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Abstract
Whole exome sequencing has facilitated the discovery of causal genetic variants associated

with human diseases at deep coverage and low cost. In particular, the detection of somatic

mutations from tumor/normal pairs has provided insights into the cancer genome. Although

there is an abundance of publicly-available software for the detection of germline and

somatic variants, concordance is generally limited among variant callers and alignment algo-

rithms. Successful integration of variants detected by multiple methods requires in-depth

knowledge of the software, access to high-performance computing resources, and advanced

programming techniques. We present ExScalibur, a set of fully automated, highly scalable

and modulated pipelines for whole exome data analysis. The suite integrates multiple align-

ment and variant calling algorithms for the accurate detection of germline and somatic muta-

tions with close to 99% sensitivity and specificity. ExScalibur implements streamlined

execution of analytical modules, real-timemonitoring of pipeline progress, robust handling of

errors and intuitive documentation that allows for increased reproducibility and sharing of

results and workflows. It runs on local computers, high-performance computing clusters and

cloud environments. In addition, we provide a data analysis report utility to facilitate visualiza-

tion of the results that offers interactive exploration of quality control files, read alignment and

variant calls, assisting downstream customization of potential disease-causing mutations.

ExScalibur is open-source and is also available as a public image on Amazon cloud.

Introduction
Next Generation Sequencing (NGS) technologies are promptly becoming the most popular
high-throughput strategy for drug discovery and biomedical research in the post-genome era.
Whole Exome Sequencing (WES) is a powerful and cost-effective approach for the detection of
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single-nucleotide variants (SNVs) and small insertions/deletions (InDels) in exonic regions,
which represent less than 2% of the human genome and are assumed to contain ~85% of
known disease-causing variants in Mendelian disorders [1]. Analysis of the sequencing data
requires in-depth bioinformatics skills and tens to thousands of computer processors for mam-
malian-sized genomes, which generates difficulties for researchers who may not have the
expertise or the access to high-performance computing (HPC) resources. Moreover, unlike
microarrays, there is no standard protocol for analysis of WES data, which also depends on the
biological questions of interest. Though many tools are available, great discrepancies were
reported for short-read aligners and variant callers [2–4]. Despite the rapid decline of sequenc-
ing cost, it remains challenging and time consuming to analyze large amounts of sequencing
data and synthesize useful biological insights.

To address these challenges, several NGS data analysis pipelines have been published that
offer different functionalities and operate on various platforms [5–11]. Most pipelines imple-
ment only one aligner and/or variant caller, lacking the facility to compare and integrate results
from different algorithms. Many either do not cover the entire analysis workflow from raw
sequencing data to annotated variants, or are only able to detect germline (those inherited
from parents) or somatic (those gained during development) mutations. While reports are
often provided, few offer a portable dynamic interface for viewing both project- and sample-
level results. Moreover, setting up a pipeline usually requires complex installation and configu-
ration, which may generate challenging tasks for most inexperienced users.

Our aim is to provide researchers the capacity to perform complex and computationally-
demanding data analysis that simultaneously utilizes multiple alignment and variant detection
algorithms with elastic access to resources on an as-needed basis. We present ExScalibur, a
suite of highly scalable WES analysis pipelines for the detection of germline and somatic muta-
tions, with the implementation of three aligners, six germline callers, and six somatic callers. It
automates the full analysis workflow from raw sequencing reads to annotated variants and pro-
vides an interactive visualization of the results. Features include real-time progress monitoring,
restarting of interrupted analyses, and seamless adaptation to different platforms. ExScalibur is
an open-source project and is also available as a pre-configured environment on Amazon EC2,
which greatly simplifies installation and management of complex analysis.

Methods

Pipeline Design
ExScalibur consists of germline (ExScalibur-GMD) and tumor/normal paired somatic muta-
tion detection (ExScalibur-SMD) pipelines that analyze WES data generated on Illumina’s
high-throughput platform. A typical analysis workflow contains seven main modules: 1) qual-
ity control (QC), 2) preprocessing, 3) alignment, 4) alignment refinement, 5) variant calling
and filtering, 6) annotation, and 7) project report generation (Fig 1). Both the germline and
somatic pipelines implement three short read aligners and six variant callers. Any combination
of aligner and caller can be specified by the user, allowing simultaneous launching of multiple
callers and direct comparison of different variant detection results (S1 and S2 Tables). At the
end of analysis, the pipelines automatically collect results into the archive directory, allowing
for easy downloading of essential result files.

Quality control. At the beginning of a pipeline run, quality of raw sequencing reads is
assessed for base quality, duplication level, nucleotide composition distribution, and GC bias.
Users have the option to provide the pipeline with specific metrics for these QC categories. The
QC statistics are subsequently parsed to determine whether the sequencing quality passes the
chosen thresholds. Samples that pass all QC criteria will be carried on to the next analysis step.
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Fig 1. Highly modulated architecture of ExScalibur. The pipelines contain seven major analysis steps. First, the pipeline checks the quality of the
sequencing reads, performs adapter trimming (for both SE and PE reads), and merges 3’ overlapping PE reads (for PE reads only). Then the reads are
aligned to the reference genome, filtered, duplicates removed, and the alignment refined. The pipelines calculate exon coverage and collect callable loci from
the alignment. Afterwards, the pipelines detect, filter, and annotate variants for each aligner+caller combination. Finally, the pipelines archive the results,
integrate metrics and all variants sets, and generate a project data analysis report for visualization in ExScaliburViz. At the pipeline completion, a runtime
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Preprocessing. Raw reads are processed to remove adapters (for both single- (SE) and
paired-end (PE) reads by default) and to merge 3’ overlapping mates (PE reads only), for the
purpose of removing the artifacts of double-counting variants located in the overlapping regions.

Alignment. Processed reads are mapped to the reference genome using any combination of
three short-read aligners including BWA-aln [12], BWA-mem [13], and Novoalign (Novocraft
Inc., Malaysia). Unmapped reads and low-quality alignments are filtered out. Alignments from
technical replicates (e.g., multiple runs/lanes) are merged and read duplicates are removed.

Alignment refinement. The alignment is further refined by local InDel realignment and
base quality score recalibration (BQSR) following the GATK Best Practices [14]. Multiple
alignment summary statistics are collected and exon coverage is calculated.

Variant calling. ExScalibur implements parallel execution of multiple callers for increased
confidence in variant detection (S1 and S2 Tables). Germline variant callers include GATK
UnifiedGenotyper [15], GATK HaplotypeCaller [15], FreeBayes [16], SAMtools mpileup/
bcftools [17], Isaac Variant Caller (IVC) [18] and Platypus [19]. Somatic variant callers include
MuTect [20], Shimmer [21], SomaticSniper [22], Strelka [23], VarScan2 [24] and Virmid [25].
By default, variants are generated from callable exon target regions [14]. Users have the option
to provide customized target regions as well. To facilitate downstream analysis, we convert
and/or normalize variant calls to the 1000 Genomes Project [26] VCF4.1 format when
necessary.

Variant filtering. Customized quality filters are applied to the raw calls to remove poten-
tial false positives (e.g., low coverage, low mapping quality, low variant quality, strong strand
bias, strong read end bias, or those located within SNV clusters; S3 and S4 Tables). Somatic var-
iants are further filtered by allele frequency (AF) in both tumor and normal samples (S4
Table). Additional flags can be added to germline variants to label those located within the
ENCODE blacklist (BLK) [27] (https://sites.google.com/site/anshulkundaje/projects/
blacklists), low mappability regions (LMP) [28], or low complexity regions (LCR) [13], where
alignment artifacts are more likely to occur.

Variant annotation. Variants are annotated for gene symbol, functional changes, popula-
tion frequency (e.g. the 1000 Genomes Project and the NHLBI Exome Sequence Project [29]),
dbSNP ID, deleterious prediction (e.g. CADD [30] and PolyPhen2 [31]), COSMIC [32], and
clinical significance (ClinVar) [33] using ANNOVAR [34]. Users may include additional anno-
tation attributes as needed.

Data analysis report generation. At the completion of a pipeline run, a comprehensive
data analysis report is generated, which consists of various quality statistics and variant calls.
ExScalibur aggregates variants and estimates the concordance of all aligner+caller combinations
using a simple multiplicative score (Naligner x Ncaller). To facilitate the exploration of the results,
we provide ExScaliburViz, an R Shiny [35] web application for desktop viewing (S1–S4 Figs).

Pipeline Implementation
ExScalibur is implemented in BigDataScript (BDS), a platform-independent high-level pro-
gramming language designed for pipeline development and management of large-scale data
sets [36]. Utility scripts were written in Perl and Python to assist with customized pipeline
functions. A project is initialized with a sample metadata table (S5 and S6 Tables) and a highly
customizable pipeline configuration file. With the execution of one master script, the pipelines
run from raw reads to annotated variants, and the real time progress is updated in log files. To

report is generated to illustrate the timeline of analysis, with detailed description of the commands, inputs, outputs, and dependencies. Intermediate reports
will be generated if the pipelines prematurely terminate due to software/hardware failure.

doi:10.1371/journal.pone.0135800.g001
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run ExScalibur on different platforms, the only requirement from the user is to specify a hand-
ful of platform-specific parameters (S7 Table), facilitating data sharing and reproducibility in
the scientific community.

Highly modulated architecture. ExScalibur employs a flexible dependency structure, with
multiple intermediate steps that are automated by BDS (Fig 1). For example, after ExScalibur-
GMD completes a run with BWA-mem and GATK HaplotypeCaller, additional aligners and
callers can be added without the need to repeat already-completed upstream modules. In addi-
tion, users have the option to generate a customized analysis workflow by including specific
modules from the pipelines (S8 and S9 Tables).

Highly scalable analysis. ExScalibur can be easily scaled to analyze tens to thousands of
samples simultaneously given sufficient computing power. With a small cluster on Amazon
EC2 (5 nodes; 8 cores/node; 14.6GB RAM/node), analyses of humanWES data on three germ-
line samples (80x coverage) and two tumor/normal pairs (50x coverage) involving two aligners
and two variant callers finished within 12 hours and 16 hours respectively, at a cost of less than
10 US dollars per sample. To demonstrate scalability, we simulated 100 exome samples from
human chromosome 22 with 1 million 2x100bp PE reads per sample, and ran the pipelines
using one aligner and one caller with 32 cores on Amazon EC2. The entire analysis workflow
finished within 4 hours with over 5,000 tasks successfully executed.

Robust handling of errors. ExScalibur captures the abnormal exit status of a task and
optionally launches job resubmission through BDS [36]. If ExScalibur detects a software/hard-
ware failure, it will gracefully handle the termination of all tasks (e.g., deleting all dependency
jobs and removing incomplete files) and report detailed information of those that failed. The
analysis can be restarted from the interrupted breakpoint, taking advantage of the highly mod-
ulated dependency structure.

Intuitive pipeline documentation. A runtime report is generated by BDS at the comple-
tion of a run, where all the commands, input and output files, and dependencies are easily
accessible. In addition, the report displays an overview of the timeline of each module in an
interactive graph (S1 File). A YAML format of the report is also generated that can be used for
collecting runtime stats, creating custom plots and quickly retrieving commands, dependency,
runtime and exit status of each task.

Optimized parallelization procedure. ExScalibur implements a scatter-gather design [37]
for variant calling, which splits the exome callable regions into a number of even-sized bins
and merges the results. This design allows for the submission of hundreds to thousands of jobs
on HPC clusters and cloud infrastructures, dramatically reducing the analysis time.

Availability and resources. ExScalibur is available under open-source license at http://
exscalibur.cri.uchicago.edu. The website hosts documentation and tutorials and provides
access to an Amazon’s Elastic Compute Cloud (EC2) image with pre-installed pipeline scripts
and tools. With minimal installation requirements, users may instantiate the provided image
with as many resources as needed. Nodes may be added or removed on the fly and ExScalibur
can immediately make use of the available hardware. The cloud image is built on StarCluster
[38] running Ubuntu operating system, allowing fast and easy provision of a cluster environ-
ment in the cloud.

Results
To evaluate the pipeline performance, we ran GMD and SMD analyses on simulated/bench-
mark data and 30 acute myeloid leukemia (AML) tumor/normal pairs [39]. In addition, we
illustrated discrepancies between the two commonly-used somatic mutation detection
approaches by using the GMD-derived subtraction method to identify somatic calls via
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contrasting genotypes of paired tumor/normal samples and comparing the results with those
directly detected by somatic callers in the SMD pipeline.

ExScalibur-GMD Evaluation
Raw PE reads were assessed by FastQC [40] (see S15 Table for all tool versions) for quality, pre-
processed by SeqPrep [41], and aligned to human reference genome (hg19) using BWA-mem
and Novoalign. Alignments were filtered to remove duplicates, unmapped reads, and reads
with mapping quality (MAPQ) less than 30. GATK was used to realign InDel regions and
recalibrate base quality score. Variants were identified using four callers (GATK HaplotypeCal-
ler, FreeBayes, SAMtools mpileup/bcftools and IVC), filtered for confident calls, normalized
(vcflib [42] and vt normalize [43]), and annotated using ANNOVAR. Unless otherwise noted,
variants labeled with “HQ” (high quality) refer to those that passed all filters.

For evaluation, we focused on SNVs and small InDels, which composed the majority of the
variant calls. Variants generated by every aligner+caller combination (“Observed”) were com-
pared to a validation dataset (“Expected”). Sites detected in both the observed and expected
sets were considered true positives (TPs), while sites detected as variant in the observed set but
as invariant in the expected set were considered false positives (FPs). True negatives (TNs)
refer to sites detected as invariant in both sets, while false negatives (FNs) refer to sites detected
as invariant in the observed set but as variant in the expected set. To make the results compara-
ble, we focused on candidate loci covered by at least six reads across all combinations.

NIST-GIAB benchmark data. The NIST-GIAB benchmark data were generated by the
Genome in a Bottle Consortium that provides a list of high-confidence variant calls from the
genome of NA12878 [44]. In this study, we identified variants from a trio including NA12878
(SRA accession ID SRX079575), NA12891 (SRX079576) and NA12892 (SRX079577) using
ExScalibur-GMD pipeline with different tools.

We retrieved NA12878 variants from the multi-sample variant detection results and com-
pared to the NIST-GIAB gold standard dataset for evaluation. We removed off-target calls and
variants located within genome regions where no confident calls could be made [44]. Variants
of low quality or called as multiallelic were also excluded. A total of 15,914,394 loci were
included for evaluation. We retrieved variants detected by at least two aligners and two callers
(S10 Table, 2aligners+2callers). We detected the highest sensitivity in the “2aligner+2caller” list
across all combinations for the detection of SNVs (99.03%). Compared to single combinations
that detected over 11,000 true SNVs (e.g. BWA-mem+GATKHaplotypeCaller), this approach
greatly reduced the number of false positives by recruiting multiple callers (113 versus 54).
Close to 90% sensitivity was observed for the InDels, which is among the best-performing com-
binations but lower than that of GATKHaplotypeCaller, possibly due to large differences in the
performance of the other three callers. Considering both sensitivity and precision, our results
suggested that GATK HaplotypeCaller showed the best performance among the four callers.

AML data. We obtained WES data of 30 AML tumor/normal pairs from the TCGA portal
(released December 2014). We included only the normal samples for ExScalibur-GMD evalua-
tion. We used Affymetrix human SNP array 6.0 genotype calls as the validation set, which were
processed by Washington University at St. Louis and the Broad Institute’s TCGA groups. We
retrieved concordant calls detected by both groups, lifted genomic coordinates from hg18 to
hg19, filtered for array sites covered by at least six reads in the AML exome data, and retrieved
candidate loci consistent across all combinations within each sample. On average,
38,970 ± 14,800 loci were included in the evaluation. We caution that this analysis was
restricted to a limited set of loci targeted by the SNV array, which tend to include only the com-
mon SNVs from public databases.
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We detected higher than 99% precision in all combinations when averaging across all sam-
ples (Table 1). A larger discrepancy in sensitivity was observed between single aligner+caller
combinations, with BWA-mem and GATK HaplotypeCaller having the best performance. Of
note, variants detected by at least two aligners and two callers showed the highest sensitivity
(98.23% ± 0.99%) with little tradeoff in precision (99.72% ± 0.56%) (Table 1, 2aligners+2callers).

ExScalibur-SMD Evaluation
Reads were processed, aligned to the hg19 assembly using BWA-mem and Novoalign, and
refined as described above. Somatic variants were called using six somatic callers (MuTect,
Shimmer, SomaticSniper, Strelka, VarScan2, and Virmid), followed by caller-specific filtering
to remove ambiguous and low-confidence calls. After filtering, we restricted our evaluation to
include only somatic SNVs that were heterozygous in the tumor sample, homozygous reference
in the matched normal sample, and had at least 8x coverage.

Simulation data. We implemented the virtual-tumor benchmarking approach [20] to
generate one dataset for the estimation of specificity and another for sensitivity (Datasets 1 and
2, respectively). Briefly, Dataset 1 was generated by randomly assigning WES reads from
NA12891 to a virtual tumor/normal pair. Any somatic variants detected in the virtual sample
pair were considered as false positives and used to estimate specificity (defined as 1—FP/total
number of exome sites). Dataset 2 was generated using alignments from NA12891 and a sec-
ond individual, NA12878. First, we retrieved high-confidence variants from the 1000 Genomes
database where NA12878 was a homozygous reference and NA12891 was a heterozygous refer-
ence. Then, we simulated a virtual NA12878-tumor sample by substituting NA12891 alleles
into NA12878 at a frequency of 0.8 and a minimum coverage of 20x. Any somatic variants
detected in this NA12878-tumor/NA12878 pair were considered as true positives and used to
estimate sensitivity (defined as TP/total number of substituted loci). To make the results com-
parable within each dataset, we focused on candidate loci available across all combinations.

We detected close to 90% sensitivity for all aligners when averaging across all callers
(Table 2). A larger variation was observed between SMD callers, with Shimmer and Strelka
having the lowest sensitivity and SomaticSniper and VarScan2 having the greatest. Specificity
was above 99% across all aligner+caller combinations. However, VarScan2 and SomaticSniper
detected a relatively greater number of false positives (S11 Table). After applying the default fil-
ters implemented in ExScalibur-SMD, the number of false positives detected by VarScan2
dropped down to a similar level as the other somatic callers, while the discrepancy in SomaticS-
niper persisted (Table 2). Of note, the combination of at least two aligners and two somatic
callers produced the highest sensitivity with no tradeoff in specificity (Table 2, 2aligners
+2callers).

AML data. We detected somatic variants in the AMLWES data using ExScalibur-SMD
and compared results with validated somatic mutations generated by the TCGA group, which
were identified by SomaticSniper and validated by hybridization arrays (validated somatic
mutations; VSMs). We lifted genomic coordinates from hg18 to hg19. Because the use of the
VSMs in our evaluation is limited to a handful of loci included in the validation panel, any
somatic variants detected by ExScalibur-SMD but are not present on the panel cannot be evalu-
ated. With this caveat in mind, we calculated two evaluation metrics for each sample: (1)
Recovery rate, defined as the ratio of the number of VSMs detected in our results over the total
number of VSMs; (2) Novel call rate, defined as the ratio of the number of VSMs detected in
our results over the total number of somatic SNVs detected.

We observed large discrepancies in the recovery rate between aligner+caller combinations,
with an average of 35% to 83% of the VSMs detected before filtering (S12 Table, VSM Recovery
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Rate). Of note, applying the somatic variant filters dramatically reduced the number of false
positives but with a tradeoff in the recovery rate. In particular, SomaticSniper showed the most
drastic drop in VSM recovery rate (from 44% to 9%) after filtering, mostly due to low genotype
quality in the tumor sample. The combination of two aligners and two callers produced high
recovery rates similar to VarScan2 but resulted in better performance than all other single
aligner+caller combinations (S12 Table, 2aligner+2caller). Interestingly, the majority of
somatic variants detected by ExScalibur-SMD did not overlap with the VSMs, suggesting that
the use of multiple callers may increase the sensitivity of somatic mutation detection.

Comparison of somatic calls between SMD and GMD pipelines
Germline variants are usually associated with an expected ploidy-dependent allele frequency.
In a diploid genome, this frequency is expected to be close to 0% for homozygous reference
alleles, 50% for heterozygous alleles, and 100% for homozygous alternative alleles. In contrast,
somatic variants often have an unexpected spectrum of tumor allele frequencies and ploidy

Table 1. Evaluation of GMD germline SNV detection in the AML dataset.

Variant Set TP FP TN FN Sensitivity (SD) % Specificity (SD) % Precision (SD) %

BWA-mem+GATKHaplotypeCaller 15,856 33 22,564 516 97.17 (1.24) 99.86 (0.34) 99.80 (0.48)

Novoalign+GATKHaplotypeCaller 15,833 33 22,564 538 97.03 (1.24) 99.86 (0.34) 99.80 (0.48)

BWA-mem+FreeBayes 14,982 94 22,503 1,390 91.66 (0.90) 99.54 (0.42) 99.31 (0.62)

Novoalign+FreeBayes 15,009 80 22,517 1,363 91.80 (0.87) 99.62 (0.35) 99.43 (0.52)

BWA-mem+IsaacVariantCaller 11,560 11 22,586 4,812 73.53 (8.30) 99.95 (0.05) 99.90 (0.11)

Novoalign+IsaacVariantCaller 11,288 11 22,586 5,083 71.77 (8.09) 99.95 (0.05) 99.90 (0.10)

BWA-mem+SAMtools 15,153 60 22,537 1,219 91.82 (2.19) 99.75 (0.50) 99.62 (0.73)

Novoalign+SAMtools 14,210 57 22,540 2,161 85.26 (4.21) 99.76 (0.45) 99.62 (0.71)

2aligners+2callers 16,057 47 22,550 315 98.23 (0.99) 99.80 (0.40) 99.72 (0.56)

Counts and percentages are shown as the average across 30 AML normal samples. SD: Standard Deviation.

doi:10.1371/journal.pone.0135800.t001

Table 2. Evaluation of SMD somatic SNV detection in the simulation datasets.

Variant Set Dataset 1 Dataset 2

TP FN Sensitivity % FNR FP TN Specificity % FPR

BWA-mem+MuTect 690 52 92.99 7.01E-02 16 47,301,677 99.99997 3.38E-07

Novoalign+MuTect 684 58 92.18 7.82E-02 23 47,301,670 99.99995 4.86E-07

BWA-mem+Shimmer 550 192 74.12 2.59E-01 0 47,301,693 100.00000 0.00

Novoalign+Shimmer 536 206 72.24 2.78E-01 0 47,301,693 100.00000 0.00

BWA-mem+SomaticSniper 707 35 95.28 4.72E-02 110 47,301,583 99.99977 2.33E-06

Novoalign+SomaticSniper 697 45 93.94 6.06E-02 109 47,301,584 99.99977 2.30E-06

BWA-mem+Strelka 597 145 80.46 1.95E-01 16 47,301,677 99.99997 3.38E-07

Novoalign+Strelka 596 146 80.32 1.97E-01 19 47,301,674 99.99996 4.02E-07

BWA-mem+VarScan2 708 34 95.42 4.58E-02 27 47,301,666 99.99994 5.71E-07

Novoalign+VarScan2 705 37 95.01 4.99E-02 25 47,301,668 99.99995 5.29E-07

BWA-mem+Virmid 678 64 91.37 8.63E-02 0 47,301,693 100.00000 0.00

Novoalign+Virmid 690 52 92.99 7.01E-02 4 47,301,689 99.99999 8.46E-08

2aligners+2callers 713 29 96.09 3.91E-02 1 47,301,692 100.00000 0.00

Results are shown for high-quality variants that passed all quality filters. Additional precision digits were kept for Specificity to infer small differences.

doi:10.1371/journal.pone.0135800.t002
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changes. Moreover, reliable detection of somatic mutations is often compromised by contami-
nation from the normal tissue. To address these issues, modern SMD software requires paired
tumor/normal samples and implements complex statistical models to handle unexpected fre-
quencies correcting for contamination rate. An alternate approach involves the detection of
variants in tumor and normal samples separately and then contrasting the tumor and normal
genotypes (GMD-derived subtraction approach). In this case, somatic variants were identified
as sites that carry homozygous or heterozygous alternative alleles in the tumor sample but
carry homozygous reference in the matched normal sample.

To compare the two somatic mutation detection approaches (the paired tumor/normal
SMD vs. GMD-derived subtraction), we analyzed the AML data using both pipelines. For
SMD, the approaches were described in the previous section. For GMD, we retrieved SNVs
from three callers (GATK HaplotypeCaller, FreeBayes, and SAMtools) and filtered for loci that
were heterozygous genotype in tumor sample (AF> 0.20) and homozygous reference in
matched normal (AF< 0.05). On average, an over 80% recovery rate was observed for GATK
HaplotypeCaller and SAMtools (S13 Table). Of note, a higher recovery rate was observed
(92%) in variants concordantly detected by at least 2 aligners and 2 callers, with a reduction of
90% in the number of false positivies.

Overall, the GMD-subtraction method detected more than double the number of somatic
mutations compared to the SMD pipeline (S14 Table). Of these, 29.03% of the somatic muta-
tions detected by SMD overlapped with 8.32% of the somatic mutations detected by GMD-sub-
traction. To further investigate the large discrepancy between GMD and SMD somatic calls, we
randomly selected 50 variants detected by each pipeline and visually inspected them in Integra-
tive Genomics Viewer (IGV) [45, 46]. Our manual inspection suggested that many of the dif-
ferences could be explained by discrepancies in allele frequencies, perhaps due to intrinsic
differences in the variant caller algorithms between SMD and GMD. Though the GMD-sub-
traction method showed a higher recovery rate, we recommend using SMD for somatic variant
calling due to its low FP rate and high sensitivity.

Discussion
We introduce ExScalibur, a set of highly scalable and configurable WES pipelines. The pipe-
lines cover the complete workflow from raw reads to variant calling and annotation, allowing
accurate detection of germline and somatic variants in the human genome. ExScalibur executes
the requested analysis steps, allows for fine control over software parameters (with carefully
chosen default parameters), manages data across all processes, and distributes computationally
expensive tasks across HPC nodes. It is available for implementation across platforms, facilitat-
ing large-scale data analysis in individual laboratories as well as institutions that process sam-
ples routinely. We also provide a ready-to-use virtual image that can be easily deployed on
Amazon EC2, allowing execution of complex sequencing analyses for researchers who may not
have access to a HPC environment. In our experience, ExScalibur is the first WES analysis suite
implemented in the BDS language, which is equipped with unique features to manage pipeline
execution and robustness for the complex analysis of big data.

Our evaluation suggests that the combination of multiple aligners and callers often results
in more confident variant detection in both GMD and SMD pipelines. While low concordance
was observed between somatic variant callers, we recommend using more than one caller and
retrieving concordant calls detected by at least two or more somatic callers for increased sensi-
tivity and confidence.

ExScalibur is a set of open-source pipelines that assist researchers in quickly gaining biologi-
cal insights into genomic aberrations identified through exome sequencing. We believe it will
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be highly useful to those who do not have access to large-scale hardware resources or necessary
expertise to run the analyses. More importantly, our suite of tools will provide a new frame-
work to implement and compare different aligners and variant callers. ExScalibur is under
active development and maintained for long-term use. The pipelines are under heavy use in a
biomedical research environment and have successfully identified causal mutations in rare
Mendelian diseases and cancer.

Supporting Information
S1 File. Pipeline runtime report of ExScalibur pipelines on sample data.Horizontal bars
represent the progress of each module. Text on/next to each bar indicates sample/read group
and software information. Runtime is shown as x-axis at the bottom of the panel. Task infor-
mation and system settings not shown.
(HTML)

S1 Fig. Project data analysis report automatically generated by ExScaliburViz.
(TIF)

S2 Fig. Project data analysis report automatically generated by ExScaliburViz.
(TIF)

S3 Fig. Project data analysis report automatically generated by ExScaliburViz.
(TIF)

S4 Fig. Project data analysis report automatically generated by ExScaliburViz.
(TIF)

S1 Table. Aligners and variant callers and their default parameters in ExScalibur-GMD
pipeline.
(XLSX)

S2 Table. Aligners and variant callers and their default parameters in ExScalibur-SMD
pipeline.
(XLSX)

S3 Table. Default variant call filters in ExScalibur-GMD pipeline.
(XLSX)

S4 Table. Default variant call filters in ExScalibur-SMD pipeline.
(XLSX)

S5 Table. Description of metadata table schema in ExScalibur-GMD pipeline.
(XLSX)

S6 Table. Description of metadata table schema in ExScalibur-SMD pipeline.
(XLSX)

S7 Table. Description of command-line parameters in ExScalibur-GMD pipeline.
(XLSX)

S8 Table. Description of pipeline flags in ExScalibur-GMD pipeline.
(XLSX)

S9 Table. Description of command-line parameters in ExScalibur-SMD pipeline.
(XLSX)
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S10 Table. Evaluation of GMD germline variant detection in the benchmark dataset.
(XLSX)

S11 Table. Evaluation of SMD somatic SNV detection in the simulation datasets. All vari-
ants (before filtering) were included.
(XLSX)

S12 Table. Evaluation of SMD SNV detection in the AML dataset. Values represent averages
and standard deviations across all 30 TCGA AML tumor/normal pairs. HQ: high quality.
VSM: validated somatic mutations. See context for detail.
(XLSX)

S13 Table. Evaluation of GMD somatic SNV detection in the AML dataset. Values represent
averages and standard deviations across 30 AML tumor/normal pairs.
(XLSX)

S14 Table. Comparison of somatic SNV detection between SMD in the AML dataset. Values
represent averages and standard deviations across in 30 AML tumor/normal pairs. HQ: high-
quality variants.
(XLSX)

S15 Table. Tools used in ExScalibur pipeline evaluation.
(XLSX)

S16 Table. List of AML sample IDs in the TCGA database.
(XLSX)

Acknowledgments
The authors thank M. Jarsulic and B. Eicher for technical assistance on the CRI high-perfor-
mance computing clusters, and P. Cingolani for active support of the BDS language.

Author Contributions
Conceived and designed the experiments: RB KH LH SV JA. Performed the experiments: RB
KH LHWK. Analyzed the data: RB KH LH. Contributed reagents/materials/analysis tools: KO
EB. Wrote the paper: RB KH LHWK EB KO SV JA. Developed and implemented the pipelines
and software: RB KH. Evaluated the pipelines: RB KH LH. Built Amazon EC2 environments:
WK.

References
1. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mende-

lian disease, future approaches for complex disease. Nat Genet. 2003; 33 Suppl:228–37. doi: 10.1038/
ng1090 PMID: 12610532.

2. O'Rawe J, Jiang T, Sun G, Wu Y,WangW, Hu J, et al. Low concordance of multiple variant-calling pipe-
lines: practical implications for exome and genome sequencing. Genomemedicine. 2013; 5(3):28. doi:
10.1186/gm432 PMID: 23537139; PubMed Central PMCID: PMC3706896.

3. Kim SY, Speed TP. Comparing somatic mutation-callers: beyond Venn diagrams. BMC bioinformatics.
2013; 14:189. doi: 10.1186/1471-2105-14-189 PMID: 23758877; PubMed Central PMCID:
PMC3702398.

4. Roberts ND, Kortschak RD, Parker WT, Schreiber AW, Branford S, Scott HS, et al. A comparative anal-
ysis of algorithms for somatic SNV detection in cancer. Bioinformatics. 2013; 29(18):2223–30. doi: 10.
1093/bioinformatics/btt375 PMID: 23842810; PubMed Central PMCID: PMC3753564.

5. Li J, Doyle MA, Saeed I, Wong SQ, Mar V, Goode DL, et al. Bioinformatics pipelines for targeted rese-
quencing and whole-exome sequencing of human and mouse genomes: a virtual appliance approach

ExScalibur Suite for WESGermline and Somatic Mutation Identification

PLOS ONE | DOI:10.1371/journal.pone.0135800 August 13, 2015 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135800.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135800.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135800.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135800.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135800.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135800.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135800.s021
http://dx.doi.org/10.1038/ng1090
http://dx.doi.org/10.1038/ng1090
http://www.ncbi.nlm.nih.gov/pubmed/12610532
http://dx.doi.org/10.1186/gm432
http://www.ncbi.nlm.nih.gov/pubmed/23537139
http://dx.doi.org/10.1186/1471-2105-14-189
http://www.ncbi.nlm.nih.gov/pubmed/23758877
http://dx.doi.org/10.1093/bioinformatics/btt375
http://dx.doi.org/10.1093/bioinformatics/btt375
http://www.ncbi.nlm.nih.gov/pubmed/23842810


for instant deployment. PloS one. 2014; 9(4):e95217. doi: 10.1371/journal.pone.0095217 PMID:
24752294; PubMed Central PMCID: PMC3994043.

6. Fischer M, Snajder R, Pabinger S, Dander A, Schossig A, Zschocke J, et al. SIMPLEX: cloud-enabled
pipeline for the comprehensive analysis of exome sequencing data. PloS one. 2012; 7(8):e41948. doi:
10.1371/journal.pone.0041948 PMID: 22870267; PubMed Central PMCID: PMC3411592.

7. Pirooznia M, Kramer M, Parla J, Goes FS, Potash JB, McCombie WR, et al. Validation and assessment
of variant calling pipelines for next-generation sequencing. Human genomics. 2014; 8:14. doi: 10.1186/
1479-7364-8-14 PMID: 25078893; PubMed Central PMCID: PMC4129436.

8. Challis D, Yu J, Evani US, Jackson AR, Paithankar S, Coarfa C, et al. An integrative variant analysis
suite for whole exome next-generation sequencing data. BMC bioinformatics. 2012; 13:8. doi: 10.1186/
1471-2105-13-8 PMID: 22239737; PubMed Central PMCID: PMC3292476.

9. Mutarelli M, Marwah V, Rispoli R, Carrella D, Dharmalingam G, Oliva G, et al. A community-based
resource for automatic exome variant-calling and annotation in Mendelian disorders. BMC genomics.
2014; 15 Suppl 3:S5. doi: 10.1186/1471-2164-15-S3-S5 PMID: 25078076; PubMed Central PMCID:
PMC4083405.

10. D'Antonio M, D'Onorio De Meo P, Paoletti D, Elmi B, Pallocca M, Sanna N, et al. WEP: a high-perfor-
mance analysis pipeline for whole-exome data. BMC bioinformatics. 2013; 14 Suppl 7:S11. doi: 10.
1186/1471-2105-14-S7-S11 PMID: 23815231; PubMed Central PMCID: PMC3633005.

11. Reid JG, Carroll A, Veeraraghavan N, Dahdouli M, Sundquist A, English A, et al. Launching genomics
into the cloud: deployment of Mercury, a next generation sequence analysis pipeline. BMC bioinformat-
ics. 2014; 15:30. doi: 10.1186/1471-2105-15-30 PMID: 24475911; PubMed Central PMCID:
PMC3922167.

12. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformat-
ics. 2009; 25(14):1754–60. doi: 10.1093/bioinformatics/btp324 PMID: 19451168

13. Li H. Towards Better Understanding of Artifacts in Variant Calling from High-Coverage Samples. Bioin-
formatics. 2014; 30(20):2843–51. doi: 10.1093/bioinformatics/btu356 PMID: 24974202; PubMed Cen-
tral PMCID: PMC4271055.

14. Van der Auwera G, Carneiro M, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From FastQ
Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Current
Protocols in Bioinformatics. 2013; 43:11.0.1–.0.33.

15. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation dis-
covery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43(5):491–8.
doi: 10.1038/Ng.806WOS:000289972600023. PMID: 21478889

16. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv:12073907
[q-bioGN]. 2012.

17. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map for-
mat and SAMtools. Bioinformatics. 2009; 25(16):2078–9. doi: 10.1093/bioinformatics/btp352 PMID:
19505943; PubMed Central PMCID: PMC2723002.

18. Raczy C, Petrovski R, Saunders CT, Chorny I, Kruglyak S, Margulies EH, et al. Isaac: ultra-fast whole-
genome secondary analysis on Illumina sequencing platforms. Bioinformatics. 2013; 29(16):2041–3.
doi: 10.1093/bioinformatics/btt314 PMID: 23736529.

19. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SR, ConsortiumWGS, et al. Integrating mapping-,
assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat
Genet. 2014; 46(8):912–8. doi: 10.1038/ng.3036 PMID: 25017105.

20. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of
somatic point mutations in impure and heterogeneous cancer samples. Nature biotechnology. 2013; 31
(3):213–9. doi: 10.1038/nbt.2514 PMID: 23396013; PubMed Central PMCID: PMC3833702.

21. Hansen NF, Gartner JJ, Mei L, Samuels Y, Mullikin JC. Shimmer: detection of genetic alterations in
tumors using next-generation sequence data. Bioinformatics. 2013; 29(12):1498–503. doi: 10.1093/
bioinformatics/btt183 PMID: 23620360; PubMed Central PMCID: PMC3673219.

22. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, et al. SomaticSniper: identification
of somatic point mutations in whole genome sequencing data. Bioinformatics. 2012; 28(3):311–7. doi:
10.1093/bioinformatics/btr665 PMID: 22155872; PubMed Central PMCID: PMC3268238.

23. Saunders CT, WongWS, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic
small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics. 2012; 28(14):1811–7.
doi: 10.1093/bioinformatics/bts271 PMID: 22581179.

24. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and
copy number alteration discovery in cancer by exome sequencing. Genome research. 2012; 22
(3):568–76. doi: 10.1101/gr.129684.111 PMID: 22300766; PubMed Central PMCID: PMC3290792.

ExScalibur Suite for WESGermline and Somatic Mutation Identification

PLOS ONE | DOI:10.1371/journal.pone.0135800 August 13, 2015 12 / 13

http://dx.doi.org/10.1371/journal.pone.0095217
http://www.ncbi.nlm.nih.gov/pubmed/24752294
http://dx.doi.org/10.1371/journal.pone.0041948
http://www.ncbi.nlm.nih.gov/pubmed/22870267
http://dx.doi.org/10.1186/1479-7364-8-14
http://dx.doi.org/10.1186/1479-7364-8-14
http://www.ncbi.nlm.nih.gov/pubmed/25078893
http://dx.doi.org/10.1186/1471-2105-13-8
http://dx.doi.org/10.1186/1471-2105-13-8
http://www.ncbi.nlm.nih.gov/pubmed/22239737
http://dx.doi.org/10.1186/1471-2164-15-S3-S5
http://www.ncbi.nlm.nih.gov/pubmed/25078076
http://dx.doi.org/10.1186/1471-2105-14-S7-S11
http://dx.doi.org/10.1186/1471-2105-14-S7-S11
http://www.ncbi.nlm.nih.gov/pubmed/23815231
http://dx.doi.org/10.1186/1471-2105-15-30
http://www.ncbi.nlm.nih.gov/pubmed/24475911
http://dx.doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://dx.doi.org/10.1093/bioinformatics/btu356
http://www.ncbi.nlm.nih.gov/pubmed/24974202
http://dx.doi.org/10.1038/Ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1093/bioinformatics/btt314
http://www.ncbi.nlm.nih.gov/pubmed/23736529
http://dx.doi.org/10.1038/ng.3036
http://www.ncbi.nlm.nih.gov/pubmed/25017105
http://dx.doi.org/10.1038/nbt.2514
http://www.ncbi.nlm.nih.gov/pubmed/23396013
http://dx.doi.org/10.1093/bioinformatics/btt183
http://dx.doi.org/10.1093/bioinformatics/btt183
http://www.ncbi.nlm.nih.gov/pubmed/23620360
http://dx.doi.org/10.1093/bioinformatics/btr665
http://www.ncbi.nlm.nih.gov/pubmed/22155872
http://dx.doi.org/10.1093/bioinformatics/bts271
http://www.ncbi.nlm.nih.gov/pubmed/22581179
http://dx.doi.org/10.1101/gr.129684.111
http://www.ncbi.nlm.nih.gov/pubmed/22300766


25. Kim S, Jeong K, Bhutani K, Lee J, Patel A, Scott E, et al. Virmid: accurate detection of somatic muta-
tions with sample impurity inference. Genome biology. 2013; 14(8):R90. doi: 10.1186/gb-2013-14-8-
r90 PMID: 23987214; PubMed Central PMCID: PMC4054681.

26. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human
genomes. Nature. 2012; 491(7422):56–65. doi: 10.1038/nature11632 PMID: 23128226; PubMed Cen-
tral PMCID: PMC3498066.

27. Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome.
Nature. 2012; 489(7414):57–74. doi: 10.1038/nature11247 PMID: 22955616; PubMed Central PMCID:
PMC3439153.

28. Derrien T, Estelle J, Marco Sola S, Knowles DG, Raineri E, Guigo R, et al. Fast computation and appli-
cations of genomemappability. PloS one. 2012; 7(1):e30377. doi: 10.1371/journal.pone.0030377
PMID: 22276185; PubMed Central PMCID: PMC3261895.

29. Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA (URL: http://evs.gs.
washington.edu/EVS/), accessed January, 2013.

30. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating
the relative pathogenicity of human genetic variants. Nat Genet. 2014; 46(3):310–5. doi: 10.1038/ng.
2892 PMID: 24487276; PubMed Central PMCID: PMC3992975.

31. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server
for predicting damaging missense mutations. Nature methods. 2010; 7(4):248–9. doi: 10.1038/
nmeth0410-248 PMID: 20354512; PubMed Central PMCID: PMC2855889.

32. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the
world's knowledge of somatic mutations in human cancer. Nucleic acids research. 2014. doi: 10.1093/
nar/gku1075 PMID: 25355519.

33. LandrumMJ, Lee JM, Riley GR, JangW, RubinsteinWS, Church DM, et al. ClinVar: public archive of
relationships among sequence variation and human phenotype. Nucleic acids research. 2014; 42
(Database issue):D980–5. doi: 10.1093/nar/gkt1113 PMID: 24234437; PubMed Central PMCID:
PMC3965032.

34. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-through-
put sequencing data. Nucleic acids research. 2010; 38(16):e164. doi: 10.1093/nar/gkq603 PMID:
20601685; PubMed Central PMCID: PMC2938201.

35. RStudio_Inc. shiny: Easy web applications in R. URL: http://shinyrstudiocom. 2014.

36. Cingolani P, Sladek R, Blanchette M. BigDataScript: a scripting language for data pipelines. Bioinfor-
matics. 2015; 31(1):10–6. doi: 10.1093/bioinformatics/btu595 PMID: 25189778; PubMed Central
PMCID: PMC4271142.

37. VdAuwera G. A primer on parallelism with the GATK. GATK documentation URL: http://googl/ia2l6I.
2013.

38. Riley J. StarCluster website: http://star.mit.edu/cluster.

39. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo
acute myeloid leukemia. The New England journal of medicine. 2013; 368(22):2059–74. doi: 10.1056/
NEJMoa1301689 PMID: 23634996; PubMed Central PMCID: PMC3767041.

40. Andrews S. FastQC: A quality control application for high throughput sequence data., Babraham Insti-
tute. Project page: http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc. 2012.

41. John JS. SeqPrep: Tool for stripping adaptors and/or merging paired reads with overlap into single
reads. URL: https://githubcom/jstjohn/SeqPrep. 2011.

42. Garrison E. vcflib: a C++ library for parsing and manipulating VCF files. URL: https://githubcom/ekg/
vcflib. 2012.

43. Tan A, Abecasis GR, Kang HM. Unified representation of genetic variants. Bioinformatics. 2015; 31
(13):2202–4. doi: 10.1093/bioinformatics/btv112 PMID: 25701572; PubMed Central PMCID:
PMC4481842.

44. Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, et al. Integrating human sequence
data sets provides a resource of benchmark SNP and indel genotype calls. Nature biotechnology.
2014; 32(3):246–51. doi: 10.1038/nbt.2835 PMID: 24531798.

45. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative geno-
mics viewer. Nature biotechnology. 2011; 29(1):24–6. doi: 10.1038/nbt.1754 PMID: 21221095;
PubMed Central PMCID: PMC3346182.

46. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance
genomics data visualization and exploration. Briefings in bioinformatics. 2013; 14(2):178–92. doi: 10.
1093/bib/bbs017 PMID: 22517427; PubMed Central PMCID: PMC3603213.

ExScalibur Suite for WESGermline and Somatic Mutation Identification

PLOS ONE | DOI:10.1371/journal.pone.0135800 August 13, 2015 13 / 13

http://dx.doi.org/10.1186/gb-2013-14-8-r90
http://dx.doi.org/10.1186/gb-2013-14-8-r90
http://www.ncbi.nlm.nih.gov/pubmed/23987214
http://dx.doi.org/10.1038/nature11632
http://www.ncbi.nlm.nih.gov/pubmed/23128226
http://dx.doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
http://dx.doi.org/10.1371/journal.pone.0030377
http://www.ncbi.nlm.nih.gov/pubmed/22276185
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://dx.doi.org/10.1038/ng.2892
http://dx.doi.org/10.1038/ng.2892
http://www.ncbi.nlm.nih.gov/pubmed/24487276
http://dx.doi.org/10.1038/nmeth0410-248
http://dx.doi.org/10.1038/nmeth0410-248
http://www.ncbi.nlm.nih.gov/pubmed/20354512
http://dx.doi.org/10.1093/nar/gku1075
http://dx.doi.org/10.1093/nar/gku1075
http://www.ncbi.nlm.nih.gov/pubmed/25355519
http://dx.doi.org/10.1093/nar/gkt1113
http://www.ncbi.nlm.nih.gov/pubmed/24234437
http://dx.doi.org/10.1093/nar/gkq603
http://www.ncbi.nlm.nih.gov/pubmed/20601685
http://shinyrstudiocom
http://dx.doi.org/10.1093/bioinformatics/btu595
http://www.ncbi.nlm.nih.gov/pubmed/25189778
http://googl/ia2l6I
http://star.mit.edu/cluster
http://dx.doi.org/10.1056/NEJMoa1301689
http://dx.doi.org/10.1056/NEJMoa1301689
http://www.ncbi.nlm.nih.gov/pubmed/23634996
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc
https://githubcom/jstjohn/SeqPrep
https://githubcom/ekg/vcflib
https://githubcom/ekg/vcflib
http://dx.doi.org/10.1093/bioinformatics/btv112
http://www.ncbi.nlm.nih.gov/pubmed/25701572
http://dx.doi.org/10.1038/nbt.2835
http://www.ncbi.nlm.nih.gov/pubmed/24531798
http://dx.doi.org/10.1038/nbt.1754
http://www.ncbi.nlm.nih.gov/pubmed/21221095
http://dx.doi.org/10.1093/bib/bbs017
http://dx.doi.org/10.1093/bib/bbs017
http://www.ncbi.nlm.nih.gov/pubmed/22517427

