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Deregulation of transcription factor (TF) networks is emerging as amajor pathogenic event inmany human cancers
(Darnell, 2002 [1]; Libermann and Zerbini, 2006 [2]; Laoukili et al., 2007 [3]). Small molecule intervention is an at-
tractive avenue to understand TF regulatorymechanisms in healthy and disease state, as well as for exploiting these
targets therapeutically (Koehler et al., 2003 [4]; Berg, 2008 [5]; Koehler, 2010 [6]). However, because of their
physico-chemical properties, TF targeting has been proven to be difficult (Verdine and Walensky, 2007 [7]). The
TF FOXM1 is an important mitotic player (Wonsey and Follettie, 2005 [8]; Laoukili et al., 2005 [9]; McDonald,
2005 [10]) also implicated in cancer progression (Laoukili et al., 2007 [3]; Teh, 2011 [11]; Koo, 2012 [12]) and
drug resistance development (Kwok et al., 2010 [13]; Carr et al., [14]). Therefore, its inhibition is an attractive goal
for cancer therapy. Here, we describe a computational biology approach, by giving detailed insights into methodol-
ogies and technical results, which was used to analyze the transcriptional RNA-Seq data presented in our previous
work (Gormally et al., 2014 [20]). Our Bioinformatics analysis shed light on the cellular effect of a novel FOXM1 in-
hibitor (FDI-6) newly identified through a biophysical screen. The data for this report is available at the public GEO
repository (accession number http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58626).

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Specifications
Subject area
 Biology

More specific
subject area
Biological sciences, Chemical biology, Cancer
Type of data
 Tables, figures with plots and graphs

How data was
acquired
Sequencing done with the Illumina HiSeq 2000 instrument, total
of 12 genomic libraries for different treatment time
Data format
 Raw data: fastq files

Experimental
factors
MCF-7 cells grown in Dulbecco's Modified Eagle Media (Sigma)
and supplemented with 10% fetal bovine serum (Sigma) were
treated with 40 μM of FDI-6 compound for 3, 6 or 9 h.
Experimental
features
RNA for each treatment was extracted using the RNeasy Plus
Mini Kit (Qiagen) and libraries prepared with the Illumina
TruSeq RNA sample prep kit
Data source
location
Cancer Research UK, Cambridge Institute, Cambridge, UK
Data accessibility
 Data available in the public GEO repository http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58626
Value of the data

• This data allows characterizing the effect of a novel FOXM1 inhibitor
on the cellular transcriptional program.
Marsico).

. This is an open access article under
• This data includes replicates and different treatment time points, also
providing temporal resolution for elucidating earlier and later responses.

• The RNA-Seq data is validated with external information obtained from
previous studies, such as microarray [8] and ChIP-Seq [15], therefore
providing an integrated view of the treatment effects.

• This analysis allows the understanding of compound action into cellular
context.

Experimental design

Compound identification

The FDI-6 compoundwas identified in preliminary experiments [20]
through fluorescence polarization assay [16]. Setup runs of the fluores-
cence polarization (FP) assay were performed in 96-well plates and
read on PHERAStar (BMG Labtech) with a 488/520 FP filter. The screen-
ing assaywas scaled down successively to 384- and 1536-well plate for-
mats and read on a ViewLux high-throughput charge-coupled device
(CCD) imager (Perkin-Elmer, Wellesley, MA).

RNA-Seq experiment

MCF-7 cells grown in Dulbecco's Modified Eagle Media (Sigma)
and supplemented with 10% fetal bovine serum (Sigma) were
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Table 1
Summary statistics of sequencing analysis of the RNA-Seq libraries. The columns show (from left to right): treatment time and replicate number; number of aligned reads; total number of
reads after quality filtering; percentage of aligned reads; number of reads assigned uniquely by htseq-count; and percentage of assigned reads out of the aligned ones.

Library # Aligned reads (tophat2) # Reads % Reads aligned # Reads assigned (htseq-count) % Reads assigned

0 h #1 12′212′116 12′569′461 97.2 10′132′961 83.0
0 h #2 7′635′001 7′909′304 96.5 6′161′473 80.7
0 h #3 7′021′389 7′269′544 96.6 5′753′279 81.9
3 h #1 10′122′474 10′503′420 96.4 8′377′551 82.8
3 h #2 5′941′461 6′245′837 95.1 4′891′124 82.3
3 h #3 10′431′708 10′793′766 96.6 8′497′623 81.5
6 h #1 7′036′437 7′304′692 96.3 5′590′755 79.5
6 h #2 6′935′146 7′190′738 96.4 5′519′191 79.6
6 h #3 7′314′462 7′580′633 96.5 5′845′352 79.9
9 h #1 9′719′183 10′033′596 96.9 7′917′493 81.5
9 h #2 6′525′440 6′756′659 96.6 5′250′375 80.5
9 h #3 7′594′156 7′939′613 95.6 6′124′675 80.6
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Fig. 1. Reproducibility analysis of the RNA-Seq data. (A) Hierarchical clustering of gene expression profiles, showing the similarity of different treatment times. See Table 2 for details of
Euclidian distance between paired libraries. h= hours. (B)Multidimensional scaling plot of different time points. Color legend is reported in the upper left corner of the plot. hrs= hours;
dim= dimension; logFC= logarithmof fold change. (C) Differential expression betweenuntreated libraries. Each comparison is run between one library and the other two (e.g. in “Rep 1
vs Rep 2 & 3” replicate 1 indicatesfirst replicate versus the other two (second and third) replicates pulled together). up= up-regulated; down= down-regulated; both=up- and down-
regulated; Rep = replicate.
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treated with 40 μM of FDI-6 compound for 3, 6 or 9 h. RNA for each
treatment was extracted using the RNeasy Plus Mini Kit (Qiagen)
and libraries prepared with the Illumina TruSeq RNA sample prep
Table 2
Euclidean distance between each pair of libraries. Replicates of different treatment time are sho
distance between each replicate pair is shown with the same color-coding. The matrix shows
similar) than pair of libraries belonging to different times.

0h_1 0h_2 0h_3 3h_1 3h_2 3h_3

0h_1 0.0

0h_2 2605.8 0.0

0h_3 2293.1 1357.1 0.0

3h_1 5921.1 5651.1 5221.3 0.0

3h_2 5227.3 4933.5 4780.9 2243.2 0.0

3h_3 4905.8 4823.8 4682.6 2868.5 1049.1 0.

6h_1 5644.6 5760.3 5740.4 4933.9 3927.6 3605.

6h_2 5907.5 5977.5 6008.1 5117.1 4106.2 3823.

6h_3 5434.5 5541.7 5544.4 4963.1 3887.1 3549.

9h_1 6498.5 7012.6 6933.0 6727.2 5904.0 5546.

9h_2 6268.0 6668.7 6543.8 6229.3 5511.7 5209.

9h_3 5945.8 6395.9 6265.5 6286.9 5442.0 5071.
kit. Sequencing was performed using the MiSeq instrument
(Illumina) for a total of ~102 million (M) of reads for the pulled 12
libraries.
wnwith the same colors: red, green, orange and purple for 0, 3, 6 and 9 h, respectively. The
that pairs belonging to the same treatment time have lower distance (i.e., they are more

6h_1 6h_2 6h_3 9h_1 9h_2 9h_3

0

4 0.0

8 788.5 0.0

8 775.7 902.2 0.0

1 2621.2 2594.9 2622.5 0.0

2 2375.7 2382.3 2396.3 1090.0 0.0

8 2382.8 2471.1 2331.2 1256.1 940.6 0.0
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Materials and methods

RNA-Seq processing

Fastq files containing 100 single-end reads, ranging from 6.7 M to
12.6 M reads, were processed with trim-galore (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/) to perform
adapter trimming and low-quality reads filtering. The filtered reads
were then aligned to the human genome (hg19) with tophat, and
transcripts were assigned to gene and counted using htseq-count
(http://www-huber.embl.de/users/anders/HTSeq/doc/overview.
html). See Table 1 for summary statistics.
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Fig. 2.Differential expression and time clustering analysis. (A) Global differential expressionmap
X-axis: logarithm of counts per million of reads (logCPM). Red dots: up-regulated genes (n
(B) Number of genes differentially expressed for each couple of time points. Up = upregulat
point compared to first one; both= some of up and down categories. Abbreviations as in Fig. 1C
time points. hrs = hours. (D) Temporal cluster analysis grouping genes that show similar ch
profiles.
Reproducibility analysis

We performed hierarchical clustering of the 12 libraries by using
the hclust function of the stats package in R (http://www.r-project.
org/) with default parameters. The three replicates of each time
point, untreated, 3, 6 and 9 h of treatment clustered closely together
(Fig. 1A). The Euclidean distance between each library pair shows
that replicates of the same time point have the lower distance,
whereas conditions that are more far apart, such as untreated and
9 hour treatment, have the highest distance values (Table 2). Multi-
dimensional scaling (MDS) plotting was obtained through the
plotMDS function of the limma package in Bioconductor [17]. In this
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implementation, the plot is adapted to display expression values
such that the dimensions selected are the ones that better separate
the data points in terms of their log fold change. We observed good
separation of different conditions and high reproducibility of repli-
cates (Fig. 1B). Further, the treatment data points are separated
from the untreated along the leading log fold change dimension.

Differential expression analysis

Data were normalized and analyzed for differential expression
using the package edgeR of Bioconductor. The function exactTest
was used pairwise to assess differential expression (logarithm of
fold change, logFC) and significance (false discovery rate, FDR) be-
tween any two conditions. To have an empirical estimation of the
variability within our replicates and to help interpret the results of
differential expression, we run differential expression between rep-
licates of the untreated conditions. This analysis shows that on aver-
age we should expect around 165 up- and down-regulated genes as a
result of the intrinsic biological variability (Fig. 1C). The results of the
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we were primarily interested in the direct effect of the compound
rather than in secondary effects, we selected 3 hour treatment as
the comparison time point for following analysis: 1953 and 1550
genes were significantly (FDR ≤ 0.05) up- and down-regulated,
respectively (Fig. 2A). Gene ontology (GO) enrichment analysis per-
formed by the DAVID web-tool [18] showed that down-regulated
genes are involved in mitosis and mitotic regulation, as suggested
by the enriched ontology terms mitotic cell cycle (FDR = 10−21),
microtubule cytoskeleton (FDR = 10−14), spindle (FDR = 10−13)
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genes, i.e. with FDR b 0.01 and abs(logFC) N 1, showed that not only
further changes are observable at later time points (Fig. 2B), but
strong changes are also due to different sets of genes (Fig. 2C).

Temporal clustering

The clustering of temporal profiles of gene expression was done
using the R package Mfuzz [19], which performs soft clustering of
genes based on their expression values using the fuzzy c-means algo-
rithm. We first selected only the 1552 genes having a substantial
change in either one of the time points (i.e., abs(logFC) N 0.75); we
then run the fuzzy c-means algorithm with parameters 9 and 1.35,
respectively the number of clusters and the fuzzification parameter.
The original temporal profiles used for clustering are reported in
Fig. 3D, whereas the profiles in Fig. 3E are standardized such that
the average expression value for each gene in the different time
points is 0 and the standard deviation is 1. Many patterns displayed
a transient (clusters 1, 5) or delayed (clusters 2, 7, 9) up- or down-
regulation, suggesting the complexity of the cellular response to
treatment and highlighting again the variable transcriptional regula-
tion across different time points observed in Fig. 2B, C. In Table S1
each one of the 12,873 genes has been assigned to a temporal
pattern by calculating the maximal similarity (Pearson correlation
coefficient) to the average profile of each of the 9 clusters previously
identified on the 1552 strongly changing genes.

Cross validation with other data sets

For the promoter occupancy, we collected all peak files available at
the website of the ENCODE project [15] (www.encodeproject.org) for
all members of the FOX (Forkhead box) proteins plus GATA1 as an
out-group. Peak files were previously calculated by the consortium
using the peak caller MACS on ChiPseq experiments done in duplicates,
under standardized conditions. Our analysis consisted of these steps:
1)we took only peaks in common between the two duplicates by calcu-
lating the intersection of peakswith bedtools; 2) for each gene,we iden-
tified the promoter region as the genomic region 2000 bases upstream
and 100 bases downstream of the transcription start site (TSS); 3) we
counted peaks inside the promoter regions; 4) we calculated the pro-
portion of genes having at least one peak in the promoter region, divid-
ing the genes in down-regulated (down), up-regulated (up) and not
differentially expressed (not de); 5) we divided the three proportions
for each group by the value of the genes not differentially expressed
('not de'), such that the 'not de' group has the reference value of 1;
6) the normalized proportion values of all data sets relative to the
same transcription factor were averaged. For all the above steps, we
considered as differentially expressed genes with FDR b 0.01 and
logFC N 0.3 (or b0.3) at 3 h. P-values were determined using the non-
parametric chi-squared test for proportions (function prop.test in the R
package stats). The data showed that FDI-6 treatment was specifically
and strongly enriched (~19 folds, p b 1e−16) in correspondence of
FOXM1 binding sites (Fig. 3A) and not other transcription factor mem-
bers of the FOX family or GATA1. Further, this enrichment was specific
for genes belonging to the temporal cluster number 5 (Fig. 3B), which
was also the one strongly enriched in mitotic genes (FDR = 3e−19 for
the GO term mitosis).

For the comparison to FOXM1 knockdown (KD), we compared
the RNA-Seq data to the Affymetrix expression array data
downloaded from GEO (accession number http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE2222) [8]. In this study, BT-20
breast cancer cells were exposed to a mock transfection, GFP siRNA,
or FOXM1 siRNA. Each condition was performed in triplicate, and
RNA was collected after 48 h. We considered the categories
“up_drug” and “down_drug” as the genes up- (logFC N0.5) and
down-regulated (logFC b −0.5) after 3 h treatment with FDI-6, as
measured by RNA-Seq. The categories “up_kd” and “down_kd” refer
to genes up- (logFC N 0.5) and down-regulated (logFC b− 0.5) upon
FOXM1 KD. “cluster5_down” and “cluster5_up” refer to genes down-
regulated (logFC b−0.5) belonging to cluster 5 from the temporal clus-
tering analysis. P-values were determined as explained above (function
prop. test). This comparison revealed a tendency for genes down-
regulated by siRNA FOXM1 to be similarly down-regulated by the com-
pound (p = 6e10−5), whereas no significant association (p N 0.05)
was observed between the genes up-regulated by the two treatments.
The trend is evenmore pronouncedwithin the subset of genes in cluster
5, which are 3.7-fold (p= 2e10−5) enriched for genes down-regulated
by siRNA FOXM1 (Fig. 3C).
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