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Abstract

Task-based fMRI activation mapping has been widely used in clinical neuroscience in order to 

assess different functional activity patterns in conditions such as prenatal alcohol exposure (PAE) 

affected brains and healthy controls. In this paper, we propose a novel, alternative approach of 

group-wise sparse representation of the fMRI data of multiple groups of subjects (healthy control, 
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exposed non-dysmorphic PAE and exposed dysmorphic PAE) and assess the systematic functional 

activity differences among these three populations. Specifically, a common time series signal 

dictionary is learned from the aggregated fMRI signals of all three groups of subjects, and then the 

weight coefficient matrices (named statistical coefficient map (SCM)) associated with each 

common dictionary were statistically assessed for each group separately. Through inter-group 

comparisons based on the correspondence established by the common dictionary, our 

experimental results have demonstrated that the group-wise sparse coding strategy and the SCM 

can effectively reveal a collection of brain networks/regions that were affected by different levels 

of severity of PAE.
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1. INTRODUCTION

Task-based fMRI has been widely used to identify brain regions that are functionally 

involved in specific task performance, and has significantly advanced our understanding of 

functional localizations within the brain (Friston et al., 1994; Heeger and Ress, 2002; 

Matthews and Jezzard, 2004; Logothetis et al., 2008). In the functional neuroimaging 

community, there have been a variety of model-based or data-driven approaches for fMRI 

time series analysis and/or activation detection, for instances, correlation analysis 

(Bandettini et al., 1993), general linear model (GLM) (Friston et al., 1994; Worsley, 1997), 

statistic testing (Ardekani et al., 1998), principal component analysis (PCA) (Andersen et 

al., 1999), Markov random field (MRF) models (Descombes et al., 1998), mixture models 

(Hartvig and Jensen, 2000), independent component analysis (ICA) (McKeown et al., 1998), 

clustering analysis (Baumgartner et al., 1997), wavelet algorithms (Bullmore et al., 2003; 

Shimizu et al., 2004), autoregressive spatial models (Woolrich et al., 2004a), Bayesian 

approaches (Huaien and Puthusserypady, 2007; Bowman et al., 2008), and empirical mean 

curve decomposition (Deng et al., 2012). Among all of these methods, GLM is one of the 

most widely used methods (Friston et al., 1994; Worsley et al., 1997) due to its 

effectiveness, simplicity and robustness. In particular, several popular fMRI data analysis 

software packages such as the FSL FEAT (http://www.fmrib.ox.ac.uk/fsl/feat5/index.html), 

SPM (http://www.fil.ion.ucl.ac.uk/spm/) and AFNI (http://afni.nimh.nih.gov/afni/) have 

employed the GLM method (Friston et al., 1994; Worsley et al., 1997).

In addition to the abovementioned voxel-wise methods, in order to deal with the remarkable 

individual variability and different sources of noises (e.g., Thirion et al., 2007; Derrfuss and 

Mar, 2009; Laird et al., 2009; Hamilton, 2009; Costafreda, 2009; Tahmasebi, 2010), group-

wise task fMRI activation detection methods have been developed, such as the two-level 

group-wise GLM method (Beckmann et al., 2003), Bayesian inference (Woolrich et al., 

2004b), multi-level analysis (Thirion et al., 2007), group ICA analysis (Calhoun et al., 

2009), FENICA (Schöpf et al.,2011), group Markov Random Field (MRF) methods (Ng et 

al., 2010), and our recently developed DICCCOL-based group-wise activation detection (Lv 

et al., 2014a). For instance, the FSL FEAT/FLAME toolkits (Beckmann et al., 2003; Smith 
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et al., 2004) incorporated a two-level group-wise GLM analysis procedure that warps the 

individual activation significance maps to the same template space via image registration 

methods (e.g., FSL FLIRT), and then infers the group-wise significantly activated regions 

from the pooled activation maps. The major advantages of this two-level GLM method 

include the facilitation of valid group analyses and inference, good flexibility and generality, 

and easy and meaningful interpretation of results (Beckmann et al., 2003; Smith et al., 

2004). In our recently developed DICCCOL (dense individual and common connectivity-

based cortical landmarks)-based group-wise activation detection (Lv et al., 2014a), the first-

level GLM analysis was first performed on the fMRI signal of each corresponding 

DICCCOL landmark in individual brain’s own space, and then the estimated effect sizes of 

the same landmark from a group of subjects are statistically assessed with the mixed-effect 

model at the group level. Finally, the consistently activated DICCCOL landmarks are 

determined and declared in a group-wise fashion in response to external block-based stimuli. 

The advantage of this method is that these statistical inferences based on the intrinsically-

established DICCCOL correspondences among a group of subjects can be more reliable and 

robust to the variability in individual activation magnitudes and the evoked brain networks.

Although these abovementioned methods leveraged the statistical power from multiple 

brains in order to gain the robustness to noises and the less sensitivity to individual 

variability, challenges still exist. First, although the statistical activation maps can be 

estimated group-wisely in spite of the variability of individual anatomy with image 

registration methods, the consistency and diversity of dynamic temporal responses evoked 

by task performance cannot be systematically assessed group-wisely. Second, it has been 

difficult to model multiple concurrent brain responses from different spatially-overlapping 

brain networks. Specifically, from a human neuroscience perspective, it has been widely 

reported and argued that a variety of cortical regions and networks exhibit strong functional 

diversity (Duncan, 2010; Gazzaugia, 2004; Pessoa, 2012), that is, a cortical region could 

participate in multiple functional domains/processes and a functional network might recruit 

various heterogeneous neuroanatomic areas (Gazzaugia, 2004; Pessoa, 2012). Therefore, it 

is possible that heterogeneous regions and diverse activities participating in a task 

performance could be overlooked by brain activity modeling methods. As a consequence, it 

is challenging for model-driven task fMRI data analysis methods to reconstruct concurrent 

functional networks and assess systematic activity differences across populations.

In recognition of the above challenges, researchers, including ourselves, have decomposed 

fMRI signals into linear combinations of multiple components based on data-driven sparse 

representation of whole-brain fMRI signals (Lee et al., 2011; Lv et al., 2013; Lv et al., 

2014b; Lv et al., 2015; Varoquaux et al., 2011). The basic idea of this computational 

methodology is to aggregate all of dozens (or hundreds) of thousands of fMRI signals within 

the whole brain of one subject into a big data matrix, which is subsequently factorized into 

an over-complete dictionary basis matrix and a reference weight matrix via dictionary 

learning and sparse coding algorithms (Mairal et al., 2010). Then, the time series of each 

over-complete basis dictionary represents the functional activities of a brain network and its 

corresponding reference weight vector stands for the spatial map of this brain network (Lv et 

al., 2013; Lv et al., 2014b; Lv et al., 2015). An important characteristic of this framework is 

that the decomposed reference weight matrix naturally reveals the spatial overlap/interaction 

Lv et al. Page 3

Psychiatry Res. Author manuscript; available in PMC 2016 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



patterns among reconstructed brain networks (Lv et al., 2014b). Thus this novel data-driven 

strategy naturally accounts for that a brain region might be involved in multiple functional 

processes (Duncan, 2010; Gazzaugia, 2004; Pessoa, 2012) and its fMRI signal is composed 

of various components (Lee et al., 2011; Lv et al., 2013; Lv et al., 2014b; Lv et al., 2015; 

Varoquaux et al., 2011).

However, an unsolved problem in previous methods of sparse representation of fMRI 

signals (Lee et al., 2011; Lv et al., 2013; Lv et al., 2014b; Varoquaux et al., 2011) is how to 

establish the correspondence of different dictionary components across individuals and 

populations. Specifically, works in (Lee et al., 2011; Lv et al., 2014b; Lv et al., 2015) 

performed dictionary learning and sparse coding on whole brain fMRI signals and 

interesting functional networks of meaningful temporal and spatial patterns can be detected 

among all the learned components. But it is difficult to perform inter-subject comparison or 

statistical analysis mainly because the data-driven dictionary learning and sparse coding 

method applied on individuals learned brain networks by taking account of individual 

specificity adaptively (Lee et al., 2011; Lv et al., 2014b), and correspondence cannot be 

established across subjects. A common dictionary is learned from the task fMRI signals of a 

group of subjects in Lv et al., 2013, so that group-wise analysis could be established based 

on the correspondence of the common dictionary basis. However, inter-group comparison is 

usually required for clinical research such as assessing the differences of functional brain 

activities between brain conditions such as prenatal alcohol exposure (PAE) (Coles et al., 

1991; Santhanam et al. 2009) and healthy controls. So far, establishing correspondence 

across groups as well as across subjects is an important problem that has not been 

sufficiently investigated before. Another important issue is the variability in fMRI analysis 

and group-wise methods. In other words, there is remarkable variability of activation 

magnitudes for the corresponding brain regions across individual subjects and imaging 

sessions (Smith et al., 2005; Thirion et al., 2007), due to physiological noises, head/body 

motion, resting-state activity and other factors. This variability imposes additional 

challenges to the robust and reliable inference of group-wise consistent functional networks.

In responses to the above challenges, in this paper, we propose a novel computational 

framework of group-wise sparse representation of the fMRI datasets of multiple groups of 

subjects (healthy control, exposed non-dysmorphic PAE and exposed dysmorphic PAE 

(Santhanam et al., 2009) and comprehensively assess the systematic functional activity 

differences among these three populations. Specifically, fMRI signals from all of the three 

groups of subjects are aggregated as training samples to learn a common time series signal 

dictionary, which would establish component correspondence across subjects and groups. 

Before the extraction of fMRI signals, each subject has been registered into the MNI atlas 

space, in which the voxel correspondence is roughly established across all subjects and 

groups based on a unified brain mask which covers common region of all brains. After 

sparse coding using the online dictionary method (Mairal et al., 2010), statistical assessment 

is performed on the weight coefficient matrices, named statistical coefficient map (SCM) 

here, associated with each common dictionary for each group separately. By comparing the 

inter-group differences based on the correspondence established by the common dictionary, 

our experimental results demonstrated that the group-wise sparse coding strategy can 
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effectively elucidate different levels of effect of PAE in a collection of brain networks/

regions.

2. MATERIALS AND METHODS

2.1. Overview

Our computational pipeline is summarized in Fig.1. First, subjects from 3 groups (GC: 

Healthy control, GN: Non-dysmorphic PAE, GD: Dysmorphic PAE (Santhanam et al., 

2009) are spatially normalized into the standard MNI space via linear image registration 

method FSL FLIRT (Jenkinson et al., 2001). Then, by using a standardized group common 

brain mask, whole-brain fMRI signals of each subject are extracted and aggregated into a 2D 

signal matrix Sx ∈ ℝt×nx, as shown in Fig.1a. Then all extracted signal matrices from 3 

groups are pooled and arranged into a big matrix S∈ ℝt×n as shown in Fig.1b. Note that S is 

composed of three groups of subjects here:

(1)

Our computational framework then employs the online dictionary learning and sparse 

coding method (Mairal et al., 2010), which factorizes the signal matrix S into a time series 

signal dictionary matrix D and the coefficient matrix A (Fig.1c). Note that D is learned to be 

commonly shared across three groups by assuming that the same task would stimulate 

similar or comparable functional responses in these individual brains, and the A matrix 

preserves the spatial voxel organization and group correspondence of S (Fig.1c), i.e., 

. Through temporal or frequency analysis of matrix D, 

meaningful task-evoked responses can be interpreted. In particular, based on the component 

correspondence established by the common D and voxel correspondence built up by the 

standard common mask, statistical group-wise consistent coefficient mapping can be 

performed for each group separately. Notably, the cross-group correspondence established 

by the common D also provides us a foundation for later inter-group comparison.

2.2 Data Acquisition and Pre-processing

In an arithmetic task-based fMRI experiment under IRB approval, 44 participants were 

scanned in 3T Siemens Trio scanner (Santhanam et al. 2009) at the Biomedical Imaging 

Technology Center of Emory University. They were all young adults (age 20-26) who were 

from 3 groups including unexposed healthy controls (16 subjects), exposure with the 

absence of dysmorphic signs (14 subjects) and exposure with presence of dysmorphic signs 

(14 subjects) (Santhanam et al. 2009). The task was presented in blocks, and the total scan 

included 102 time points (the first 2 points are ignored). The 10 task blocks alternated 

between a subtraction arithmetic task and a letter-matching control task. Single-shot T2*-

weighted EPI images were acquired. The scanning parameters are TR/TE/FA/FOV of 

3000ms/32ms/90°/22cm, resolution of 3.44mm×3.44mm×3mm, and dimension of 

64×64×34. The preprocessing pipeline included motion correction, slice time correction, 

spatial smoothing (FWHM=5mm), and global drift removal. The preprocessed volumes 

were first registered with the MNI template using FSL FLIRT (Jenkinson et al., 2001). After 
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registration, binary masks indicating voxels with non-zero fMRI signals were generated for 

all subjects. The group-wise common mask was generated by conducting all single brain 

masks together and this common mask is used to guide the extraction of whole-brain signals. 

In this way, each subject have the same number of voxels and the voxels possess 

correspondence across subjects. As our work mainly focused on the fluctuation shape of 

fMRI signals, we normalized each extracted signal to have zero mean and standard deviation 

of 1.

2.3 Dictionary Learning and Sparse Representation

In the framework of dictionary learning and sparse coding, by considering a rich signal set S 

= [s1,s2,…sn]ϵℝt×n, a meaningful and over-complete dictionary Dϵℝt×m (m>t, m<<n) 

(Mairal et al. 2010) is required to be learned for sparse representation of S. In our approach, 

S is fMRI signal set from the whole brains of three groups of subjects. We have two aims for 

representing S into a dictionary matrix D and coefficient matrix A (Eq.(2)) using the 

dictionary learning and sparse decoding method. 1) The primary aim is to minimize the 

representation error; and 2) It is supposed to learn an efficient dictionary and concentrate the 

representation relevance, i.e., each signal can be represented by the most relevant dictionary 

atoms. Thus, the empirical cost function is summarized in Eq.(3) by considering the average 

loss of representation of n signals.

(2)

(3)

Here the loss function of each signal sample is defined in Eq.(4). In order to achieve our two 

aims and trade-off the representation error and concentration, the ℓ1 regularization is 

employed.

(4)

In order to make the coefficients in each row and column of A comparable, firstly, each si in 

S is normalized to have zero mean and standard deviation of 1. Second, the columns d1,d2,

……dm are constrained with Eq.(5). This is implemented with an iterative normalization of 

dictionary atoms during learning. Therefore, the representation residual of each signal is 

subject to normal distribution, i.e. εi ~ N(0,σ2).

(5)

(6)
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In summary, the whole procedure can be rewritten as a matrix factorization problem in Eq.

(6), and the online dictionary learning method in (Mairal et al., 2010) provides an effective 

strategy to learn the dictionary and representation alternatively and optimally. Here, we 

employ the same assumption as previous studies (Li et al. 2009; Lee et al. 2011; Li et al. 

2012; Oikonomou et al. 2012; Abolghasemi et al. 2013) that the components of each voxel’s 

fMRI signal are sparse and the neural integration of those components is linear.

2.4 Group-wise Statistical Coefficient Maps

As the spatial organization of the signal samples are predefined for each subject in Sx and 

the dictionary learning and sparse coding procedure will keep this organization, the 

coefficient matrix Ax preserves the spatial information. That is, if we map the coefficient 

matrix back to 3D brain mask, there will be m coefficient maps for each subject. Group-wise 

assessment of these coefficient maps requires two sets of correspondence. The first one is 

component correspondence, which is established by the learned common dictionary in our 

work. The second one is the correspondence of voxels, which is roughly achieved by spatial 

normalization with the image registration method and the unified brain mask. In addition, 

the normalization of the original fMRI signals and normalization of dictionary basis result in 

the normally distributed representation errors, i.e., εi ~ N(0,σ2). As a result, each single 

coefficient is comparable across subjects, and the collection of each coefficient from a group 

of subjects can also be regarded as normal distribution. Thus, T-test is carried out to assess 

the non-zero significance of each corresponding coefficient. This is one of the 

methodological novelties of this work in comparison with previous studies of sparse 

representation of fMRI signals (Lee et al., 2011; Lv et al., 2013; Lv et al., 2013b; Varoquaux 

et al., 2011).

Specifically, as illustrated in Fig.2a, the A matrix can be decomposed into 3 matrices that 

represent three groups. As further shown in Fig.2b, each group is composed of sub-matrices 

of subjects, e.g., AGC is composed of Ac1, Ac2… Ack. As the subjects are normalized in the 

MNI template space and the common mask is thus employed to extract fMRI signals. So the 

An (i, j) in each sub-matrix stores the reference coefficient of the jth voxel to the ith 

component in the dictionary (Fig.2b). For each group, we hypothesize that each coefficient 

AGx (i, j) is group-wisely null, and the T-test (with T defined as Eq.(7)) is carried out to test 

acceptance or rejection of the null hypothesis for each element AGx (i, j). Note that x 

indicates the group category, n denotes the subject ID in each group. Here the threshold of 

P<0.05 is used to reject null hypothesis. The derived T-value can be easily transformed to 

the standard z-score (Beckmann et al., 2003).

(7)

Since the dictionary learning and sparse representation constrain the sparsity of A matrix, the 

T-test result of AGx is also a sparse matrix, as shown in Fig.2c. Here, each row in the matrix 

of Fig.2c represents the statistically non-zero contribution in the whole brain of each 
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dictionary atom. And each row can be mapped back to brain volume, which stands for the 

spatial distribution of the dictionary atom. Notably, we call each dictionary atom and the 

correspondence distribution a network component in this work. In order to illustrate the 

significance of the contribution of each network, we color-code the z-scores of each 

component, which is named the statistical coefficient map (SCM) here, as illustrated in Fig.

2d. The T-test is carried out separately for AGC, AGN and AGD, but the derived z-scores maps 

(such as Figs.2d-2f), which possess correspondence of the same dictionary atom, can be 

compared across groups. Seven examples of voxels, whose z-scores are 0.5, 1, 1.5, 2, 2.5, 3 

and 3.5 in one of the statistical coefficient map of control group, are shown in Fig.3. For 

each example voxel, the black stars represent the coefficient value in 16 subjects, and the red 

block indicates the mean value of black stars divided by their standard deviation 

respectively. We can see that, the z-score increases with the increasing of mean/std. So, the 

derived z-score is an effective statistical measurement of the significance of component 

contribution.

Conceptually, the SCM has several key differences in comparison with the widely used 

statistical parametric mapping (SPM) (Beckmann et al., 2003) associated with the GLM 

method. First, parameters estimated from the GLM model are model driven, and regressors 

are pre-defined with a limited number of task paradigms. While the SCM is based on a set of 

group-wisely learned and optimized signal basis, and thus the abundant response patterns 

learned by data-driven strategy from fMRI data tend to be more effective to assess the rich 

information encoded in the fMRI data. Second, the SPM maps are clusters of voxels whose 

signal are similar to task design, the intensity of which is the significance of similarity. In 

comparison, the SCM maps are decomposed overlapped brain networks, the intensity of 

which are the significance of contribution of the network. Third, the commonly learned 

dictionary can effectively leverage the commonness and discrimination across subjects and 

groups, which makes the SCM robust to noise and comparable across subjects and groups. 

Fourth, the sparsity constraint regularizes the regressor selection while learning coefficient, 

i.e., if the regressor does not significantly contribute, the coefficient will be penalized as 0. 

Consequently, the results from group non-zero T-test will be stricter. As a result, SCM maps 

might be more reliable in measuring the significance of contribution than SPM.

3 Experimental Results

The framework has been applied on the data set of three groups of PAE related subjects: GC, 

GN and GD (Santhanam et al., 2009). The severity of PAE is in the order of GC<GN <GD 

(Santhanam et al., 2009). The common dictionary is learned for all three groups and the 

group-wise statistics in Section 2.4 was applied to each group separately. We first detected 

arithmetic-related networks in GC as reported in Section 3.1 and diverse dynamic networks 

in Section 3.2. Further cross-group comparisons in Section 3.3 showed that group 

differences can be observed in these networks.

3.1 Inferred Arithmetic Related Networks

As mentioned before, with the dictionary learning and sparse coding method, a variety of 

networks are learned with temporal and spatial aspects of representation, namely, the time 
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series patterns in D and the spatial maps in A. In order to interpret meaningful networks, we 

first compare time series patterns in D with the stimulus design, and in this way task-

correlated networks and anti-task networks can be identified. On the other hand, based on 

the statistical coefficient maps (SCM) derived from Section 2.4 and by using the 

experimentally determined threshold Z>1.65, we determined voxels that have significant 

reference to each dictionary atom. Note that in standard z-distribution, P (Z>1.65) =0.05. 

We select Z>1.65 as the threshold, which is relatively lower than traditional activation 

analysis. That’s because our coefficient matrix is sparse, and if one network is not 

significantly consistent the coefficient is punished to be zero, which is a strict false positive 

control. Thus, with a relative low but meaningful Z threshold, we could possibly detect 

accurate network spatial maps. The spatial distribution of task correlated networks and anti-

task networks are then explored in this section.

First, the task design curve as shown in the top panel of Fig.4b is convolved with the 

hemodynamic response function (HRF), for calculating Pearson’s correlation with all of the 

learned dictionary atoms. With the threshold (>0.5) and (<−0.5) applied to the correlations, 

6 dominant task-correlated networks and 6 dominant anti-task networks with relatively large 

voxel numbers were identified, respectively, from all of the learned networks. As shown in 

Table 1, the peak correlation and anti-correlation could be as high as 0.813 and −0.754. In 

comparison, the correlations of original fMRI time series with the task stimulus curve on the 

volumetric voxels that exhibit the highest and lowest z-scores are shown in Table 2. It is 

evident that the dictionary learning method is quite sensitive in detecting task correlated and 

anti-task components even in the group level of large data space. For further exploration, we 

visualized the 6 dominant component networks from both task correlated networks and anti-

task networks, whose spatial z-score maps (>1.65) and time series patterns are shown in Fig.

4a-b and Fig.5a-b respectively.

In comparison with the group-wise activation detection from the GLM method (Fig.4d), the 

networks detected by our approach exhibit multiple task-activated patterns. Notably, the 

shape differences among these temporal patterns separated the generally defined activations 

by GLM into sub-networks. For instance, the sub-networks in Fig.4a serve as parts of the 

activation patterns in Fig.4d. If we simply aggregated all the 6 task correlated maps (by a 

union operation) and name it as the “Union” of task correlated networks, as shown in Fig.4c, 

the spatial pattern (Fig.4c) is quite similar as the activation pattern in Fig.4d. In order to 

quantitatively measure how much our networks cover the activation map, we calculated the 

true positive rate (TPR) or sensitivity as:

(8)

where SM is the spatial map of our inferred networks/sub-networks and T is the spatial map 

of the group-wise activation pattern in Fig.4d, which is treated as a template here. The TPR 

is measured for each sub-network in Table 3 as well as the “Union” of networks. We can 

observe that these networks cover the activation map by GLM differently, and the most 

dominant component #73 cover as high as 0.745 of the GLM-based activation. It is 

interesting that their union of our inferred sub-networks cover about 0.926 of the GLM-
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based activation. Similar qualitative and quantitative comparisons are also performed for the 

anti-task networks as shown in Fig.5 and Table 3. The union of the anti-task networks 

exhibit 0.817 TPR of the GLM-based deactivation map in Fig.5d. On the other hand, it is 

essential to inspect if these networks are highly overlapped, i.e., if these networks are 

spatially independent. Note that, TPR does not apply anymore in this situation, because it is 

uneven to treat any network as a template. Thus, Jaccard similarity is employed to calculate 

the overlap rate (OR) as defined in Eq.(9) to measure the overlap between task correlated 

networks and anti-task networks respectively. In Eq.(9), Na and Nb are spatial maps of two 

networks. The overlap rate is defined by the intersection of two networks divided by their 

union.

(9)

In the results shown in Table 4, as we can see that the overlap between these task-correlated/

anti-task networks are quite small, e.g., the average overlap is 0.05 for task correlated 

networks and is 0.036 for the anti-task networks. From these results, it is evident that the 

task-related and anti-task sub-networks inferred by our method are relatively spatial 

independent.

Additionally, the anatomical distribution of the union of sub-networks (Fig.4c and Fig.5c) 

detected by our method is in agreement with the results in the previous work (Santhanam et 

al., 2009; Santhanam et al., 2011). Task correlated networks are quite consistent with the 

activation detected in the previous study (Santhanam et al., 2009), including regions of 

bilateral parietal lobe, medial frontal gyrus, and bilateral middle frontal gyrus, which are 

also shown in Fig.4d. These regions have been shown to be related to arithmetic and 

working memory (Santhanam et al., 2009). Also, the anatomical distribution of the union of 

deactivation sub-networks by our methods, including the MPFC and the PCC, is akin to the 

previous report (Santhanam et al., 2011), as shown in Fig. 5d. In summary, our method is 

capable of detecting multiple meaningful task-related and anti-task sub-networks, the total 

of which are in agreement with the GLM-based group-wise activation. However, our 

method can provide much more details about the temporally and spatially different sub-

networks. The interpretation of neuroscientific meanings of such variety of sub-networks 

entails more effort in the future.

3.2 Diverse Dynamic Networks

In addition to the sub-networks identified in Section 3.1, other sub-networks that include 

dominant number of voxels are also explored in this section. Through frequency analysis on 

these networks, we observed diverse network dynamics other than traditionally conceived 

activations and deactivations. Specifically, by thresholding all of the statistical coefficient 

maps (SCMs) in the control group using Z>1.65, we count the remaining voxel numbers in 

Fig.6a. The task correlated networks and anti-task networks are marked with red and blue 

respectively, from which we can see that some of them include dominant numbers of voxels 

while some of them do not. Apart from the red and blue marks, there are also certain 

networks that contain dominant numbers of voxels, e.g., # 27, #126 and #180. We picked up 
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6 most dominant networks and visualized their spatial maps and temporal patterns in Figs.

6b-6c. In Fig.6b, these networks are mainly located on the visual cortex, part of the default 

mode network and subcortical areas. The Pearson’s correlations with task design curve of 

these networks are relatively low, as shown in Table 5. By inspecting their time series 

patterns in Fig.6c, it is interesting that the network components of #27, #126, #180 and #256 

exhibit high positive or negative impulses at the task change points. While #248 shows 

magnitude increase in letter-matching task and magnitude decrease in arithmetic task. Also, 

#328 is similar to anti-correlation pattern but it involves more uncertain fluctuations. The 

periodical reactions of all these networks exhibit high relevance to the task design curve, 

though they have quite diverse dynamics. This might be the reason that they are overlooked 

by the GLM based activation detection, and thus we call them diverse dynamic networks 

(DDN) in this paper.

To further explore the diverse dynamic networks (DDNs), we applied the Fourier transform 

to the time series of the corresponding dictionary network atoms, as shown in Fig.7. For 

comparison, the power distributions of task correlated network #73 and anti-task network 

#82 are also shown in the top panels of Fig.7. Since TR=3s and the period of a task cycle is 

20 TRs, the task frequency is 1/(20×3s)=0.017 HZ. The power of task and anti-task 

networks are also concentrated on the task frequency of 0.017 HZ, as expected. But the 

diverse dynamic networks exhibited multiple frequencies. As shown in Fig.7, the power of 

network #27, #126, #180 and #256 are mostly concentrated at doubled task frequencies 

(around 0.034 HZ) or four times of task frequency (around 0.068 HZ). The network 

components #180 and #256 even have peaks at six times of task frequency (around 0.100 

HZ). The networks components #248 and #328 are concentrated on the task frequency, but 

low frequency energy at around 0.0085 HZ also contributes to the signal pattern of #248 and 

there are other frequencies in #328. These diverse dynamic networks provide evidence that 

there are multiple frequency responses in the human brain to tasks, and a certain brain 

region might exhibit multi-frequency responses. Also, these multi-frequency responses 

cannot be effectively detected by the traditional GLM-based method. These responses might 

occur at the brain areas that are not directly responsible for arithmetic or working memory 

but are believed to contribute to information input and attention regularization, such as the 

visual cortex, default model network or subcortical areas. In summary, the detection and 

characterization of these diverse dynamic networks demonstrated the advantage of our 

dictionary learning and sparse coding based framework.

3.3 Effects of PAE

As reported in the literature (Santhanam et al., 2009; Santhanam et al., 2011), the activation 

and deactivation regions tend to shrink with the increment of severity of PAE effect. We 

repeated the GLM based group-wise activation and deactivation detection with the FSL 

toolbox (Beckmann et al., 2003), and similar results are achieved, as shown in Fig.8 and 

Table 6. In this session, we will explore if the size of statistical coefficient maps (SCM) will 

be affected by the severity of PAE.

First, we compare the voxel number histograms of all statistical coefficient maps from three 

groups of subjects including controls, exposed non-dysmorphic PAE (Non-Dys PAE) and 
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exposed dysmorphic PAE (Dysmorphic PAE) in Fig.9a-9c based on the correspondence 

established by the common dictionary D. The same threshold of Z>1.65 is chosen for all 

networks from three groups. Globally, the voxel number distribution is quite similar across 

three groups, especially the marked dominant networks. Notably, the decreasing trend of 

voxel number can be observed with increment of severity of PAE, e.g., the task-correlated 

network #73 includes around 2300 voxels in the control group, but it only includes around 

1500 voxels in the Non-Dys PAE group and only around 600 voxels in the Dysmorphic PAE 

group.

After sorting the voxel number of each corresponding network in three groups, it can be 

found that the size of most of the networks decreases with the increment of severity of PAE. 

We visualize the 6 most dominant networks in Fig.10. Histogram of voxel numbers are 

shown in Fig.10a, and the decreasing trend is quite evident. Also, the diminution is 

observable from the spatial maps in Fig.10b. Among these 6 networks, #73 and #390 are 

categorized into task correlated networks, #354 is considered as an anti-task network, and 

#27, #126 and #180 are believed to be three diverse dynamic networks, as discussed in 

Section 3.2. The diminution of task-related networks include the left superior and right 

inferior parietal regions and the medial frontal gyrus, which is in agreement with the 

activation detection in our work and previous work in Santhanam et al., 2009. The 

diminution of anti-task network includes sub-cortical areas and MPFC, and this concurs with 

previous work as well (Santhanam et al., 2011). It is interesting that the diverse dynamic 

networks, including visual cortex and default mode network, also shrink with the more 

severity of PAE.

Apart from the dominant networks shown in Fig.10, we can also find some other minor 

networks that include less numbers of voxels. The network sizes exhibit different patterns of 

relationship with the severity of PAE, as shown in Fig.11-12. In Fig.11a-11b, networks in 

the control group have the highest voxel sizes, while the Dysmorphic group has intermediate 

sizes and the Non-Dys group has the lowest. In contrast, for the networks in Fig.12a-12b, the 

Non-Dys group has the highest activation, the control group performs intermediately, and 

the Dysmorphic group has the lowest. Most of these networks are considered as anti-task 

networks, and it is evident that PAE effect might not be necessarily linear to certain brain 

networks. This effect needs more future interpretation, but it is inspiring that they can be 

captured by our group-wise sparse coding method.

4 Reproducibility Analysis

4.1 Simulation Experiment

To validate the effectiveness of our method on multiple group analysis, we designed an 

experiment based on the fMRI simulation toolbox SimTB (http://mialab.mrn.org/software; 

Erhardt et al., 2012). Specifically, as shown in Fig.13 five components are simulated in two 

comparable groups (10 subjects in each). The spatial shapes of the components are shown in 

Fig.13a, and overlaps are designed between component 2 and 5, and between component 3 

and 4. Block designed signals convolved by canonical HRF are visualized in Fig.13b. Inter-

subject variability are simulated by 1~3 voxel (uniformly distributed) x-translation, 1~3 

voxel (uniformly distributed) y-translation, and 1~5 degrees (uniformly distributed) rotation. 

Lv et al. Page 12

Psychiatry Res. Author manuscript; available in PMC 2016 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mialab.mrn.org/software


Cross-group difference are realized by different component sizes, i.e., the sizes of 

components in the subjects of Group 1 is 1.3~1.5 times (uniformly distributed) larger than 

that of Group 2. Rician noise is added to each simulated subjects with the contrast-to-noise 

ratio of 1~3 (uniformly distributed).

With our proposed method, we learn the common signal pattern dictionary from the two 

groups of subjects. Since we already know the component number, we set the dictionary size 

as 5. As visualized in Fig.13c, the simulated signals of components are well reconstructed. 

The SCMs are calculated for each component of each group and are shown in Fig.13d and 

13e. Since the simulation is based on very easy assumption, the significance of components 

could be high, so that we choose Z-threshold as 2.0. We can see that, the spatial maps of 

components from both groups are reconstructed, especially the component 1 with multiple 

regions. Also the components (2, 5, 3, 4) with overlaps are well recovered. Additionally, 

comparing Fig.13d and Fig.13e, the size difference of components between two groups are 

detected as designed, i.e., the SCMs of Group 1 are obviously larger than that of Group 2. 

Based on the simulation, we can conclude that our method is effective in reconstructing 

overlapped component networks from multiple groups, and is capable of capturing group-

wise differences at the network level.

4.2 Reproducibility with Different Dictionary Size

Dictionary size is an important parameter of dictionary learning and sparse coding. In our 

paper we experimentally determine the dictionary size as 400. However, we also tried the 

dictionary size of 200, 300 and 500. Based on our experiments, we found that by increasing 

the dictionary size, the detected networks might decrease in size. Firstly, that’s because the 

coefficients might be diluted by more dictionary atoms. And another reason is that it’s 

possible that one network will be decomposed into multiple component networks or similar 

networks. So in this paper, on the purpose of balancing dictionary size and network diversity 

we determine the dictionary size as 400. But as shown in Fig.14, with dictionary size set as 

200, 300 and 500 the dominant task-related network, anti-task network and diverse dynamic 

network could always be detected. And the spatial patterns (Fig.14b) and temporal patterns 

(Fig.14c) are quite consistent across different dictionary sizes. From Fig.14a, we also found 

that the group difference can also be consistently detected with different dictionary settings, 

i.e., the sizes of network #73 and #27 decrease with the increment of PAE severity and the 

size of network #82 follow the pattern of V(Control)>V(Dys PAE))>V(Non-Dys PAE). In 

summary, we conclude that although the dictionary size might impact the network size and 

diversity, the representative networks could be consistently reproduced with different 

dictionary size setting. And the group differences could also be consistently captured by our 

method. In summary, our method is reliable and reproducible.

5 Discussion and Conclusion

5.1 Overview

In this paper, we have presented a novel group-wise sparse representation and statistical 

coefficient mapping (SCM) approach for analyzing multiple populations with task fMRI 

data. The aggregated task fMRI signals from multi-groups of subjects are systematically 
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represented as a learned common collection of signal basis and their spatial coefficient 

distribution maps. Temporal and frequency analysis on the dictionary basis elucidated the 

diversity of task evoked activity patterns. Statistical assessment of the spatial maps across 

subjects and inter-group comparison provide fine-granularity perspectives of detecting 

discriminations between brain conditions and normal controls. The approach has been 

applied on three groups of subjects which are affected by PAE in different degrees. 

Experimental results have suggested that our data-driven group-wise method can detect 

diverse task-related brain networks simultaneously, and these networks consistently exist 

across three groups but are affected in different ways with the increment of severity of PAE.

5.2 Methodological Advantage

The methodological advantages of our sparse coding and statistical coefficient mapping 

(SCM) are summarized as follows. First, the group-wise common dictionary bases are 

learned and optimized from the whole fMRI data, which consist of abundant response 

patterns. Thus, they are more adaptive to neurophysiology specification, more systematic in 

discovering diverse brain networks, and more sufficient in assessing rich information 

encoded in the whole fMRI data than the traditional GLM method. Second, the commonly 

learned dictionary can effectively leverage the commonness and discrimination across 

subjects and groups, which makes the SCM more robust to noise and more powerful in 

detecting cross-group differences, which is greatly preferred by systematic clinical 

assessment, such as PAE. Third, the sparsity constraint regularizes the regressor selection 

while learning coefficient, consequently the results from group non-zero T-test will be more 

strict. As a result, SCM maps are more reliable in measuring the significance of 

contribution. Finally, in comparison with previous sparse representation of fMRI signals of 

each individual brains for network analysis (Lee et al., 2011; Lv et al., 2014b), our group-

wise statistical method can automatically establish their correspondences across different 

populations and systematically assess the functional activity differences among these 

populations. Correspondence of individual component networks is established by learning 

the common dictionary basis from multiple groups and subjects, and the spatial 

normalization of individual brains and signal extraction guided by the common mask 

provides a foundation for statistical analysis and inter-group comparison.

5.3 The Robustness of the Method

Sparsity, which is a major feature of our method, take the responsibility of detecting 

statistically robust networks. In our method, the fMRI signal of each voxel from each 

subject was sparsely represented by the learned and optimized common signal basis. If one 

dictionary atom is not relevant to the certain signal, the corresponding coefficient will be 

penalized to zero. In other words, the sparse constraint regularizes the signal basis selection. 

Consequently, most elements of the coefficient matrix are zeros. Thus, the voxels survived 

from T-test in the SCMs have to be substantially and consistently non-zero. That’s the 

reason that most SCMs perform very low voxel number as shown in Fig.9. And it is exactly 

in this way, that the sparsity guaranteed the robustness of the networks.

The common dictionary learning from multiple groups of subjects make our method less 

sensitive to noises such as motions. Most of the noises are individually specified, but the 
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dictionary is learned to represent common features across groups of subjects. Thus, either 

the noises would be dropped in the residuals of sparse representation or be learned as 

dictionary atoms if the dictionary is big enough.

Additionally, the learned activation signal patterns are more adaptive and flexible in the 

perspective of hemodynamic function as shown in Fig.4b. While in traditional GLM 

method, the hemodynamic function are usually pre-defined and uniformed for the whole 

brains of different subjects. And it’s evident that in Fig.4, different activated brain regions 

might perform different hemodynamic functions. Therefore, our method is also robust to 

hemodynamic variation.

5.4 Improvement of Analysis

Our proposed method was applied on the same data set of Santhanam et al. (2009). The 

major contribution of Santhanam et al. (2009) is the finding of diminution of activation and 

de-activation relevant to the severity of PAE. In comparison, our method not only detect this 

kind of diminution in activation/de-activation, but also refine the results in multiple 

activated or de-activated networks, which perform adaptive task-related signal patterns. In 

addition, we also found the diminution is present in multiple diverse networks, which have 

not yet been detected by traditional methods. However, in our work, we also captured that 

diminution is not the only pattern that applies to all networks. As shown in Fig.11 and Fig.

12, different patterns could be found regarding the effect of PAE.

5.5 Challenges and Future Work

However, there are also challenges associated with this novel computational framework. 

First, there is little neuroscience evidence regarding how many component networks should 

be decomposed for the group of task fMRI signal sets so far. As a result, it is difficult to 

determine the learned dictionary size theoretically. Instead, our current results were based on 

experimentally determined network number. It will be one of our major future works to 

optimize the network number. Second, due to the lack of ground truth in fMRI, it is difficult 

to interpret the neuroscience meaning of all the learned hundreds of brain networks. Thus, 

more temporal, frequency and spatial characterization methods should be developed in the 

near future for better interpretation of our results. Finally, this novel framework should be 

applied in other task fMRI datasets of brain conditions and controls, in order to examine its 

reproducibility and robustness. It is believed that this framework would find many 

applications in clinical and cognitive neurosciences in the future.
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Highlights

1. Novel approach of group-wise sparse representation of the fMRI data.

2. Assess the systematic functional activity differences among three populations.

3. A collection of brain networks affected by different levels of severity of prenatal 

alcohol exposure.
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Fig.1. 
The computational framework of group-wise sparse representation of fMRI signals from 

three different groups of subjects. (a) FMRI signals from one single subject are extracted as 

a matrix Sx. A unified mask in the MNI space guides the signal extraction. (b) Signal 

matrices from three groups of subjects are aggregated into one big signal matrix S. GC: 

Healthy control, GN: Non-dysmorphic PAE, GD: Dysmorphic PAE. Here t indexes the fMRI 

time series points. (c) The learned signal dictionary matrix D and the corresponding 

coefficient matrix A are generated by applying the dictionary learning and sparse coding on 

the signal matrix. Note that the A matrix preserves the organization of subjects and groups in 

S. (d) Activity patterns can be selected from the D matrix, and coefficient matrix A can be 

statistically interpreted as group-wise spatial patterns. Afterwards, inter-group comparison is 

carried out.
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Fig.2. 
(a) A matrix is composed of three groups of subjects. (b) Correspondence of elements in 

AGC and group-wise null hypothesis T-test for each element. (c) The group-wise T-test 

results of acceptance of null (black dots) or rejection (white dots) (P<0.05). (d) Each row in 

(c), which represents a network component, is mapped back to the brain volume color-coded 

with z-scores. (e) and (f) are z-score maps derived from GN and GD with the same method of 

(b-d).
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Fig.3. 
The coefficient distribution of 7 example voxels in 16 subjects from the control group. The 

z-scores of the five voxels are 0.5, 1.0, 1.5…… 3.5. For each example voxel, the black stars 

are coefficients from 16 subjects, and the red block indicates the mean value of the black 

stars divided by the standard deviation of the black stars.
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Fig.4. 
(a) The z-score map (Z>1.65) of the 6 networks exhibiting high correlation with task design 

(MNI space). (b) The corresponding signal patterns in D of the 6 network components. (c) 

Group-wise union of the highly task-related networks. (d) Group-wise activation detected by 

the GLM method (Z>3.0, cluster-correction).
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Fig.5. 
(a) The z-score map of the 6 networks (Z>1.65) performing high anti-correlation with task 

design (MNI space). (b) The corresponding signal patterns in D of the 6 network 

components. (c) Group-wise union of the highly anti-task networks. (d) Group-wise de-

activation detected by the GLM method (Z<−3.0, cluster-correction).
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Fig.6. 
(a) Voxel number histogram of the 400 network components in the control group. Here, the 

highly task related networks in Fig.4 are marked with red color and the highly anti-task 

networks in Fig.5 are marked with blue color. Six dominant networks with high voxel 

numbers are marked with black. (b) The z-score map of the 6 networks (Z>1.65) marked 

with black color in (a). (c) The corresponding signal patterns in D of the 6 network 

components.
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Fig.7. 
The power distribution across frequencies of diverse dynamic networks in Fig.6c after 

applying Fourier transform.
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Fig.8. 
Comparison of activation maps (Z>3.0) and deactivation maps (Z<−3.0) from three groups 

of subjects by repeating GLM based group-wise activation and de-activation.
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Fig.9. 
Voxel number histogram of the 400 network components in the three groups of Control, 

Non-dys PAE and Dysmorphic PAE groups, respectively. (a) is the same as Fig.6a.
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Fig.10. 
Six networks whose voxel number is in decreasing order across three groups, i.e., 

V(Control)>V(Non-Dys PAE)>V(Dys PAE). (a) Voxel number (P<0.05, Z>1.65) 

comparison of the 6 networks from three groups. (b) The z-score map comparison of 6 

networks from three groups.
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Fig.11. 
Four networks whose voxel number is in the order of V(Control)>V(Dys PAE) )>V(Non-

Dys PAE) across three groups. (a) Voxel number (P<0.05, Z>1.65) comparison of the 4 

networks from three groups. (b) The z-score map comparison of 4 networks in (a) from three 

groups.
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Fig.12. 
Four networks whose voxel number is in the order of V(Non-Dys PAE)>V(Control)>V(Dys 

PAE) across three group. (a) Voxel number (P<0.05, Z>1.65) comparison of the 4 networks 

from three groups. (b) The z-score map comparison of 4 networks in (a) from three groups.
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Fig.13. 
Simulation experiment with simulation toolbox SimTB (http://mialab.mrn.org/software). (a) 

The spatial layout of the five simulated components. There are overlaps between C2 and C5, 

and between C3 and C4. (b) The simulated signal patterns of the five components. Two 

comparable groups of subjects are simulated. The average component sizes of Group 2 is 

smaller than Group1. (c) The learned signal patterns of the five components from two 

groups using our method. (d) The spatial patterns of SCMs from Group 1. (e) The spatial 

patterns of SCMs from Group 2.
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Fig.14. 
Reproducibility experiment with different dictionary size. Block (I) (II) (III) represent three 

dominant networks detected by setting of dictionary size as 200, 300 and 500, respectively. 

#73 is a task-related network, #82 is an anti-task network and #27 is a diverse dynamic 

network. (b) The voxel number of the networks in three groups. (b) The spatial maps of the 

three networks. (c) The signal pattern of the three networks.
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Table 1

Pearson’s correlation and anti-correlation between time series of dominant networks and HRF convolved task 

design.

Task
Correlated

Comp. ID # 73 149 185 308 312 390 Avg.

Correlation 0.813 0.567 0.627 0.610 0.585 0.793 0.666

Anti-Task Comp. ID # 82 94 274 326 331 354 Avg.

Correlation − 0.754 −0.690 −0.579 −0.747 −0.626 −0.556 −0.659
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Table 2

(a). The Pearson’s correlations of top activated voxels from 8 subjects. As shown in the third row, the voxels 

exhibit the highest z-score in each subject. (b) The Pearson’s anti-correlations of top deactivated voxels from 8 

subjects. The voxels exhibit the lowest z-score in each subject.

(a)

Subject 1 2 3 4 5 6 7 8 Avg.

Voxel (26,46,12) (32,22,2) (30,15,3) (45,35,23) (49,21,10) (41,34,24) (46,38,15) (48,20,9)

Z-score 6.80 6.87 6.59 9.06 7.08 6.26 10.82 7.96 7.68

Correlation 0.654 0.668 0.707 0.819 0.763 0.672 0.703 0.765 0.719

(b)

Subject 1 2 3 4 5 6 7 8 Avg.

Voxel (30,55,10) (31,15,26) (33,44,11) (36,52,18) (43,31,19) (31,43,12) (31,27,32) (34,48,14)

Z-score −6.56 −7.37 −6.08 −7.42 −9.03 −6.35 −7.73 −8.41 −7.37

Correlation −0.369 −0.669 −0.390 −0.695 −0.728 −0.647 −0.697 −0.436 −0.579
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Table 3

The true positive rate (TPR) of task correlated network components, anti-task components and their union 

respectively in the group-wise activation and deactivation maps.

Task CompID #73 #149 #185 #308 #312 #390 Union

TPR 0.745 0.209 0.393 0.132 0.091 0.434 0.926

Anti-
Task

CompID #82 #94 #274 #326 #331 #354 Union

TPR 0.376 0.068 0.133 0.214 0.049 0.632 0.817
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Table 4

(a) The spatial overlap ratio (OR) among the 6 task correlated networks. (b) The spatial overlap ratio (OR) 

among the 6 anti-task networks.

(a)

OR #73 #149 #185 #308 #312 #390

#73 1.000 0.032 0.161 0.030 0.088 0.107

#149

1.000 0.025 0.017 0.014 0.054

#185

1.000 0.021 0.060 0.088

#308

1.000 0.008 0.023

#312

1.000 0.018

#390

1.000

(b)

OR #82 #94 #274 #326 #331 #354

#82 1.000 0.037 0.086 0.071 0.083 0.092

#94

1.000 0.039 0.022 0.015 0.018

#274

1.000 0.030 0.002 0.026

#326

1.000 0.030 0.053

#331

1.000 0.009
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(b)

OR #82 #94 #274 #326 #331 #354

#354

1.000
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Table 5

The Pearson’s correlations between the time series of diverse dynamic networks (DDN) and HRF-convolved 

task design curve.

DDN
Comp. ID # #27 #126 #180 #248 #256 #328

Correlation 0.239 −0.031 0.170 −0.265 0.043 −0.411

Psychiatry Res. Author manuscript; available in PMC 2016 August 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lv et al. Page 40

Table 6

Voxel numbers of group-wise activation regions and deactivation from GLM based method in three groups by 

using different levels of threshold. The activation using threshold Z>3.0 and deactivation using threshold Z<

−3.0 are visualized in Fig.8.

Activation Control Non-Dys PAE Dysmorphic PAE

Z>2.5 4906 3096 3057

Z>3.0 2630 1373 1276

Z>3.5 1103 461 437

Z>4.0 364 113 100

Deactivation Control Non-Dys PAE Dysmorphic PAE

Z<−2.5 6163 5955 2484

Z<−3.0 3100 3098 787

Z<−3.5 1315 1165 148

Z<−4.0 487 241 18
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