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Species-specific
Transcriptomes are dynamic and unique, with each cell type/tissue, developmental stage and species expressing
a different repertoire of RNA transcripts. Most mRNAs and well-characterized long noncoding RNAs are shaped
with a 5′ cap and 3′ poly(A) tail, thus conventional transcriptome analyses typically start with the enrichment
of poly(A)+ RNAs by oligo(dT) selection, followed by deep sequencing approaches. However, accumulated
lines of evidence suggest that many RNA transcripts are processed by alternative mechanisms without 3′
poly(A) tails and, therefore, fail to be enriched by oligo(dT) purification and are absent following deep sequencing
analyses. We have described an enrichment strategy to purify non-polyadenylated (poly(A)−/ribo−) RNAs
from human total RNAs by removal of both poly(A)+ RNA transcripts and ribosomal RNAs, which led to the
identification of many novel RNA transcripts with non-canonical 3′ ends in human. Here, we describe the
application of non-polyadenylated RNA-sequencing in rhesus monkey and mouse cell lines/tissue, and
further profile the transcription of non-polyadenylated RNAs across species, providing new resources for
non-polyadenylated RNA identification and comparison across species.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Specifications
Organism/cell line/tissue
 Macaca mulatta and Mus musculus

Sex
 Cell lines and Mus musculus tissue

Sequencer or array type
 Illumina HiSeq 2000

Data format
 Raw data: TXT files; analyzed data: bigwig files

Experimental factors
 Embryonic stem cell lines and Mus musculus

hippocampus tissue

Experimental features
 Non-polyadenylated (poly(A)−/ribo−) RNAs

were enriched from total RNAs by removal of
poly(A)+ RNA transcripts and ribosomal RNAs.
Polyadenylated (poly(A)−/ribo−) RNAs were
enriched from total RNAs with oligo(dT) selection.
Gene expression was compared from either
polyadenylated or non-polyadenylated RNA-seq.
Consent
 Cell lines and animal tissue only

Sample source location
 Shanghai, China
Direct link to deposited data

Deposited data can be found at: http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE53942.
oup Leader, CAS-MPG Partner
f Sciences, 320 Yue-Yang Road,

. This is an open access article under
Experimental design, materials and methods

Cell culture, RNA isolation, poly(A)−/ribo− fractionation and RNA-seq

Non-polyadenylated (poly(A)−/ribo−) RNA sequencing has been
successfully performed to explore the repertoire of RNA molecules
without 3′ poly(A) tails in human cell lines [1], followed by identifica-
tion of new types of long noncoding RNAs (lncRNAs) in human [2–4].
However, the landscape of the non-polyadenylated RNA fraction in
other species has not been documented yet.

Here, we characterized non-polyadenylated RNA transcripts from
twomodel organisms, rhesusmonkey andmouse, with a similar strate-
gy as described previously [1]. As indicated in Fig. 1A, total RNAs from
R1 mouse embryonic stem cells (mESCs) and IVF3.2 rhesus monkey
ESCs [5] were individually extracted with Trizol reagent (Life Technolo-
gies, Carlsbad, CA, USA) according to the manufacturer's protocols,
followed by DNase I treatment (Ambion, DNA-free™ Kit) at 37 °C
for 30 min to remove genomic DNA contamination. Total RNAs were
then incubated with oligo(dT) magnetic beads to isolate either
polyadenylated (poly(A)+) RNAs, which were bound to oligo(dT)
beads, or non-polyadenylated RNAs, which were present in the
flow through after incubation. Selection with oligo(dT) magnetic
beads was performed three times to ensure pure poly(A)+ and
non-polyadenylated RNA populations. The non-polyadenylated RNA
population was further processed twice with the RiboMinus kit
(Human/Mouse Module, Invitrogen, Carlsbad, CA, USA) to deplete
most of the abundant ribosomal RNAs and obtain the ribosomal
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Fig. 1. (A) A schematic diagram showing the pipeline of non-polyadenylated (poly(A)−/ribo−) RNA sequencing. (B) Validation of RPPH1 and UBB in R1 mouse embryonic stem cells
(mESCs) by RT-PCR. (C) Classification of poly(A)+, poly(A)− and bimorphic predominant transcripts in mouse and rhesus monkey.
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free non-polyadenylated (poly(A)−/ribo−) RNA population. Two rep-
resentative genes, RPPH1 without a poly(A) tail (non-polyadenylated)
or UBB with a poly(A) tail (polyadenylated), were examined by RT-PCR
(Fig. 1B) to confirm the successful fractionation of poly(A)+ transcripts
and poly(A)−/ribo− transcripts, respectively. RNA fragmentation,
random hexamer-primed cDNA synthesis, linker ligation, size selection
and PCR amplification were performed individually for each sample
according to Illumina protocols. ~30 million 1 × 100 reads for each
sample were acquired with the Illumina Hiseq 2000 system. Quality
control checks of raw sequencing data were performed with FastQC.

RNA-seq alignment

Recently, accumulated lines of evidence have shown that non-
polyadenylated RNAs are ubiquitously transcribed in the human
genome [1]. To obtain comprehensive non-polyadenylated RNA
alignments, sequencing reads were mapped against relevant ge-
nomes (Rhesus: rheMac3, BGI CR_1.0; Mouse: mm9, NCBI37) using
TopHat 2.0.8 (parameters: −g 1 −a 6 −i 50 −microexon-search −
coverage-search −m 2) with existing annotations (Rhesus: RefSeq
Genes, updated on 2013/3/24; Mouse: UCSC Genes, updated on 2011/
5/30). For visualization, bigWig files were generated using UCSC
bedGraphToBigWig V4 from bedGraph files converted from mapped
BAM files through genomeCoverageBed v2.17.0, then uploaded to
the UCSC genome browser. Because gene annotations in rhesus
were not complete, coordinates from human UCSC Genes annotations
(knownGene.txt, updated on 2013/06/30) were converted to the
rheMac3 assembly with LiftOver (parameters: −minMatch=0.1 −
minBlocks=0.5 −fudgeThick) and used as rhesus gene annotations in
the following analyses. Normalized gene expression levels (Reads Per
Kilobase per Million mapped reads, RPKM) were calculated for all the
existing genes (Rhesus: converted human gene annotations; Mouse:
UCSC Genes, updated on 2011/5/30) in each sample.

Gene classification

Genes were classified into the poly(A)− predominant subgroup,
the poly(A)+ predominant subgroup and the bimorphic subgroup
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according to their 3′ end structures using several parameters,
including RPKM values for expression level, fold changes of
poly(A)−/ribo− reads verse poly(A)+ reads, and P-value of fold
change determined by Wald test [1]. Genes with a low expression
(RPKM value b 1 in both the poly(A)−/ribo− dataset and the
poly(A)+ dataset) and/or a low significant change (P-value of fold
change N 0.05, Wald score N −1.96 and b1.96) were discarded
before classification.

1) For genes in the poly(A)− predominant subgroup, the RPKM value
from the poly(A)−/ribo− sample must be greater than or equal
to 1, the fold change of the RPKM value of poly(A)−/ribo− versus
the RPKM value of poly(A)+ must be greater than or equal
to 2, and the P-value of fold change must be smaller than 0.05
(Wald score N 1.96).

2) For genes in the poly(A)+ predominant subgroup, the RPKM
value from the poly(A)+ sample must be greater than or equal
to 1, the fold change of the RPKM value of poly(A)−/ribo− versus
the RPKM value of poly(A)+ must be less than or equal to 0.5,
and the P-value of fold change must be smaller than 0.05 (Wald
score b −1.96).

3) For genes in the bimorphic subgroup, the RPKM value from the
poly(A)+ sample or poly(A)−/ribo− sample must be greater
than or equal to 1, the fold change of the RPKM value of
poly(A)−/ribo− versus the RPKM value of poly(A)+ must be
Fig. 2. The relative expression (normalized read densities) of all histone genes in both the poly(
monkey (B).
between 0.5 and 2, and the P-value of fold change must be smaller
than 0.05 (Wald score N 1.96 or b−1.96).

Although most RefGenes are polyadenylated in rhesus (94%) and
mouse (93%),manyRefGeneswere also grouped into the poly(A)−pre-
dominant or the bimorphic subgroupswith high expression (Fig. 1C). Of
note, numerous non-RefGene transcriptswere also predicted by de novo
Cufflinks assembly, and their detailed classification requires further
examination (data not shown).

Non-polyadenylated transcript characterization

As expected [1,6], replication-dependent histone mRNAs are mostly
expressed without 3′ poly(A) tails in mouse (Fig. 2A) and rhesus
(Fig. 2B) poly(A)−/ribo− RNA-seq datasets, further indicating that
both fractionation and criteria for gene classification in this study are re-
liable. To fully characterize the constitution of the non-polyadenylated
RNA fraction in rhesus and mouse, the poly(A)− predominant
subgroup was further cataloged into different RNA families.

Surprisingly, a large amount of snoRNAswere found in thepoly(A)−
predominant subgroup of rhesus (Fig. 3A, right panel) compared with
human [1] and mouse (Fig. 3A, left panel). SnoRNAs, a class of small
noncoding RNAs, could generally be grouped into C/D box snoRNAs,
carrying conserved boxes C (RUGAUGA, R = purine) and D (CUGA)
near their 5′ and 3′ ends, and H/ACA box snoRNAs, containing the H
A)−/ribo− RNA-seq dataset and the poly(A)+ RNA-seq dataset inmouse (A) and rhesus

image of Fig.�2


Fig. 3. (A) Classification of poly(A)− transcripts in mouse (left panel) and rhesus monkey (right panel). (B) The relative expression (normalized read densities) of all histone genes and
snoRNAs in the poly(A)−/ribo− RNA-seq dataset in mouse (left panel) and rhesus monkey (right panel).
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box (ANANNA) and ACA box sequences, thus sharing high similar
sequence structures that are easy to lead to false annotations. Because
rhesus gene annotations were converted from human genes according
to the sequence similarity, some converted snoRNA annotations in
rhesus may be redundant, albeit with highly consensus sequences
with human snoRNA homologs. To confirm our hypothesis, we checked
the expression level of snoRNAs and histone genes inmouse and rhesus
(Fig. 3B). While in mouse, snoRNAs and histone genes share a similar
expression pattern, the overall expression levels of snoRNAs is low
compared with histone genes in rhesus, suggesting that some lowly
expressed non-snoRNA signals may obstruct the correct transcriptome
profiling of snoRNAs in rhesus so as to result in many false positive
snoRNAs infiltrating the poly(A)− predominant subgroup. Therefore,
more biological experiments and computational predictions are
required to improve gene annotations in rhesus for a better profiling
of non-polyadenylated transcripts.

Discussion

It has been reported that in the human genome lots of non-
polyadenylated transcripts are novel lncRNAs with special structures,
and some lncRNAs could participate in multiple layers of biological
processes (such as alternative splicing [2], transcription regulation [4]
and mircroRNA regulation [7,8]). However, they (like sno-lncRNAs)
showedeven less conservation than other non-conserved polyadenylated
lncRNAs [9], thus challenging current computational and experimental
techniques. For instance, precise prediction of circular RNAs is usual-
ly a bottleneck during conventional transcriptome profiling, because
of their unique circular structures [3,4,7]. This difficulty thus limits
the subsequent analyses of their biogenesis and biological function.
As a result, transcriptome profiling of non-polyadenylated RNA tran-
scripts, a great portion of which consist of uncharacterized and lowly
conserved long noncoding RNAs, is a difficult and time-consuming
process, requiring deliberate and careful design for both the compu-
tational prediction pipeline and further experimental validation.
However, as shown here, polyadenylated and non-polyadenylated
RNA-seq datasets for rhesus and mouse, with relatively pure frac-
tions andmillions of high-quality sequencing reads, offer a particular-
ly useful starting point for comprehensively studying the landscape of
non-polyadenylated transcripts, which will aid in deciphering the mo-
lecular mechanisms driving transcriptome complexity across different
species.
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