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Summary

Testing for Hardy–Weinberg equilibrium is ubiquitous and has traditionally been carried out via 

frequentist approaches. However, the discreteness of the sample space means that uniformity of p-

values under the null cannot be assumed, with enumeration of all possible counts, conditional on 

the minor allele count, offering a computationally expensive way of p-value calibration. In 

addition, the interpretation of the subsequent p-values, and choice of significance threshold 

depends critically on sample size, because equilibrium will always be rejected at conventional 

levels with large sample sizes. We argue for a Bayesian approach using both Bayes factors, and 

the examination of posterior distributions. We describe simple conjugate approaches, and methods 

based on importance sampling Monte Carlo. The former are convenient because they yield closed-

form expressions for Bayes factors, which allow their application to a large number of single 

nucleotide polymorphisms (SNPs), in particular in genome-wide contexts. We also describe 

straightforward direct sampling methods for examining posterior distributions of parameters of 

interest. For large numbers of alleles at a locus we resort to Markov chain Monte Carlo. We 

discuss a number of possibilities for prior specification, and apply the suggested methods to a 

number of real datasets.
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1. Introduction

The testing of Hardy–Weinberg equilibrium (HWE) is an important step in many analyses of 

genetic data. Frequentist methods are popular for testing HWE, with χ2 and exact tests 

providing the usual implementations. There are a number of important complications that 

require consideration when such approaches are used. A first problem is that the discreteness 

of the sample space leads to nonuniformity of p-values under the null (Rohlfs and Weir, 

2008). An additional major problem with frequentist tests is how to decide upon a threshold 

for significance, in particular as a function of the sample size. When the exact test is used, 

computation is an issue when the number of alleles at the locus is not small (Guo and 

Thompson, 1992; Huber et al., 2006). Recently, there has been great interest in testing for 
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HWE in genome-wide association studies (GWAS) in which departure from HWE may 

indicate problems with quality control for the SNP in question (Wigginton, Cutler, and 

Abecasis, 2005).

We describe Bayesian approaches to examination of HWE based on Bayes factors for 

testing, and scrutiny of posterior distributions for interpretation. The discreteness of the 

sample space causes no complications for the Bayesian approach because all inference is 

conditional on the configuration of observed counts so there is no need to consider 

hypothetical data realizations.

The structure of this article is as follows. In Section 2, we state the Hardy–Weinberg law, 

and describe frequentist approaches to its testing. Section 3 describes the Bayesian approach 

to testing and estimation based on conjugate analysis and Monte Carlo methods, and Section 

4 applies the approaches to a number of previously considered datasets. We provide a 

discussion in Section 5, while an appendix contains mathematical details.

2. Background

2.1 Diallelic Markers

We first consider a diallelic marker with alleles A1 and A2 and population frequencies of p1 

and 1 – p1. For genotypes A1A1, A1A2, A2A2 the population frequencies are denoted p11, p12, 

p22. Let n11, n12, n22 denote the observed genotype frequencies which, under independent 

sampling, follow the multinomial distribution:

(1)

where n = (n11, n12, n22), p = (p11, p12, p22), and . In a large random-mating 

population, in the absence of migration, mutation, natural selection, and assortative mating, 

HWE corresponds to the frequencies of A1 homozygotes, heterozygotes, and A2 

homozygotes being , 2p1(1 – p1), and (1 – p1)2. Hence the HWE model and the saturated 

model have one and two parameters, respectively. There are various ways in which the 

saturated model space can be parameterized (Weir, 1996). We will consider the fixation 

index parameter (also called the inbreeding coefficient), f, whose use gives

so that f = 0 recovers the HWE model. Examining point and interval estimates for f yields 

insight into departures from HWE: positive values are manifested in an excess of 

homozygotes (and may indicate inbreeding) while negative values correspond to an excess 

of heterozygotes. Defining pmin = min(p1, 1 – p1), the range of f is ( ), and so 

depends on the allele frequencies, which complicates inference. In a GWAS, f > 0 may 

indicate population stratification, while f < 0 may occur if there are regions of low-copy 

repeats, leading to an increase in the number of apparent heterozygotes (Wigginton et al., 

2005).
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2.2 Multiallelic Markers

The generalization to k alleles, A1 , . . . , Ak, is relatively straightforward. In an obvious 

notation let pij be the frequency of genotype AiAj , and nij be the observed count, i, j = 

1 , . . . , k, j ≥ i. The likelihood is again multinomial:

(2)

where n = (n11, n12 , . . . , nkk), and p = (p11, p12 , . . . , pkk) are k(k + 1)/2-dimensional 

vectors and  Under HWE , and pij = 2pipj , i, j = 

1 , . . . , k, j ≥ i. We can parameterize the saturated model as 

 so that we have introduced a set of fixation 

indices fij (Weir, 1996; Ayres and Balding, 1998); fij = 0 for all i ≠ j recovers the HWE 

model. Again we may examine estimates of fij to discover the reasons for departure from 

HWE; a positive/negative fij indicates a deficiency/excess of heterozygotes of type AiAj. A 

disadvantage of this model is that the fixation indices are on awkward ranges: 

 (so that the lower bound can extend below −1, which is not true for the 

model with a single f), which can produce difficulties for inference.

An interesting submodel corresponds to fij = f, and is known as the inbreeding model 

because all pairs of allele frequencies are assumed to be equally perturbed. Under this 

model: , , and , where pmin is the 

minimum of the allele frequencies. Under HWE the multinomial likelihood (2) takes the 

form

(3)

2.3 Frequentist Approaches

Frequentist asymptotic χ2 and exact tests provide the most common approaches to the 

testing of HWE (Weir, 1996). The exact test is recommended (Balding, 2006) because it 

does not depend on large sample sizes, and the χ2 test can have inaccurate type I errors as 

documented by Wigginton et al. (2005). We concentrate on the exact test. For two alleles, 

one proceeds by considering the distribution of the counts conditional on the observed 

numbers of A1 alleles, n1 = 2n11 + n12, to give, under the null
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The null of HWE is rejected if the observed data fall into the tails of this distribution, with 

the tail defined by the specified significance level. In the multiallelic case the enumeration 

of the counts in the tails may be computationally expensive and a number of Monte Carlo 

algorithms have been proposed (Guo and Thompson, 1992; Huber et al., 2006). In general 

the distribution of the p-value under the null is not uniform due to the discreteness of n12 

and so enumeration of all possible tables consistent with n1 is advised to obtain the 

empirical p-value distribution (Rohlfs and Weir, 2008).

Maximum likelihood estimates (MLEs) of the allele frequencies and parameters of interest 

are readily available from the multinomial likelihood, though inference requires asymptotic 

arguments, and the awkward constraints on the inbreeding coefficient/fixation indices make 

the construction of intervals that obey the constraints difficult.

3. Bayesian Approaches

Bayesian approaches have been described by a number of authors. Altham (1971) showed 

the close link between the exact test and a posterior tail area under a Dirichlet prior, while 

Pereira and Rogatko (1984) considered the two allele case with estimation and testing via 

Bayes factors being carried out with Dirichlet priors. Lindley (1988) also considered this 

case and parameterized in terms of  and . HWE corresponds to 

, or equivalently α = 0. When α = 0, , where p1 is the frequency of 

allele A1. An advantage of this parameterization is that α and β are defined over the whole 

real line, which simplifies inference. A disadvantage is the lack of interpretability of the 

parameters, which makes prior specification difficult. Shoemaker, Painter, and Weir (1998) 

considered estimation for the two allele case and placed prior distributions on either the 

allele frequencies or on the disequilibrium parameter , which (as with f) is 

subject to awkward constraints; these authors used numerical integration to obtain the 

posterior distribution. Ayres and Balding (1998) considered estimation for the fixation 

indices model, with inference carried out using Markov chain Monte Carlo (MCMC). 

Montoya-Delgado et al. (2001) use the Bayes factor as a test statistic. Consonni, Gutierrez-

Pena, and Veronese (2008) discuss various methods for choosing “compatible” priors for 

nested models, with particular reference to the HWE model.

3.1 Bayes Factors

The Bayesian approach to hypothesis testing requires consideration of the Bayes factor 

(Kass and Raftery, 1995), which is the probability of the data under the null divided by the 

probability of the data under the alternative. In the HWE context the Bayes factor (BF) is 

given by

(4)

where θ represent a vector of parameters under the null and λ an additional set of parameters 

under the alternative hypothesis, with prior distribution π(θ) under the null and joint prior 

π(θ, λ) under the alternative. A conjugate choice for the parameters under both the null and 
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saturated hypotheses is the Dirichlet distribution. In the k allele case, for the saturated 

model, let Dir(v) with v = (v11, v12 , . . . , vkk) denote the Dirichlet distribution with 

parameters v and density:

where pij > 0 and . Combining this prior on genotype frequencies with the 

multinomial likelihood gives the Dirichlet posterior Dir(v + n), in an obvious notation. The 

conjugate prior under the null, Dir(w) with w = (w1 , . . . wk) follows in an analogous fashion 

(and is a prior on allele frequencies) to give the posterior Dir(w + m), where m = (m1 , . . . , 

mk) and .

In the diallelic case the conjugate priors Dir(w1, w2) and Dir(v11, v12, v22) under the null and 

alternative lead to the Bayes factor:

(5)

where w = w1 + w2 and v = v11 + v12 + v22 (Consonni et al., 2008). For k alleles and under 

conjugate priors the normalizing constants for the HWE and saturated models are available 

in closed form and are given by:

(6)

(7)

where  and . The ratio of equation (6) to equation (7) gives the 

Bayes’ factor, of which (2) is the special case when k = 2.

With nested models, as in the HWE context, an appealing specification is one under which 

π(θ | H0) = π(θ | H1), so that when comparing the data under the null and alternative models 

we are examining whether the addition of the extra set of parameters that define the 

alternative leads to a better explanation of the data. This relationship does not hold under 

conjugate specifications for the null and alternative, but does hold for the following 

specification for k = 2. Under the alternative suppose we assume π1(p11, p12, p22) is 
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Dir(1,1,1). To obtain a consistent prior under the null we reparameterize from (p11, p12, 1 – 

p11 – p12) to (p1, p12, 1 – p1 p12/2) and then integrate over p12 to give:

(8)

For these priors the Bayes factor is again available in easily computable form with the 

denominator as in the conjugate case, i.e., equation (7) with k = 2 and v = (1, 1, 1), and

where Be(a, b) = Γ(a)Γ(b)/Γ(a + b) and  is the 

incomplete beta function (which is straightforward to calculate). Under the Dir(1,1,1) prior 

the probability that the inbreeding coefficient f is greater than 0 is 0.67, showing that the 

implications of innocuous looking priors should be carefully examined.

Often we will wish to specify nonconjugate priors, for increased flexibility. For example, in 

the inbreeding single f model, prior information may exist on the coefficient f for which, 

recall, fmin ≤ f ≤ 1, where . We require a joint prior for p,f and we assume π(p,f) 

= π(p) × π(f|p), with an  prior for , which gives

(9)

as a prior for f, where the final term corresponds to the Jacobian |dλ/df| (see Appendix). For 

prior specification we choose two probabilities, along with their corresponding quantiles, for 

f, and then solve for μλ , σλ. Much data are available on the possible sizes of f. For example, 

Table 7.3 of Cavalli-Sforza and Bodmer (1971) gives estimates of f for a range of human 

populations. It is possible that f < 0, for example, due to avoidance of mating relatives, and 

through selection for heterozygozity.

For the single f model, and with the prior p = (p1 , . . . , pk) ~ Dir(w) under the null, we may 

use importance sampling to evaluate the denominator of the Bayes factor (4). To obtain an 

efficient proposal we parameterize in terms of the set (θ, λ), where θ = (θ1 , . . . , θk–1) with 

θi = log(pi/pk), i = 1 , . . . , k – 1. Under this parameterization the restrictions on p and the 

awkward constraints on f|p are automatically satisfied, and (θ, λ) are defined on , which is 

desirable for finding an efficient importance sampling proposal. Under the alternative we 

have p ~ Dir(w) multiplied by equation (9) and so require

(10)
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(11)

where p = s(θ) and f = t(θ, λ) are the reverse transformations and J is the Jacobian for the 

transformation from (p, f) → (θ, λ). Details are contained in the Appendix. For small 

numbers of alleles, we sample directly from the prior as in (10), which is a computationally 

simple approach (because the estimator is simply the likelihood averaged with respect to the 

prior). This strategy is computationally expensive if either the number of alleles or the 

sample size is large, however, because the likelihood will be relatively peaked and so the 

majority of the points will provide essentially zero contribution. As an alternative we may 

take g(·, ·) in equation (11) as a k-dimensional normal distribution. We run an MCMC 

sampler (coded in the WinBUGS software, Spiegelhalter, Thomas, and Best, 1998) and take 

the posterior mean vector and the posterior variance–covariance matrix of (θ, λ) as the 

moments of g(·, ·).

Once the Bayes factor is evaluated a decision theory approach to testing requires the 

specification of the prior odds (PO) on H0, PO = π0/(1 – π0), where π0 = Pr(H0), and the 

ratio of costs of type II to type I errors, R = CII/CI. The decision theory solution is to accept 

H1 if BF × PO < R. In contrast, frequentist hypothesis testing must specify the significance 

threshold α. The choice of PO and R is not straightforward, but at least it is clear what is 

being specified rather than having the implicit choices in a p-value threshold (Wakefield, 

2009). To inform the choices, one may carry out simulations to examine the type I and type 

II errors associated with particular values of PO and R.

If only the ranking of discrepancies from HWE is required (for example in a GWAS in 

which HWE is examined in controls for a large number of SNPs) then if PO and R are 

constant across SNPs the ranking can be based on the Bayes factors alone, and there is no 

need to specify PO and R.

3.2 Estimation

Exploitation of conjugate prior distributions allows closed form inference for allele 

frequencies under HWE, and under the saturated alternative model for the genotype 

frequencies, but such closed form inference is not available for the fixation indices. 

However, it is straightforward to obtain samples for these indices, by simple transformation 

of the samples for p. Specifically, if p(s), s = 1 , . . . , S represent samples from the posterior 

for the collection of geno-type frequencies, pij, then  with 

, .

For the f model we cannot exploit conjugacy but may use a rejection algorithm with 

sampling from the prior if the number of alleles is small, with MCMC being used otherwise.
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4. Examples

4.1 Four Group Data

We first analyze the four class genotype data that have been previously analyzed by a 

number of authors (Louis and Dempster, 1987; Guo and Thompson, 1992). The data are 

given by

The exact p-value for these data is 0.01744, which under conventional levels would be 

deemed as showing mild evidence of departure from HWE. These data are described in 

Thomson et al. (1986) and concern the antigen class of 45 French type 1 diabetes patients, 

with the classes being DR1, DR3, DR4, and Y, a fourth class corresponding to all other 

antigens. In our notation these classes correspond to (A1, A2, A3, A4). The interest here is in 

the mode of inheritance of type 1 diabetes, with a hypothesized recessive model being 

equivalent to the HWE model (Thomson, 1983). The translation into the HWE framework is 

as follows. Assume a hypothetical two-locus model with k = 4 alleles at one (antigen) locus 

along with a second disease locus. Under a recessive model of inheritance we require two 

disease alleles, D, and among cases we may consider the probabilities of obtaining the 

different antigen combinations under the recessive model:

where AiD/AjD are the possible genotypes of diseased individuals, for i, j = 1 , . . . , k. 

Thomson (1983) parameterized the model in terms of ki = Pr (Ai | D), and let f2 be the 

probability of disease given two copies of the disease allele, and pD the frequency of the 

disease allele. Under the recessive model two disease alleles are required and so

where the summations within the square brackets equal 1 because we have added over the 

set of conditional allele probabilities. Hence

which is equivalent to HWE. Deviations from this model suggest that the recessive model 

does not hold. In particular we may interpret, for example, negative f34 as an excess of A3A4 

genotypes among diseased individuals. The single f model is more difficult to interpret in 

this context but corresponds to a general excess (negative f) or deficit (positive f) of 

heterozygotes.
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For these data we fit the HWE (recessive) model, along with the single f and saturated 

models. For the HWE and saturated models we assume conjugate Dirichlet priors with all 

parameters set to 1. This prior is flat over the simplex of probabilities, but is far from 

uninformative on each of the fixation indices. Figure 1a gives the marginal prior density for 

a generic fixation index; the prior probability that this fixation index is greater than 0 is 0.64. 

For the single f model we assume the transformed normal prior model described in Section 

3.1, and fix prior probabilities Pr(f < 0) = 0.5 and Pr(f < 0.26) = 0.95 to give μλ = −2.95, σλ = 

1.07. The normalizing constants for the recessive and saturated models are given by 

equations (6) and (7) and are 1.39 × 10−11 and 1.88 × 10−10, respectively, to give a Bayes 

factor of 0.074. Hence the data are 14 times more likely under the saturated model. The 

probability of the data under the single f model is 1.36 × 10−10 so that the data are 10 times 

more likely under this model when compared to the recessive (HWE) model, but slightly 

less likely than under the saturated model. The normalizing constant under the single f 

model was evaluated using importance sampling Monte Carlo, with sampling from both the 

prior, and from a four-dimensional normal (as described in Section 3.1), both being 

computationally feasible for these data.

Figure 2 gives prior (top row) and posterior (bottom row) distributions from the single f 

model. We provide the prior/posterior for f and the single allele frequency p1 (for 

illustration). Under the single f model Pr(f < 0 | n) = 0.994. The MLE is indicated as the 

cross on the scatterplot in panel (f). The MLE  for the single f model lies on the lower 

boundary of its range, which led to instability in attempting to derive a standard error. Figure 

2f illustrates this problem with the posterior density concentrated near the boundary. When a 

parameter lies close to its boundary, it is often indicative of model inadequacy and here we 

interpret f close to its boundary as reflecting an inadequacy of the single f model. 

Examination of posterior interval estimates under the general fixation model is revealing in 

this respect.

In Figure 3, we give posterior intervals along with posterior medians and MLEs for each of 

the fixation indices. The posterior medians are all pulled toward 1, relative to the MLEs, due 

to the prior, see Figure 1a. We see that the fixation index associated with the A1A4 

combination is furthest from zero and negative, and most responsible for the negative 

estimate of f in the single inbreeding coefficient model. The heterogeneity of the fixation 

indices explains why the data are slightly more consistent with the saturated model than the 

single f model. It is interesting to observe that the A1A4 combination was not noteworthy in 

these data using the method implemented in Thomson et al. (1986). However, they comment 

that in the German population that they also examined (and in a Caucasian population 

investigated in Winnearls et al., 1984) there was an excess of A1A4 individuals, which is 

consistent with the posterior interval observed in Figure 3.

4.2 Nine Group Data

Our second example was also analyzed by Guo and Thompson (1992) and consists of rhesus 

data on 8297 individuals with nine groups. The (exact) p-value for these data is 0.71. Under 

the HWE null we assume the Dirichlet prior with w = (1, 1, 1, 1, 1, 1, 1, 1, 1) so that this 

prior is uniform on the simplex of allele frequencies. Under the single f alternative we use 
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the information in Table 7.3 of Cavalli-Sforza and Bodmer (1971), which contains estimates 

of f that are predominantly less than 0.03. Consequently, under the single f model we assume 

a prior on f that has 50% and 95% points of 0 and 0.03. We obtain normalizing constants for 

the HWE and the single f model 1.3 × 10−53 and 5.1 × 10−54 so that the data are 2.5 times 

more likely under the HWE model, as compared to the single f model. For these data, 

sampling from the prior was not feasible, so instead importance sampling Monte Carlo was 

implemented using a nine-dimensional normal distributed with moments estimated from an 

MCMC run. For illustration, the probability of the data under the saturated model with 

conjugate Dirichlet prior with a vector of 45 1's is 8.7 × 10−119, emphatically ruling out this 

model. The “model” being summarized by the normalizing constant consists of the 

likelihood and the prior, and the conjugate prior assumed here is very unappealing for these 

data because it gives priors on the fixation indices that are not realistic. Figure 1b gives the 

induced marginal prior on a generic fixation index and shows that the distribution is not 

concentrated close to zero as is reasonable in this context.

Under the single f model the (2.5%, 50%, 97.5%) posterior quantiles are (−0.0001, 0.0002, 

0.0106) so that the 95% credible interval contains zero (the MLE is 0.01). For these data we 

would conclude that there is not a genetically significant departure from HWE.

4.3 Genome-Wide Data

We illustrate the use of Bayes factors for examination of HWE in GWAS. In this context, 

testing for HWE is used as a method for carrying out quality control, and in particular to 

detect SNP specific genotyping errors. Fisher's exact test is the recommended frequentist 

procedure (Wigginton et al., 2005; Balding, 2006), but there are a number of difficulties in 

implementation. In a multiple testing situation one must select a criterion to control in order 

to specify a significance threshold, and by far the most common approach is a Bonferroni 

correction. However, the rationale for control of the family-wise error rate (FWER) is not 

obvious in a genome-wide quality context when one would not expect all nulls to be true. 

Even if one accepts that this is the correct quantity to control, the choice of a specific 

threshold is difficult. There is no agreed threshold in the literature, as Wittke-Thompson, 

Pluzhnikov, and Cox (2005, p. 967) state, “. . . there is little consensus on the correct 

thresholds for identifying DHW (departure from HWE) in the context of large-scale studies” 

(I have added the expression in italics). In practice a range of thresholds have been used: 

Easton et al. (2007) use a threshold of 10−5 for breast cancer (227,876 SNPs, with 400 

controls); Libioulle et al. (2007) use 10−3 for Crohn's disease (317,5497 SNPs, with 928 

controls); Zeggini et al. (2007) use 10−4 for type 2 diabetes (459,448 SNPs, with 2938 

controls); Stacey et al. (2007) use 10−10 (317,503 SNPs, with 11,563 controls). It would 

seem desirable to have a p-value threshold that decreases with increasing sample size 

(because in the limit we would not want to make any type I errors), but this does not seem to 

be exercised in practice, because power is not considered when a threshold is determined. 

Extending this idea suggests that the threshold should be minor allele frequency (MAF) 

specific also, as power is a function of the MAF. The Bayes factor approach explicitly 

considers power (i.e., sample size and MAF) in its calculation because the denominator is 

the probability of the data under the alternative. The threshold is a function of the prior odds 

and the costs of the two types of error. Using the Bayes factor as a test statistic gives a 
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procedure by which the type I and type II errors decrease to zero with increasing sample size 

(Wakefield, 2009).

A common practice in GWAS is to plot the observed –log10 p-value versus that expected 

under the null, where the latter are derived assuming uniformity of the p-value. Due to the 

discreteness of the test statistic p-values derived from an exact test are not uniform under the 

null, however. The correct MAF-specific distribution can be derived by enumerating all 

counts under the null for that MAF in the sample. In this context it is also difficult to use the 

q-value methodology (Storey, 2003) due to the nonuniformity of the null distribution.

We examine data from Klein et al. (2005), who reported a GWAS for age-related macular 

degeneration; being one of the first GWAS there were just 96 cases and 50 controls. We 

examine HWE for 116,212 SNPs in controls. We first carried out a number of quality 

control measures, and for comparison purposes use the same criteria as Klein et al. (2005). 

Specifically, SNPs were removed if they were called in less than 85% of individuals or if the 

MAF was less than 1%; this left 102,640 SNPs. In Klein et al. (2005), a Bonferroni 

correction was applied to control the FWER at 5%, to give a p-value threshold of 4.9 × 10−7. 

Figure 4 displays various summaries for these data. In panel (a) we plot –log10 p-values 

from the χ2 test versus their exact test counterparts and we see a large degree of 

dissimilarity, which is not surprising given the small sample sizes here. The discreteness of 

the p-values from the exact test is apparent also, and the distribution away from zero (which 

corresponds principally to null SNPs) is far from uniform. To reinforce this point we plot the 

histogram of exact p-values in panel (b), the most probable configuration of genotypes has 

probability 1 and for these data more than a third (consisting of 37,253 SNPs) have a p-value 

of 1. This plot shows a great similarity to Figure 2 of Rohlfs and Weir (2008) (except that 

we have truncated the vertical axis so that more detail in the bulk of the distribution can be 

revealed). In panel (c), we plot the observed –log10 p-values versus those expected under a 

uniform null. A plot containing this information is almost universally presented in GWAS, 

but it is not strictly valid because it assumes uniformity under the null. The Bonferroni 

threshold is indicated on this plot and leads to HWE being rejected for 191 SNPs.

Turning now to a Bayesian approach we assume Dir(1,1,1) priors under the alternative and 

compare results based on two priors under the null, namely Dir(1,1) and the triangular 

distribution, equation (8). In terms of computation time, the Bayes factor calculations took 

approximately half the time of the exact p-values (which were calculated using the hwexact 
function in R). In Figure 4d, we plot –log10 Bayes factors (under the conjugate prior) versus 

–log10 p-values (from the exact test), and we see a very close correspondence, particularly 

for the SNPs that deviate from HWE.

To pick a threshold for rejection of HWE using Bayes factors we need to specify the PO of 

H0, and the ratio of costs of type II to type I errors. In this context we would expect π1 = 1 – 

π0 to be very close to 0 (though not as close as the prior on a SNP being associated with 

disease), while we would not want to unnecessarily exclude a SNP from an association 

analysis, which suggests  (if in the association stage a signal is found, then clearly one 

would closely examine the control data from such a SNP). We choose π0 = 0.999 and R = 

1/1000, which leads to a Bayes factor threshold of 10−7, so that the data have to be 107 times 
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more likely under the alternative than under the null before HWE is rejected. This leads to 

112 rejections under the conjugate prior Bayes factor and 100 under the triangular prior 

Bayes factor (we do not plot the latter as they are in close agreement with those under the 

conjugate prior).

In a GWAS context, another approach to prior specification is to recognize that under the 

alternative there may be an excess of heterozygotes, which could be reflected in the Dir(v11, 

v12, v22) prior under the alternative by taking v11 = v22 < v12.

5. Discussion

In this article, we have described a Bayesian approach to examination of HWE, using a 

variety of approaches to implementation. Depending on one's perspective the Bayesian need 

for prior specification may be judged a blessing or a curse. Certainly, great care is required 

in the specification of a prior distribution, as illustrated in the nine-allele example in which 

the “uniform over the simplex” prior under the saturated alternative was seen to be grossly 

inappropriate. However, under a particular prior, Bayes factors may be produced with the 

same ordering as asymptotic p-values, as we now briefly discuss.

For illustration, consider the two allele case and suppose we have a p-value based on the 

Wald statistic for f with MLE

and asymptotic variance

(12)

The χ2 statistic is given by . As shown elsewhere (Wakefield, 2007, 2009) an 

asymptotic Bayes factor (ABF) may be obtained by combining the “likelihood” 

 with prior f ~ N(0, W) to give

(13)

where  and W is the prior variance for f. If we take W independent of n then 

ABF tends to ∞ and 0 under the null and alternative respectively, as n → ∞, as desired. The 

ABF (13) is dependent on z only, and hence the Wald p-value (or equivalently the χ2 

statistic), when we take the prior variance W = K × V(0) = K/n, where K is a constant that 

does not depend on the data. This p-value prior gives
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and under this prior identical rankings of significance will be achieved between ABFp and 

the χ2 statistic. The dependence of the prior on n is troubling and leads to the p-value Bayes 

factor being inconsistent under the null because ABFp tends to (1 + K)1/2 as n → ∞, and not 

∞ required. This indicates why p-value thresholds should decrease with increasing sample 

size, see Wakefield (2009) for further discussion.

R and WinBUGS codes to implement the methods presented here are available from http://
faculty.washington.edu/jonno/cv.html. The supplementary material contains the 

WinBUGS code for the single f model.
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Appendix

For simplicity we consider the case of two alleles. We have

where p ~ Beta(1, 1) and . Now consider the transformation (p, f ) 

→ (θ, λ), where θ = log{p/(1 − p) and λ = log {(f − fmin/(1 − f)}. We wish to find the prior 

for θ, λ. We have p = s(θ) = eθ/(1 + eθ) and

The prior for θ, λ is given by

where

and
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(A.1)

(A.2)

(A.3)

(A.4)

so that we can ignore . Hence

where fmin is a function of θ. This is the form that appears (in the general k allele case) in 

equations (10) and (11).
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Figure 1. 
Prior distribution for a generic fixation index with (a) k = 4 alleles, (b) k = 9 alleles, given a 

Dirichlet prior with parameters 1, on the 10 (k = 4) and 45 (k = 9) allele frequencies.
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Figure 2. 
Prior (top row) and posterior (bottom row) distributions based on 5000 samples, for the four 

group data and the single inbreeding coefficient f model. The MLE is indicated as the cross 

in (f). We examine p1 for illustration, and could just as easily have picked p2, p3, or p4.
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Figure 3. 
Posterior summaries and MLEs for the fixation coefficients, in the four group example.
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Figure 4. 
Bayes factor and p-value summaries for the GWAS for age-related macular degeneration 

data: (a) –log10 p-values from a χ2 test versus those from the exact test; (b) histogram of 

exact p-values (vertical axis truncated, the count at a p-value of 1 is indicated); (c) QQ-plot 

of observed versus expected –log10 p-values, assuming uniformity of p-values under the 

null; and (d) –log10 p-values against –log10 Bayes factors. The dashed lines corresponds to 

the Bonferroni threshold (p-value axes) and Bayes factor thresholds (Bayes factor axes).
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