown how individual genes
avoid silencing and become thus expressed. To see whether the activa-
tion of an SAg goes along with a general activation of genes in this par-
ticular subtelomere, we investigated these loci more in detail. Figure 7

shows the subtelomeric surrounding of macronuclear chromosomes
harbouring the here investigated SAgs 51A, 51B, 51D and 51H. The
position of telomeres is indicated by EOS (end of scaffolds) as pre-
dicted by the genome project resulting in a majority of closed scaffolds
with telomeric repeats on both ends** or by the letter “T” in a triangle
indicating internal telomeric sites.'* These internal telomeric sites
are due to the ~800n polyploidy macronuclear chromosomes that
exist in different length versions because of imprecise DNA elimin-
ation processes during maturation of small macronuclear chromo-
somes from larger micronuclear chromosomes.*” Figure 7 gives the
combined information about gene position and expression levels of
genes surrounding the respective SAg in all four serotype pure states
51A, 51B, 51D, 51H. The data do not indicate any events of spreading
of heterochromatic silencing: on the one hand, activation of a subtelo-
meric SAg does not involve a loss of silencing of downstream genes
(between SAg and telomere); on the other hand, the on/off state
of the SAg does not apparently influence gene expression level of
any neighbouring gene: their expression appears independent. As a
conclusion, the TPE associated with SAg silencing and activation
cannot be explained by a simple spreading of telomeric heterochroma-
tin into subtelomeric regions, rather it seems more likely that the
TPE influences SAg regulation in combination with a gene specific fac-
tor to specifically regulate one individual locus, thus avoiding global
spreading events.
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Figure 7. Genomic map and expression of SAg and neighbouring genes in subtelomeric regions. Genomic maps of subtelomeric regions of scaffold 106 (SAg 51A),
scaffold 142 (SAg 51H), scaffold 143 (SAg 51B) and scaffold 159 (51D) indicate individual ORFs by arrows (data from ParameciumDB?? and Baranasic et al."?). The
position in the scaffold is indicated above in kbp (k). Expression level of the SAg and nearby genes (numbered by —-X upstream and +X downstream relative to the
SAg) are shown by TPM normalized data (logarithmic scale) in the graph below the genomic maps, respectively. Internal telomeric sites representing chromosome
heterogeneity are indicated by the triangle containing the letter ‘T’; EOS, end of scaffold.

3.10. Conclusions
Cell differentiation is mainly discussed in context of the ability of stem
cells to differentiate into different tissues, i.e. an epigenetic mechanism
manifests an individual gene expression pattern of the genome. Are
these mechanisms for regulating and manifesting gene expression
the only difference to phenotypic variation of unicellular eukaryotes?
Paramecium was demonstrated in the past to differentiate its vege-
tative genome into different phenotypes with one prominent example
in serotypes being regulated by epigenetically controlled heritable gene
expression patterns whose regulation involves small RNA-induced
chromatin regulation'*'? (Cheaib et al., in preparation). Interpret-
ation of our transcriptome resource here indicates that not only the

surface antigen multigene family but also many more genes follow
the expression pattern of SAgs and show persistence while transcrip-
tome adaptation to environmental changes. This suggests that gene ex-
pression patterns of gene groups can be manifested by epigenetic
mechanisms and consequently that also unicellular species can differen-
tiate into distinct epigenetically controlled phenotypes. However, such
differentiation should be interpreted as a kind of transcriptomic robust-
ness and needs to be distinguished from regular adaptation to environ-
mental changes representing short-time flexibility for adaptation.

It seems clear that our study can only estimate the extent of epigen-
etic differentiation by the above-discussed mechanisms, and the high
number of genes co-regulated with the SAgs justifies future approaches
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to clarify the epigenetic mechanisms controlling and maintaining gene
expression. Of special interest here is the heat-shock, as the data indi-
cate that this might represent a trigger for chromatin remodelling, not
only to activate individual HSP genes but for remodelling many more
chromosomal loci.

Our data suggest that serotypes cannot be restricted to the activation
of a single gene as we identified a certain number of co-regulated genes,
thus indicating that SAg expression is representative for individual gene
expression profiles. Paramecium serotypes can be triggered by the envir-
onment or occur spontaneously (e.g. 51B cells in 51D cultures). It seems
tempting to speculate that the co-regulated genes can be interpreted as a
pre-installed genome program running to achieve a complex predeter-
mined phenotype. We therefore need to clarify the epigenetic mechan-
isms allowing gene silencing, activation and maintenance of expression,
to understand the epigenetic network that acts to coordinate the
co-regulation of so many genes. Here, small RNA pathways, as indi-
cated for the serotype system, would be an attractive hypothesis.
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