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Abstract

Risky decision-making, particularly in the context of reward-seeking behavior, is strongly 

associated with the presence of substance use disorders (SUDs). However, there has been little 

research on the neural substrates underlying reward-related decision-making in drug-naïve youth 

who are at elevated risk for SUDs. Participants comprised 23 high-risk (HR) youth with a well-

established SUD risk phenotype and 27 low-risk healthy comparison (HC) youth, aged 10–14. 

Participants completed the balloon analog risk task (BART), a task designed to examine risky 

decision-making, during functional magnetic resonance imaging. The HR group had faster 

reaction times, but otherwise showed no behavioral differences from the HC group. HR youth 

experienced greater activation when processing outcome, as the chances of balloon explosion 

increased, relative to HC youth, in ventromedial prefrontal cortex (vmPFC). As explosion 

probability increased, group-by-condition interactions in the ventral striatum/anterior cingulate 

and the anterior insula showed increasing activation in HR youth, specifically on trials when 

explosions occurred. Thus, atypical activation increased with increasing risk of negative outcome 

(i.e., balloon explosion) in a cortico-striatal network in the HR group. These findings identify 

candidate neurobiological markers of addiction risk in youth at high familial and phenotypic risk 

for SUDs.
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1. Introduction

Decision-making refers to the process of “forming preferences, selecting and executing 

actions, and evaluating outcomes” (Ernst and Paulus, 2005). Theorists have identified a 

series of processes that occur during the choice phase of decision-making: initiation, 

monitoring, and completion of choice-related actions (Reyna and Rivers, 2008). The 

outcome phase follows, in which individuals learn and process the actual outcomes of their 

choices (Reyna and Rivers, 2008). Altered decision-making patterns have been observed in 

individuals with substance use disorders (SUDs), including preference for short-term gains 

(Grant et al., 2000; Bechara and Damasio, 2002) and riskier options (Lane and Cherek, 

2000) and difficulty valuing the probability and magnitude of potential outcomes (Rogers 

and Robbins, 2001; Paulus et al., 2002; Paulus et al., 2003). Whether these decision-making 

deficits and their underlying neural substrates are the result of repeated use of drugs of 

abuse, predate SUDs, or both, remains unclear. Deficits in making choices have been 

hypothesized to originate from preexisting neurobiological abnormalities (Ernst and Paulus, 

2005), while deficits in processing outcomes have been hypothesized to be more likely a 

consequence of substance use (Redish, 2004). To address this hypothesized distinction, the 

neural basis of decision-making must be better characterized in drug naïve individuals, with 

the eventual goal of longitudinally assessing neural activity in candidate regions as SUDs 

develop, as has been done with other imaging modalities (Norman et al., 2011).

Because fewer than 15% of adolescents develop lifetime SUDs (Huang et al., 2006), 

targeting youth at high familial and phenotypic risk for SUDs might illuminate underlying 

neural mechanisms influencing the development of SUDs. Given that the mean onset of 

SUDs is age 14 (Swendsen et al., 2012), assessing decision-making in high-risk 

preadolescent youth is warranted. Multiple addiction risk models have converged on the 

finding that youth with externalizing disorders [e.g., attention-deficit/hyperactivity disorder 

(ADHD), oppositional defiant disorder (ODD), conduct disorder (CD)], particularly those 

with a family history of addiction, are at elevated risk for the development of SUDs (Tarter 

et al., 2003; Zucker, 2008; Iacono et al., 2008; King et al., 2009). For example, among 10–

12 year old boys followed to age 19, the risk model implemented here predicted SUDs with 

85% accuracy and accounted for 50% of the variance in drug use (Tarter et al., 2003). Thus, 

we attempt to maximize risk for SUD development according to these models by recruiting 

a high-risk sample with both SUD family history and childhood externalizing 

psychopathology. While this complex risk phenotype does not allow for the dissociation of 

neural effects of externalizing psychopathology from those related to a family history of 

addiction, its high predictive power for SUD development is clinically significant. Findings 

revealed with this high-risk sample (versus healthy comparisons) warrant future 

investigations designed to disentangle the impact of externalizing disorders and familial 

factors.
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Most of the risky decision-making literature in externalizing disorders has focused on either 

adults (Miranda et al., 2009; Matthies et al., 2012; Duarte et al., 2012; Galvan et al., 2013) 

or youth behavioral outcomes (Drechsler et al., 2008; Fairchild et al., 2009; Drechsler et al., 

2010; Schutter et al., 2011). These studies highlight an increased probability of 

disadvantageous decisions, correlations of risky-decision-making with impaired working 

memory and a propensity for lower probability/high reward choices in both youth and adults 

with externalizing psychopathology. Only one study appears to have directly examined the 

neural basis for risky-decision-making in youth with externalizing disorders (Crowley et al., 

2010) and it focused on brain response during the outcome phase. Contrasting cautious low-

yield with risky high-yield responses (n=20 adolescents with conduct/SUDs, in remission; 

n=20 adolescent controls), authors reported decreased activity during reward (anterior 

cingulate, temporal cortex and cerebellum) and increased activation during loss 

(orbitofrontal cortex, brain stem and cerebellum) in the conduct/SUD group. Thus, youth 

with externalizing disorders reliably demonstrate behavioral differences in risky-decision-

making, but few studies have addressed the neural underpinnings of these differences.

Several studies have examined neural activation associated with decision-making in youth 

identified as being at elevated risk for SUDs (Ivanov et al., 2012; Nees et al., 2012; Xiao et 

al., 2013). In these studies, youth deemed high risk for SUD, either by early/problem use or 

by family history have been shown to have activation abnormalities in cortical (OFC, 

insula), limbic and striatal circuits, although findings are inconsistent across studies, 

potentially due to heterogeneity in psychopathology and substance use. Most work has been 

conducted in older non-drug naïve youths, which likely confounds neural risk factors with 

early effects of substance use. Additionally, in this population, no studies have dissociated 

choice from responses to choice outcomes.

Using the balloon analog risk task (BART), we examined the neural basis of choice and 

outcome phases of decision-making separately and characterized activation changes as both 

risk and reward increase across trials. The BART uses financial incentives to model real-

world drug and alcohol choices by presenting participants with a series of risky-decisions 

and has been associated with psychopathy and impulsivity (Hunt et al., 2005), adolescent 

risk-taking (Lejuez et al., 2003b; Lejuez et al., 2007) and SUDs (Lejuez et al., 2003a; Hopko 

et al., 2006). In the sample most relevant to the present, youth with externalizing disorders 

(mean age 16) were found to have behavioral differences, specifically more inflations and 

more popped balloons, compared to healthy controls (Crowley et al., 2006). The initial 

version of the BART used in imaging (Rao et al., 2008) was modified from the original 

(Lejuez et al., 2002) to be able to dissociate choice effects (i.e., choose to inflate or stop) 

from outcome effects (i.e., successful inflation, burst, and cash out). In healthy adults, fMRI 

BART studies have revealed that the choice phase of risky-decision making is linked to 

activation in a meso-limbic frontal network including midbrain, ventral and dorsal striatum, 

anterior insula, dorsal lateral prefrontal cortex (dlPFC), anterior cingulate cortex (ACC) 

(Rao et al., 2008; Fukunaga et al., 2012) and ventromedial prefrontal cortex (vmPFC) 

(Fukunaga et al., 2012; Schonberg et al., 2012). Findings associated with the outcome phase 

have been associated with a similar network involving insula, striatal, cerebellar and medial 

prefrontal regions (Galvan et al., 2013); Surprising outcomes have been associated with the 

medial PFC (Jessup et al., 2010). Increased responses to balloon explosions in lateral 

Hulvershorn et al. Page 3

Psychiatry Res. Author manuscript; available in PMC 2016 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prefrontal cortex, insula, ACC and middle temporal gyrus was reported in adults with 

alcohol use disorders, relative to controls (Claus and Hutchison, 2012). Medial prefrontal 

activation was also correlated with adult alcohol use during balloon outcomes (Bogg et al., 

2012).

The BART has been studied in adolescents (Lejuez et al., 2003b; Lejuez et al., 2007), 

although only minimally during fMRI and not in the context of addiction risk (Chiu et al., 

2012; Telzer et al., 2013b, a). We administered the BART to drug-naïve youth selected for 

high SUD risk (high risk; HR) and healthy comparisons (HC) during fMRI. The version of 

the BART used here (Bogg et al., 2012; Fukunaga et al., 2012) included a parametric 

modulation analysis that allowed for the study of a central question: How neural activation 

changes as risk for explosion changes. Since deficits in choice selection may predate drug 

involvement (Ernst and Paulus, 2005; Paulus et al., 2005), we hypothesize that HR youth 

will demonstrate insensitivity to increasing explosion probability in choice-relevant regions 

(e.g., anterior cingulate cortex (ACC), inferior frontal gyrus). We also hypothesize that 

neural response to choice outcomes will be more marked in HR youth in the vmPFC, ACC 

(Smith et al., 2010; Bogg et al., 2012) and dorsal striatum, given its role in action-reward 

associations in humans (Balleine et al., 2007) and in prior BART studies (Rao et al., 2008).

2. Methods

2.1. Participants

As detailed previously (Hulvershorn et al., 2013), we recruited right-handed, English-

speaking 10–14 year-olds with at least one parent capable of reading and speaking English. 

To maximize familial risk for SUD development, HR participants were required to be 

biological offspring of men with past or present SUDs and to have an additional first- or 

second-degree family member with SUD history. Each HR participant also met DSM-IV-TR 

criteria for ADHD plus a disruptive behavior disorder [CD, ODD or disruptive behavior 

disorder, not otherwise specified (DBD NOS)]. More than five lifetime uses of drugs of 

abuse (including nicotine) or alcohol were exclusionary. HR participants were recruited 

largely from the community (radio, print and online ads), although a minority of youth were 

recruited directly from a psychiatric clinic (signs in clinic, notification by intake 

coordinator).

HC participants had no current or lifetime history of any DSM-IV psychiatric diagnosis or 

SUDs (exceptions: specific phobias, enuresis, encopresis, learning disorders) and no first-

degree relative with a history or current diagnosis of a SUD. HC participants were recruited 

in response to community postings.

All individuals with in utero exposure to drugs or alcohol, per caregiver report, were 

excluded. Additional exclusion criteria for both groups included psychotic symptoms, 

pervasive developmental disorders, current depression or mania, or SUDs; 

psychopharmacologic treatment within the past 2 weeks other than psychostimulants 

(withheld the days of assessment and scanning, as is routine for pediatric ADHD 

neuroimaging studies, given little concern for withdrawal symptoms); history of 
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neurological problems; estimated Full-Scale IQ <75; active or debilitating medical 

conditions; or MRI contraindications.

2.2. Assessment procedures

Parents completed a phone screen with a research coordinator and were invited in for an 

assessment if they appeared to meet inclusion criteria. Written consent/assent was obtained 

in person from at least one parent and the child utilizing Indiana University IRB-approved 

materials. Rapid urine toxicology screening (Uritox Medical) tested for five illicit drugs 

(methamphetamine, ecstasy, cocaine, opiates, cannabis). The substance use domain of the 

Drug Use Screening Inventory (Kirisci et al., 1995) was administered to each child 

privately.

During the first visit, a trained doctoral-level clinician completed the K-SADS-PL (Kaufman 

et al., 1997) semi-structured interview separately with parent(s) and child to determine 

present or lifetime psychiatric diagnoses. Children also completed IQ screening (Wechsler, 

1999). Parents completed checklists for Tanner pubertal development staging. Children also 

completed the child version of the UPPS-P Impulsive Behavior Scale (Zapolski et al., 2010). 

The UPPS-P-C is a 40-item self-report instrument assessing five distinct tendencies toward 

impulsive behavior in children and adolescents, including lack of premeditation (i.e., failure 

to think before acting), lack of perseverance (i.e., failure to complete tasks), sensation 

seeking (i.e., tendency to seek out new and exciting experiences), negative urgency (i.e., 

acting rashly in extreme negative emotional states), and positive urgency (i.e., acting rashly 

in extreme positive emotional states). These five traits are detectible in adolescence 

(Zapolski et al., 2010) and stable over time (Cyders et al., 2007; Smith et al., 2007); higher 

scores reflect more impulsive behaviors.

The presence of paternal SUDs was assessed with the substance abuse section of the 

Structured Clinical Interview for DSM-IV (SCID)-I/Non Patient Edition (First et al., 2002). 

When the child’s father was unavailable for interview, an informant SCID interview was 

obtained with the available parent. Only subjects with clear evidence supporting or refuting 

paternal SUD diagnoses were included.

2.3. Imaging procedures

Before the scanning session, participants completed urine drug screening and pregnancy 

testing (no positives were detected), were instructed to limit movement during scanning and 

practiced completion of the BART. Participants were scanned on a 3.0 Tesla Siemens 

Magnetom Tim Trio MRI scanner using a 32-channel head coil. After a short scout scan, a 

high-resolution 3D magnetization prepared rapid gradient echo (MPRAGE; 160 sagittal 

slices; 1.0 × 1.0 × 1.2 mm voxel dimension) scan was acquired and used for co-registration 

and normalization of functional image volumes to Talairach space. A gradient recalled echo 

(GRE) field-mapping scan followed (echo time [TE]= 25 ms; 35 axial slices (64 × 64 grid); 

voxel dimension 3.4 × 3.4 × 3.8 mm; 0 mm spacing manually shimmed to ensure 

optimization of the ventral brain signal). Then, one session of the BART was acquired over 

8 min, using a T2*-weighted gradient echo-planar imaging (EPI) sequence (TR/TE 2000/25 

ms, flip angle 70°; same slice locations and voxel dimension as GRE field mapping).
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2.4. fMRI task

During the BART, participants must decide whether to risk cash rewards that increase with 

each inflation, or bank the amount and start a new balloon. Fig. 1 presents a schematic of the 

task. At the beginning of the task, a fixation cross in the center of the screen appeared for 30 

s. At the start of each trial, a balloon and a green (e.g., go) decision cue were displayed on 

the screen. Participants then chose to inflate the balloon (Choose Inflate) or take the 

accumulated wager (Choose Win; i.e., “cash out”) via button pressing. After the response, a 

jittered delay occurred where no feedback was allowed (modification per Fukunaga et al., 

2012). Jitter delays (0, 2000, 4000, or 6000 ms) were chosen by a weighted random 

selection (30, 12, 5 and 2, respectively). After the delay, the outcome was presented. For 

Choose Inflate trials, an exploding balloon was shown for 500ms followed by “You Lose!” 

text for 1000 ms, or a successfully inflated balloon for 500 ms. If the balloon inflated, the 

decision cue turned red for 1.5, 2.0, or 2.5 s (equiprobable) when no responses were 

allowed. After each inflation, the chance of balloon explosion increased, identically for each 

balloon. For Choose Win, “You Win!” was presented for 1000 ms. After a win or a loss, the 

screen was blank for 2, 3 or 4 s (equiprobable) and then a new balloon appeared. Once the 

cue turned green, the next trial began. The cumulative earnings were presented at the bottom 

of the screen during each trial.

We modeled increases in the probability of explosion over successive responses by using a 

parametric modulator (Fukunaga et al., 2012). Parametric modulation analysis is a specific 

type of fMRI analysis in which changes in brain activation are examined, as an experimental 

condition changes. Here, the parametrically modulated fMRI regressor models an assumed 

linear relationship between probability of explosion and brain activity during each trial. This 

type of analysis allows for the study of how the increasing risk of explosion is related to 

changes in brain activity during each trial. We paired an increasing risk of explosion with an 

increasing wager amount for each successive inflation (whose exact probabilities are 

unknown to the participant; see Supplementary Table 1). This allowed us to detect 

systematic changes in the amplitude of the BOLD signal as explosion probability changes.

A maximum of 12 inflation responses were possible for each balloon. Explosions were 

possible after any of the responses. Participants completed as many trials as they were able 

during the 8-min scan. Participants could theoretically earn up to $50 if the balloons never 

exploded and participants always inflated to the maximum. A jitter function was applied 

between decision and outcome phases of each trial to differentiate decision-making and 

feedback-related processes (Fukunaga et al., 2012). Participants were instructed to “inflate 

the balloon as much as you can without popping it” in order to earn money for each 

unexploded balloon. Participants were told that they won more money for larger unexploded 

balloons. Their actual earnings were paid in cash following the scan. We simplified the task 

for use in children by not presenting the wager amount at the onset of each trial (Fig. 1), 

although they were previously trained that larger balloons were worth more money.

2.5. Behavioral analysis

For each group, the total winnings, total balloons completed and reaction times (in ms) for 

choices were compared using t-tests. In addition, the number of trials with very long 
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reaction times (defined as >5000 ms) was compared between groups. Balloons were also 

compared between groups for the following measures: balloons won, balloons exploded, 

inflations per balloon, minimum/maximum number of inflations and reaction times. 

Analysis of variance (ANOVA) was performed to examine group (HR vs. HC) by condition 

(choose win vs. choose inflate) interactions as well as main effects of group. To assess 

whether behavioral traits correlated with BART performance, UPPS-P-C subscale scores 

were correlated with the following variables (listed in Table 4) using Pearson’s Correlations 

(averaged per participant): number of inflations per balloon, total number of inflations, total 

number of exploded, stopped and completed balloons and total average winnings.

2.6. Image analysis

2.6.1. Subject-level analyses—Image preprocessing, using AFNI software (Cox, 1996), 

consisted of slice-time correction, de-spiking of time series outliers (3dDespike algorithm), 

motion correction via realignment to the first time point using Fourier interpolation, 

registering the functional image to the structural image, correction for signal inhomogeneity 

with field mapping and spatial smoothing with a Gaussian kernel of 6-mm full-width at half-

maximum. A general linear regression model (GLM) with random effects was created to 

estimate event-related responses. Along with six motion parameters and linear and quadratic 

detrending terms to correct for potential scanner drift, nine regressors that encompassed all 

potential decisions and outcomes, including parametric modulators when appropriate, and 

one additional nuisance regressor (reaction time outliers) were generated. Time points with 

>3.5-mm head displacement were censored (plus the time point before and two after). 

Participants with >10 time points censored were excluded.

Choice events, aligned to the one repetition time (TR) that included the button press 

response, were modeled as Choose Inflate (choosing to continue inflating the balloon) or 

Choose Win (choosing to discontinue inflating and bank money) regressors. Outcome events 

were modeled as the TR that included balloon explosion (Outcome Explode), successful 

balloon inflation (Outcome Inflate), or the outcome of choosing to discontinue inflations 

(Outcome Win). Because there were relatively few Outcome Explode events, outliers 

(1.5*interquartile range) among those participants with fewer than five balloon explosions 

were excluded from Outcome contrasts (n=3 participants).

For each subject, Choose Inflate and Choose Win conditions were contrasted. For outcome 

trials, only Outcome Inflate vs. Outcome Explode were contrasted, as these constitute the 

outcomes (positive or negative) that could follow an identical earlier decision (Choose 

Inflate). We did not contrast Outcome Win (vs. either Outcome Inflate or Explode) because 

there was no uncertainty at this point in the trial (i.e., the subject had already banked the 

reward).

Balloon explosion probabilities (Supplementary Table 1) were included as parametric 

modulators for each event-type regressor (e.g., Choose Inflate * P(explode), Outcome Inflate 

* P(explode)), except for Outcome Win, because the probability of explosion no longer 

applied at this point. The parametric modulator for a given inflation represented the 

explosion probability at each pump, not the total explosion probability that occurs until the 

balloon either explodes or is cashed out. Inclusion of parametric modulators accounts, in 
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part, for the psychological impact of the changing balloon explosion probability across 

trials.

Trials with reaction time outliers (>5000 ms) were modeled separately, but identically to all 

other balloons, and treated as nuisance regressors. Activation maps were warped to a 

standard Talairach atlas for group analyses. For subjects where P(explode) was the same for 

each explosion (2 HR, 1 HC), modulatory effects could not be separated from effects of the 

explosion itself, so these participants were excluded from outcome contrasts.

2.6.2. Group level analyses—Contrast maps for choice (Choose Inflate vs. Choose Win) 

and outcome (Outcome Inflate vs. Outcome Explode) were obtained separately from 

subject-level coefficients. To test for between-group differences on the contrasts, we carried 

out condition (e.g., Choose Inflate vs. Choose Win) by group within-subjects ANOVAs 

(using 3dMVM in AFNI) on activation intensities derived from the GLM (“Analysis of 

BOLD signal, without Parametric Modulation”). In addition, choice and outcome ANOVAs 

with parametric modulators (P(explode)) were also conducted (“Parametric Modulator 

Analysis”). Activation intensities from each subject were extracted from significant clusters.

Separately, to examine the potential influence of IQ or socioeconomic status (SES) on the 

findings, activation intensities from significant clusters were tested with analysis of 

covariance (ANCOVA) using SES (defined using family income on a 1–5 scale, where 1 = 

<$20,000; 2 = $20,000 – $40,000; 3 = $40,000 – $60,000; 4 = $60,000 – $80,000; 5 = >

$80,000; Table 1) and full-scale IQ as covariates. Only clusters which remained significant 

(p < 0.05) after accounting for covariates are reported as primary findings. Incidentally, all 

clusters remained significant after accounting for covariates.

Multiple comparisons associated with this whole-brain voxel-wise analysis were addressed 

using cluster-wise thresholds. Individual voxels were considered significant at p < 0.01, and 

a Monte Carlo simulation (AlphaSim) was again used to determine that cluster size (k) > 

216 voxels corrected for group-level significance (p < 0.05).

3. Results

3.1. Participants

Fifty-six right-handed male and female participants aged 10–14 years old completed the 

protocol. Six participants were excluded from all analyses for the following reasons: (1) two 

HR participants had >10 motion-censored time points; (2) two HR participants had high 

global signal variance across the time series, likely non-neural artifact; and (3) two HC 

participants had >10 trials with reaction times exceeding 5000 ms. Groups did not differ on 

motion in the scanner (Table 1).

Groups were matched on age, gender, and Tanner stage, but they differed on IQ and SES 

(Table 1). Psychotropic medication treatment histories are presented in Table 1. See Table 2 

for clinical characteristics of the child participants and Table 3 for paternal SUDs.
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3.2. BART performance

Groups did not differ on task outcomes, except for reaction times (Table 4), where HR youth 

were faster on win trials (F(1, 46)=7.27, p=0.01). Twelve participants (11 HC; 1 HR) 

required modeling with the nuisance regressor for outlier reaction time, though no 

participant had more than three outliers. Several BART performance outcomes (Table 4) 

were correlated with self-report measures of impulsivity (UPPS-P-C; Table 1). Negative 

urgency (the tendency to act rashly during negative emotions) and lack of premeditation (not 

thinking before acting) were positively correlated with number of inflations per balloon 

(R=0.35, p=0.01 for negative urgency and R=0.33, p=0.01 for lack of premeditation). This 

suggests that these traits are associated with a strategy of inflating the balloons more (i.e., 

maximizing reward) and not avoiding balloon explosions (i.e., avoiding punishment). In 

fact, negative urgency was also positively related to total earnings (R=0.39, p=0.04), 

suggesting that this strategy on the BART was effective.

3.3. Imaging results

For main effects of task condition, with and without parametric modulator analysis, see 

Supplementary Fig. 1 and Supplementary Table 2. Group effects are reported below.

3.3.1. Choice conditions—No main effects of group or group × condition interactions 

were found for the choose contrasts (Choose Win vs. Choose Inflate).

3.3.2. Outcome conditions

Parametric modulator analysis: There were main effects of group in a cluster in the 

bilateral ventromedial PFC (vmPFC), such that HR participants had greater activation in 

both conditions, as balloon explosion probability increased (for all voxels: F(1,40)>7.22, 

p<0.01; k>216 voxels; Table 5, Fig. 2).

Two clusters showing a group × condition interaction spanned the ACC/ventral striatum and 

inferior frontal gyrus(IFG)/anterior insula (F(1,40)>7.22, p<0.01; k>216 voxels; Table 5; 

Fig. 3). In these clusters, as explosion probability increased, post hoc analyses revealed that 

the HR participants had increasing activation and HCs decreasing activation on the Outcome 

Explode trials (ACC/striatum: t(40)=13.5, p=0.001; IFG/insula: t(40)=11.1, p=0.002), but no 

group differences on the Outcome Inflate trials.

Analysis of BOLD signal, without parametric modulators: There was a group × 

condition interaction in the left occipital cortex (for all voxels: F(1,43)>7.22, p<0.01; k>216 

voxels; Table 6). This interaction was driven by greater activation for HR group than the HC 

group on the Outcome Explode, but not on the Outcome Inflate condition.

3.3.3. Functional connectivity—To further explore the findings in the striatal cluster 

where activity differed between groups on the outcome contrast (Fig. 3), a functional 

connectivity analysis was used to examine the time-series correlation between activity in 

this cluster and all other voxels. This analysis demonstrated that during the outcome 

contrast, the striatal cluster was highly functionally correlated with prefrontal and posterior 

(i.e., occipital) regions for both groups (see Supplemental Fig. 2). However, group 
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differences were only found in a cluster in the thalamus ([7,-21, 4], k=269; peak t =3.3 

voxels, p<0.01), where the HC group had a stronger negative correlation that the HR group.

4. Discussion

Using the BART in a complex childhood phenotype known to be at elevated risk for SUD 

development, we characterized brain activation underlying risky decision-making that 

parallels real-world drug- and alcohol-related choices. In these HR youth, decision-making 

deficits that lead to drug use are likely already at play. Here we examined routine activation 

intensity across contrasts, as well as the main focus of the study, i.e., the change in 

activation seen as the probability for balloon explosion changes. The parametric analyses 

examining changes in activation revealed intriguing group differences in sensitivity to 

reward/explosion. We found no group differences in brain activation during the decision-

making phase (Choose Win vs. Choose Inflate). Rather, brain activation differed between 

groups solely during the outcome phase (Outcome Inflate vs. Outcome Explode). Consistent 

with other MRI studies comparing groups, we report no differences in behavioral outcomes, 

apart from reaction time. This is likely due to different explosion probability distributions 

used in MRI studies (vs. behavioral studies) used because of time constraints (Galvan et al., 

2013), although the BART has not been studied in children as young as those in our sample. 

Of note, earlier BART studies have found that despite the lack group behavioral differences, 

brain activation on this task was predictive of future addiction-pertinent behavior (Bogg et 

al., 2012; Kohno et al., 2015). This work suggests the need for inclusion of additional 

behavioral measures of decision making in future studies.

We do report that BART performance was correlated with traits underlying impulse control. 

Specifically, traits associated with rash action and with failure to think through one’s actions 

were associated with maximizing rewards rather than avoiding punishment. Although this 

might be effective in the short term (increased earnings on the BART task, for instance), this 

strategy is likely to be maladaptive in the long run (Cyders et al., 2007).

Our results suggest that neural mechanisms underlying the choice to proceed with riskier 

outcomes are not clearly separable in high- vs. typical-risk pediatric samples. It seems 

unlikely, however, that choice-related deficits are absent in HR youth. Thus, we speculate 

that because Choose Inflate neural responses were so large relative to Choose Win responses 

(Supplementary Fig. 1), a ceiling effect may have obscured any group difference. There may 

also be the possibility of false negative findings, given our relatively stringent cluster size 

threshold. In addition, this version of the task presents notice of reward as “You Win!” 

rather than auditory and visual stimuli of coins falling, as has been used in prior versions 

(Lejuez et al., 2002). It may be that the attenuated reward stimuli resulted in diminished 

activation for HR youth, resulting in a failure to observe group differences on the choice 

contrast. Finally, we cannot rule out the possibility that, developmentally, the neural-basis 

for choice may not yet appear aberrant in HR youth. Additional study with other tasks that 

probe the choice phase of decision-making are needed to validate this finding. Thus, neural 

response to outcomes appears to be a more sensitive endophenotypic target than choice 

activity during decision-making in preadolescents.
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For our primary finding (Outcome Inflate vs. Outcome Explode contrasts), we observed 

group differences in fMRI analyses (with or without parametric modeling), despite little 

apparent difference in task performance. Group differences emerged in the vmPFC, as 

predicted. This difference appeared to be driven by increased activation in the HR group, as 

risk of balloon explosion increases. The vmPFC has been firmly associated with decision-

making deficits, particularly in the context of uncertain outcomes (Fellows and Farah, 2007). 

Stimulant and alcohol abusers who failed to learn from their mistakes during decision-

making were found to have abnormal activation in the vmPFC (Bechara et al., 2001). In this 

case, increasingly atypical vmPFC activation as balloon explosion becomes more likely 

suggests that HR youth may utilize an abnormal neural strategy to process outcomes, 

potentially hampering their ability to learn from mistakes.

We also report group × condition interactions on the outcome contrasts in ventral 

striatum/ACC and anterior insula/inferior frontal gyrus, with explosion trials driving the 

findings. In the striatal/ACC cluster, disappointing outcomes were associated with greater 

activation in HR youth, even as the outcomes became less surprising. The ventral striatum 

has been found to be most active when uncertainty about an outcome was maximal 

(Heekeren et al., 2007). It may also play a role in forming expectancies that inform future 

decisions (van der Meer and Redish, 2009). Hence, the inverse pattern of activation 

observed between groups on the explosion outcomes in the ventral striatum raises the 

possibility of deficits in reward learning, particularly in the context of uncertain outcomes. 

Of note, in rats, the ventral striatal encoding of reward outcomes was correlated with later 

risk-taking behavior (Sugam et al., 2014), suggesting a neural mechanism underlying future 

risk-taking in HR youth (Pasupathy and Miller, 2005; Lau and Glimcher, 2007; Yamada et 

al., 2011). In the case of the BART, striatal activity was greater for unexpected explosions in 

the HC group, possibly because these trials required an “update” to learned patterns. In the 

HR sample, inadequate neural encoding of the relationship between balloon size (i.e., risk) 

and explosion (i.e., adverse outcome) could explain the activation patterns seen across 

increasing probability of explosion. With early drug experimentation, failure to learn from 

adverse consequences of drug use could promote ongoing use, a consequence particularly 

relevant to the HR group.

As reviewed above, anterior insula/inferior frontal gyrus activation has been reported during 

risky decision-making. Decreased activation has been reported in drug-using populations 

during risky decision-making and was attributed to executive functioning deficits (Stewart et 

al., 2014), similar to those present in our HR group. These regions are particularly relevant 

to balloon explosions due to their connections with limbic regions which process emotional 

responses to unpleasant outcomes (Jabbi et al., 2008; Jabbi and Keysers, 2008). Thus, these 

findings point to the need for further study of the role of emotional responses to adverse 

outcomes, particularly as they pertain to the development of SUDs.

4.1. Limitations

This study is based on the assumption that externalizing psychopathology in offspring of 

males with SUDs portends risk for the development of SUDs. It remains to be seen if HR 

youth in this sample will develop SUDs at higher rates than controls, although 
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phenotypically similar youth have been shown to have substantially elevated rates of SUD 

development when prospectively followed into their late teens/early twenties. Further, given 

the small sample size, gender effects are unexamined here and warrant future exploration, 

although groups were matched on gender. Second, to screen out those with more than five 

lifetime substance use occasions, we relied on self-report plus drug screening at the 

assessment and scanning. Third, most HR participants have been treated with psychotropic 

medications, raising the possibility that brain activation may be impacted by past treatment. 

While psychostimulants have been used to treat ADHD symptoms in a subset of these youth, 

the doses and route of administration (i.e., oral) differ substantially from those typical of 

stimulant abuse. Less than one third of participants with ADHD were currently taking 

medication, and medication was held for at least 24 hours before scanning. Thus while these 

results may be impacted by medication effects, the majority of participants were medication 

free for this study. It would have been prohibitively difficult to recruit a psychotropic naïve 

sample meeting our other inclusion criteria. Fourth, the HR group had lower SES and lower 

IQ; however, secondary covariate analyses accounted for these variables. Only two findings 

appeared to be substantially influenced by these covariates. It is also worth noting that lower 

IQ appears to be part of comorbid severe externalizing disorders (Moffitt, 1993) and 

recruiting equal-IQ groups might also reduce other important group differences. Fifth, 

because disruptive behavior disorders and a family history of SUDs co-occur in our HR 

group and are not present at all in the HC group, we are unable to attribute the etiology of 

our findings specifically to either factor. However, these findings are promising and warrant 

further study using designs that can tease apart the effects of externalizing disorders and 

family history of SUDs. Sixth, the version of the task used here and in other BART imaging 

studies do not provide auditory and visual stimuli of coins dropping when the participant 

‘cashes out.’ This may attenuate the rewarding effects during our outcome contrasts, 

although we do report within group and between group brain activation intensity differences 

on those contrasts. Finally, due to concerns for time in the scanner for pediatric participants, 

children completed the BART over one 8-min session (vs. two 8-min sessions). This limited 

the number of occurrences of all events and resulted in decreased statistical power for more 

rare events, such as explosions. The shortened version of the task may have also limited our 

ability to detect behavioral group differences. Therefore, behavioral and neuroimaging 

findings warrant replication.

4.2. Conclusions

These data support the hypothesis that aberrant brain activation in cortical and striatal 

regions relevant to risky decision-making may predate drug use and serve as a testable 

marker of SUD risk in those with elevated liability for SUD development. Examining 

parametric modulation of balloon explosion probability is an innovative and high-yield 

approach to characterizing group differences, as it allows for the study of neural responsivity 

to risk changes. Such analyses have been done only sparingly in adults and have not been 

reported in youth. In our pediatric sample, outcome contrasts revealed differences between 

groups, while choice contrasts did not, suggesting future examination of the choice phase 

with additional tasks are needed. Thus, using novel task adaptations (i.e., separating choice 

from outcome, examining risk parametrically), this study identified regions engaged during 

rewarding versus disappointing outcomes. Aberrant activation while processing outcomes of 
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decisions may impact adolescent responses and subsequent learning for all manner of 

adolescent choices, including experimentation and ongoing use of drugs of abuse. Future 

work following high-risk samples prospectively may determine if activation differences are 

actual biomarkers predictive of SUD development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Neural response to outcomes of risky-decisions appears to be a more sensitive 

endophenotypic target than activity while making choices in high risk 

preadolescents compared to healthy comparisons.

• Atypically increased activation in the vmPFC in high-risk youth, a region 

associated with risky decision making, was found prior to the use of drugs of 

abuse.

• Striatal activation abnormalities suggest a failure to learn from adverse 

consequences, a finding particularly relevant to youth known to be at elevated 

risk for the development of substance use disorders.
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Fig. 1. 
A schematic of the Balloon Analog Risk Task (BART) showing successive balloon 

inflations (i.e., a series of Choose Inflates) that either end in Outcome Inflate (“You Win!”) 

or an Outcome Explode (“You Lose!”).
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Fig. 2. 
Group differences (healthy comparisons (HC) vs. high risk (HR)) on the parametrically 

modulated outcome contrast. Group differences, driven by increasing activation intensities 

as explosion probability increases in the HR group, were found in a bilateral cluster in the 

ventromedial prefrontal cortex (vmPFC; Table 5). Bar graphs plot activation intensities (y-

axis) from the cluster according to condition (Outcome Inflate or Outcome Explode) and 

group (HC or HR). Line graphs illustrate the relationship between probabilities of balloon 

explosion (x-axis) vs. activation intensities of the blood oxygen level dependent (BOLD) 

signal in the cluster (y-axis).
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Fig. 3. 
Group × Condition interactions, on the parametrically modulated outcome contrast. 

Outcome Interactions were found in: 1. Right ventral striatum and anterior cingulate cortex 

(ACC) and 2. Right anterior insula (AI)/inferior frontal gyrus (IFG; Table 5). In both 

clusters, high risk youth had increasing activation on the explosion trials. Asterisks indicate 

group differences (p<0.01). Bar graphs plot activation intensities (y-axis) from each cluster 

according to condition (Outcome Inflate or Outcome Explode) and group (healthy 

comparison (HC) vs. high risk (HR)). Line graphs illustrate the relationship between 

probability of balloon explosion (x-axis) vs. activation intensities of the blood oxygen level 

dependent (BOLD) signal for each cluster (y-axis).
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Table 1

Demographic, head motion, data censoring, drug use and UPPS-P-C scores by group.

HR (n = 23) HC (n = 27) p

Number of Females (%) 13 (48%) 9 (39%) 0.532

Age 12.3 (1.3) 11.9 (1.2) 0.206

Race 0.293

Caucasian 6 (26%) 12 (44%)

African American 14 (61%) 9 (33%)

Other 3 (13%) 6 (22%)

IQ 96.5 (12.1) 112.2 (10.1) < 0.001

SES: Family Income Level 1.5 (0.9) 3.8 (1.3) < 0.001

Tanner Stage 2.9 (1.3) 2.7 (1.2) 0.500

Max MRI Head Displacement (mm) 1.37 (0.88) 0.96 (0.64) 0.066

Timepoints Excluded for Motion 1.9 (4.2) 0.5 (1.4) 0.140

Participants with Motion Censoring 5 3 0.444

Participants with Any Drug Use 2 1 0.459

Total Number of Drug Use Instances 2 3 NA

Participants with Psychotropic Medication:

Past Treatment 19(68%) 0

Present Treatment 8(28%) 0

UPPS-P-C Subscales

Lack of Premeditation 17.4 (4.4) 14.4 (4.3) 0.017

Positive Urgency 19.0 (6.3) 13.2 (4.1) 0.001

Negative Urgency 20.2 (4.8) 15.1 (5.5) 0.001

Sensation Seeking 21.4 (5.5) 22.2 (6.1) 0.650

Lack of Perseverance 17.3 (3.3) 15.2 (3.0) 0.023
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Table 2

DSM-IV diagnoses by group.

FHR Group
(n=23) Present Disorders Past Disorders

ADHD, Combined Type 22 23

ADHD, Inattentive Type 1 0

ADHD, NOS 0 0

Conduct Disorder 1 0

ODD 19 21

Disruptive Behavior Disorder NOS 3 3

Generalized Anxiety Disorder 3 3

Separation Anxiety Disorder 2 4

Social Anxiety Disorder 1 1

Anxiety Disorder NOS 3 3

PTSD 0 1

Adjustment Disorder 0 2

Major Depressive Disorder 0 2

Depressive Disorder NOS 1 1

Enuresis 1 5

Specific Phobia 0 0

Eating Disorder NOS 0 0

Tourette’s Disorder 1 1

HC Group
(n=27)

Enuresis 0 2

Specific Phobia 1 1

Eating Disorder NOS 0 1
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Table 3

Paternal DSM-IV substance use disorders among high risk youth (n=23).

# of Fathers Diagnosed % of Fathers with Diagnosis

Alcohol Dependence 16 69.6

Alcohol Abuse 2 8.7

Cannabis Dependence 12 52.2

Cannabis Abuse 3 13.0

Cocaine Dependence 11 47.8

Hallucinogen Dependence 2 8.7

Opiate Dependence 6 26.1

Opiate Abuse 1 4.3

Sedative Dependence 2 8.7

Polysubstance Dependence 10 43.5

Number of SUD Diagnoses Per Individual # of Individual Fathers % of Total Fathers

1 SUD diagnosis 2 8.7

2 SUD diagnoses 3 13.0

3 or greater diagnoses (includes polysub.) 18 78.3
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Table 4

Measures of performance on the BART task including winnings, reaction times, completed balloons and 

characteristics of won or lost balloon outcomes.

Total Winnings
Healthy Comparison High Risk

$10.35 (± 0.48) $11.51 (± 0.53)

Reaction Times >5000 ms** 0.70 (± 0.99) 0.04 (± 0.21)

Reaction Times of Inflate Trials (ms) 835.91 (± 53.47) 710.09 (± 43.99)

Total Balloons Completed 20.40 (± 0.48) 20.39 (± 0.72)

Successful Inflations Explosions Successful Inflations Explosions

Number of Balloon Outcomes 15.37 (± 0.75) 4.81 (± 0.34) 15.26 (± 0.94) 5.13 (± 0.38)

Inflations per Balloon 5.35 (± 0.15) 4.59 (± 0.15) 5.57 (± 0.17) 4.85 (± 0.21)

Minimum Number of Inflations 3.44 (± 0.23) 2.96 (± 0.20) 3.39 (± 0.27) 3.22 (± 0.20)

Maximum Number of Inflations 6.89 (± 0.20) 6.26 (± 0.27) 7.43 (± 0.22) 6.61 (± 0.31)

Reaction Times (ms) 770.69 (±66.23)* 727.85 (± 61.35) 554.82 (±38.31)* 634.68 (± 69.69)

*
denotes group differences with a significance of p<0.05

**
Number of instances of reaction times which were >5000 ms, across all participants in each group.
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