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Abstract

Stroke survivors without cerebellar involvement retain the ability to adapt to the split-belt 

treadmill, however it has been suggested that their rate of adaptation may be slowed compared to 

those who are neurologically intact. Depending on limb placement, the split-belt treadmill can be 

configured to either exaggerate baseline asymmetry, or reduce it, which may affect the behavior of 

adaptation or de-adaptation. The objectives of this study were to characterize the rate and 

magnitude of locomotor (de)adaptation in chronic stroke survivors compared to healthy matched 

subjects, and to evaluate whether exaggeration or reduction of baseline asymmetry impact the 

responses. Seventeen stroke survivors and healthy subjects completed 10 minutes of split-belt 

treadmill walking, then 5 minutes of tied-belt walking. Stroke survivors completed this once with 

each leg on the fast belt. Magnitude and rate of (de)adaptation were evaluated for step length and 

limb phase asymmetry. There were no differences between the groups with the exception of the 

reduced step length asymmetry configuration, in which case there was a significantly reduced 

magnitude (p=<0.000) and rate (p=0.011) of adaptation when compared to controls. There was a 

similar trend observed during post-adaptation for the exaggerated asymmetry group. The rate and 

magnitude of locomotor (de)adaptation is similar between chronic stroke survivors and 

neurologically intact controls, except when the adaptation or de-adaptation response would take 

the stroke survivors away from a symmetric step length pattern. This suggests that there may be 

some benefit to symmetry that is recognized by the system.
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Introduction

Each year, approximately 795,000 people in the United States suffer a stroke, and stroke is 

the leading cause of serious long-term disability (Lloyd-Jones et al., 2010). Walking deficits, 

such as slow speed and temporal and spatial asymmetries, are often observed following 

stroke and have a profound impact on functional independence (Bohannon, 1987; Olney et 

al., 1994; Schmid et al., 2007). Motor adaptation has been a suggested method through 

which such abnormal movement patterns can be improved after stroke (Abdollahi et al., 

2014; Reisman et al., 2010).

Martin et al. defines motor adaptation as a process of adjusting an already well-learned 

motor skill over a period of trial-and-error practice while being exposed to a novel and 

perturbing environment (Martin et al., 1996). Upon introduction of the novel environment, 

there are motor errors made because of a mismatch between what the nervous system 

expects and the newly perturbed movement. However, with practice in the novel 

environment, feed-forward adjustments are used to change the existing motor command to 

meet the demands of the novel environment. This process is called adaptation. When the 

perturbing environment is removed, the nervous system continues to use the newly adapted 

pattern, which is no longer appropriate for the given demands. This again causes a mismatch 

between what is expected and what occurs (after-effects), so an additional series of trial-and-

error practice is required to return the movement to its original state. This process is called 

de-adaptation (Reisman et al., 2010).

One method that has been used to create a novel and perturbing locomotor environment is 

the split-belt treadmill. This unique treadmill has two independently controlled belts: one 

under each foot. It can therefore be configured such that one belt, and therefore one foot, is 

forced to travel double the speed of the other. This perturbing locomotor environment has 

been shown to induce locomotor adaptation and de-adaptation in both healthy subjects and 

stroke survivors who are free from cerebellar dysfunction (Reisman et al., 2005; Reisman et 

al., 2007; Reisman et al., 2009; Reisman et al., 2010). This demonstrates that the basic 

capacity for locomotor adaptation remains intact after stroke.

While the basic capacity of locomotor adaptation appears to be intact post-stroke, the speed 

or magnitude of these adaptations may be altered. Previous studies have found that the rate 

of adaptation to the split-belt treadmill varies with age and between spatial and temporal 

variables (Musselman et al., 2011; Reisman et al., 2005; Vasudevan et al., 2009), and recent 

studies suggest that locomotor adaptation may be slowed after stroke (Savin et al., 2012). 

Understanding differences in the behavior of adaptation and de-adaptation after stroke 

compared to those who are neurologically intact could provide insight into how stroke 

impacts the feed-forward control mechanisms that are used to modify gait on an ongoing 

basis.

It has been previously reported that there is no difference in the behavior of locomotor 

adaptation and de-adaptation when there is a comparison made between conditions where 

the paretic limb is placed on the slow belt and the paretic limb is placed on the fast belt 

(Reisman et al., 2007). This comparison, however, may not be the most relevant, due 
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variations in the behavior of spatiotemporal gait asymmetries after stroke. It is known that 

most survivors of stroke walk with spatial and temporal asymmetries, however, it is 

important to note that these asymmetries are not in the same “direction” from person to 

person, or from variable to variable (Malone and Bastian, 2014; Reisman et al., 2007). For 

example, one stroke survivor can have a longer paretic step, and the next can have a longer 

non-paretic step. We know that the split-belt treadmill can be configured to either 

exaggerate the baseline step length asymmetry or reduce it, depending on which limb is 

placed on the slow belt (Reisman et al., 2007). Thus, given the variation in step length 

asymmetry “direction”, for one person, the paretic leg on the slow belt configuration would 

exaggerate the baseline step length asymmetry, and for the other, it would reduce it. 

Asymmetries of temporal variables follow similar patterns. These differences are important 

because it is possible that the error signals during early adaptation are interpreted differently 

if the participants' asymmetry is exaggerated versus reduced.

The purpose of this study is therefore, two fold. First, we aim to compare the rate and 

magnitude of adaptation and de-adaptation in subjects who have had a stroke to those who 

are neurologically intact. Second, we aim to examine the effect of exaggerating or reducing 

a stroke survivor's asymmetry on the rate and magnitude of adaptation and de-adaptation. 

We hypothesized that stroke survivors would demonstrate a larger magnitude and faster rate 

of adaptation when the split-belt is configured to exaggerate the baseline asymmetry 

compared to when it is configured to reduce baseline asymmetry. Additionally, we 

hypothesized that there would be a larger magnitude and faster rate of de-adaptation when 

the after-effects result in an exaggeration of baseline asymmetry.

Methods

Participants

Participants with chronic stroke and age- and gender-matched neurologically intact 

participants were recruited and all participants signed an informed consent approved by the 

University of Delaware Human Subjects Review Board. To be included, participants with 

stroke must have sustained a single stroke at least 6 months prior to study participation and 

be able to walk independently at a treadmill speed > 0.2 m/s with no more than light touch 

on the handrail. The participants who were neurologically intact must have been free from 

any neurological dysfunction and any musculoskeletal problem that impacted ambulation, 

and have an age ± 5 years of their stroke participant counterpart. Exclusion criteria for both 

groups included uncontrolled blood pressure or diabetes, cardiovascular or arthritic 

dysfunction exacerbated by exercise, and active cancer.

Instrumentation and Procedures

The participants with stroke completed the split-belt walking protocol on two separate days, 

with at least one week separating the two data collections. One data collection was 

completed with the paretic leg on the fast belt (HemiFast), and the other with the paretic leg 

on the slow belt (HemiSlow), the order of which was randomized.
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For each participant, the speeds used during the split-belt walking portion were set in a 2:1 

ratio. For the participants with stroke, the fast treadmill belt speed was chosen when: (1) the 

participant declined further increase in speed (2) the researcher determined that it was unsafe 

to further increase the speed. Fifty percent of this speed was used as the slow belt speed 

during split-belt treadmill walking. Participants who were neurologically intact walked at 

the same speeds as their stroke participant counterparts, and the limb that was placed on the 

fast belt was randomized. Figure 1 represents the experimental protocol.

All participants walked on a split-belt treadmill instrumented with two independent 6 degree 

of freedom force platforms (AMTI, Watertown, MA) from which ground reaction force data 

were continuously collected at 2000Hz. Kinematic data were continuously collected using 

an 8-camera Vicon Motion Capture System (Vicon MX, Los Angeles, CA) at 100Hz. Retro-

reflective markers (14-mm diameter) were placed on rigid shells over the pelvis, bilateral 

thigh, shank, and foot segments. Single markers were placed on the medial and lateral iliac 

crests, greater trochanters, knee joint line, and malleoli. During walking, all participants 

rested fingertips on an instrumented handrail which provided real time quantitative data for 

vertical force exerted by the participant. To keep handrail use consistent, vertical forces 

were monitored and verbal cues were provided if a change in force was observed.

All participants wore a safety harness around their chest for fall prevention. Participants 

with stroke were permitted to have standing or sitting rests during testing, but they did not 

dismount from the treadmill.

Data Analysis

All data were processed using Visual 3D (C-Motion, Inc., Germantown, MD). The gait 

events of foot strike and lift off were determined for each limb individually using an 

automatic algorithm in Visual 3D, after which they were visually checked for accuracy.

Dependent variables

Previous studies have found that spatial and temporal variables respond differently to split-

belt walking (Malone and Bastian, 2010; Malone et al., 2011; Malone et al., 2012a; Tyrell et 

al., 2014). We therefore evaluated a spatial (step length) and temporal (limb phasing) 

variable in this study. Step length and limb phasing were calculated for each leg 

continuously throughout the protocol. Step length was calculated as the sagittal distance 

between the right and left heel markers at foot strike. Step asymmetry was calculated as 

follows:

(Tyrell et al., 2014).

Limb phase was a measure of the time lag between contralateral peak flexion and ipsilateral 

peak extension, and was calculated as described in our previous work (Tyrell et al., 2014). In 

order to evaluate the specific characteristics of adaptation in our participants, we calculated 

the following measures for each variable (Malone et al., 2011):
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Magnitude of initial perturbation was calculated as the absolute value of the average of the 

first 30 strides of adaptation symmetry data, minus the average of baseline. This value was a 

measure of how much a subject's walking pattern was perturbed by the split-belt treadmill, 

before adaptation occurred.

Magnitude of adaptation was calculated as the average of the final 30 strides of split-belt 

walking, minus the average of baseline. This value was a measure of how well a subject was 

able to resolve the early asymmetry caused by the split-belt treadmill by the end of 

adaptation. A value of 0 would signify that a subject had completely resolved the initial 

perturbation, and was able to resume their baseline symmetry pattern despite the continued 

2:1 belt speed discrepancy.

Rate of adaptation was a measure of the time required to resolve the initial perturbation, and 

achieve a stable pattern in gait symmetry despite the continued 2:1 belt speed discrepancy 

(Huang et al., 2011). Rate of adaptation was determined by creating bins of 10 strides 

(symmetry data minus the average of baseline) for each subject during the adaptation period. 

The contents of the first 10 bins were then compared statistically between the neurologically 

intact group and the stroke conditions.

Magnitude of initial after-effect was calculated as the absolute value of the average of the 

first 10 strides of de-adaptation symmetry data, minus the average of baseline. Magnitude of 

de-adaptation was analogous to magnitude of adaptation, but was calculated as the average 

of the final 20 strides of the de-adaptation period, minus the average of baseline.

Rate of de-adaptation was analogous to rate of adaptation, and was calculated similarly.

Conditions and subjects

As mentioned above, previous studies of split-belt treadmill walking in stroke survivors 

have reported rate and magnitude data during adaptation and de-adaptation based solely on 

whether the hemiparetic limb is on the slow belt (HemiSlow), or on the fast belt (HemiFast). 

In an effort to test our hypotheses, as well as put our findings in the context of this 

previously published work, we have chosen to present our data according to the conditions 

of exaggerated and reduced baseline asymmetry, as well as HemiFast and HemiSlow.

Seventeen participants with stroke and seventeen participants who were neurologically 

intact participated in this study. Table 1 contains participant information. Table 2 contains 

information about how the subjects' data were re-grouped based on baseline asymmetry and 

symmetry of initial after-effects.

Statistical Analysis

Normality of the data distribution was confirmed using the Kolmogorov-Smirnov test for 

normality. All statistical testing was completed using SPSS v19. The magnitude of initial 

perturbation, magnitude of initial after-effect, magnitude of adaptation, and magnitude of 

de-adaptation were compared between groups and conditions. Stroke conditions were 

compared to each other using a paired t-test, and each stroke condition was compared to the 

neurologically intact group using independent samples t-tests. A Bonferonni correction was 
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used to account for the repeated comparisons to the neurologically intact group, so the level 

of statistical significance was determined to be p<0.025. To evaluate rate of (de)adaptation 

between groups, a repeated measures ANOVA was used to compare the contents of the first 

10 bins of symmetry data (100 strides) during adaptation and the first 8 bins of de-adaptation 

data (80 strides), (within-subjects factor of bin number, and a between subjects factor of 

group). In these analyses a group × bin interaction would indicate that the rate of change 

differed between the two groups.

Results

Figure 2 illustrates step length symmetry data for a representative participant who is 

neurologically intact, and a stroke survivor in each condition. In all cases, the participant is 

most perturbed during early adaptation and becomes progressively less so with increased 

exposure. Note that the participant who is neurologically intact has baseline data averaging 

near the value of 0 (zero indicates perfect symmetry), and the participant with stroke has a 

baseline with an average greater than 0, signifying a longer paretic step at baseline. Late in 

the adaptation period in both the neurologically intact participant and in the stroke 

participant in the exaggerated asymmetry (HemiSlow) condition, the initial asymmetry has 

been resolved with a return to baseline (a)symmetry, where as the participant with stroke in 

the reduced asymmetry condition (HemiFast) demonstrates a substantial difference between 

the symmetry in late adaptation when compared to baseline. Limb phase data followed a 

similar pattern.

Magnitude of initial perturbation

There were no differences in the magnitude of initial perturbation for either variable 

between any group/condition, indicating that all groups/conditions were initially perturbed 

similarly by the split-belts (Figure 3).

Magnitude of adaptation

The magnitude of adaptation is reduced after stroke when the initial split-belt perturbation is 

configured to reduce baseline step length asymmetry, as compared to neurologically intact 

control subjects (Figure 3). Figure 3a and b represents the average of baseline, the average 

of the first 30 strides, and the average of the final 30 strides of adaptation for the control 

subjects, and then for our group of 17 stroke subjects, grouped as described in the Data 

Analysis section. We compared the average of the last 30 strides of adaptation to the average 

of baseline in each group. By the end of the adaptation period, symmetry has returned to 

baseline in all cases except for the reduced asymmetry condition for step length (Figure 3a, 

p=0.001). In this case, at the end of adaptation the stroke participants remain more 

symmetric than at baseline.

Figure 3c and d presents the data for step length and limb phase magnitude of adaptation for 

each group and condition. A value of 0 for this variable demonstrates a complete return to 

baseline after 10 minutes of exposure. For step length symmetry, the large negative values in 

the reduced asymmetry condition indicate that, on average, in this condition participants did 

not adapt back to baseline to the same extent as in the exaggerated asymmetry condition 
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(Figure 3c, p=0.001) or the neurologically intact group (Figure 3c, p<0.000). For the 

remaining step length conditions, and for all limb phase conditions, there were no statistical 

differences between conditions or groups (Figure 3d).

To further examine the differences in the magnitude of asymmetry in the reduced 

asymmetry condition, we analyzed the behavior of the exaggerated baseline asymmetry and 

reduced baseline asymmetry conditions as seen in Figure 4. Figure 4a shows clearly that for 

step length, the reduced asymmetry condition remains near perfect symmetry (symmetry = 

0) through the end of the adaptation period, as compared to the exaggerated asymmetry 

condition, in which the subjects adapt back toward their baseline. Figure 4b shows parallel 

data for limb phase, but in this case, both conditions adapt back toward their respective 

baselines by the end of the adaptation period.

Rate of adaptation

The rate of adaptation is slowed after stroke when the initial split-belt perturbation is 

configured to reduce baseline step length asymmetry, as compared to neurologically intact 

control subjects (Figure 5a). This is visually evident in Figure 5a as the slope of change 

between bins 2 and 5 is less steep for this group when compared to the neurologically intact 

group. This is reflected by a bin × group interaction (Figure 5a, p=0.011) and is consistent 

with the magnitude data showing that in this group subjects adapted more slowly and to a 

lesser magnitude. There were no differences between the exaggerated, HemiSlow or 

HemiFast condition and the neurologically intact group (Figure 5c). For limb phase, there 

were no group × bin interactions suggesting a similar rate of adaptation across groups and 

conditions (Figure 5b, d).

Magnitude of initial after-effect

There were no differences in the magnitude of initial after-effect for either variable between 

any group or condition, indicating that all groups/conditions showed similar after-effects at 

the start of the de-adaptation phase.

Magnitude and rate of de-adaptation

There were no differences in magnitude of de-adaptation for either variable between any 

group or condition. Figure 6 presents the binned de-adaptation symmetry data for step length 

(a) and limb phase (b) for each group/condition. There were no group × bin interactions, 

suggesting a similar rate of de-adaptation across groups This includes the comparison 

between the HemiSlow and the control groups depicted in 6c. Although visually it appears 

as if the HemiSlow subjects have a slower rate of de-adaptation, the p-value for this 

comparison was 0.363.

Discussion

Previous studies of split-belt locomotor adaptation found that the cerebral damage from 

stroke did not impair the capacity to adapt inter-limb coordination during locomotion 

(Reisman et al., 2007; Reisman et al., 2009). However, recent evidence suggests that the rate 

of locomotor adaptation may be altered after stroke (Savin et al., 2012). In the present study, 

Tyrell et al. Page 7

J Biomech. Author manuscript; available in PMC 2016 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



when the stroke survivor data was grouped according to which leg was on the fast belt, as 

has been done previously, we found no differences in magnitude or rate of adaptation or de-

adaptation in stroke survivors compared to neurologically intact controls, which is consistent 

with previous findings (Reisman et al., 2007; Reisman et al., 2009).

However, we hypothesized that differences in the magnitude and rate of adaptation and de-

adaptation between stroke survivors and controls may be present if we grouped the stroke 

survivors' data based on whether their baseline asymmetries were exaggerated or reduced by 

the initial split-belt perturbation. When the data was regrouped, we found that stroke 

survivors adapt more slowly and to a lesser extent when the initial split-belt perturbation 

reduced their step length asymmetries, as compared to neurologically intact control subjects. 

Additionally, these subjects remain closer to perfect symmetry through the adaptation phase 

despite having had the same time of exposure to the split-belt perturbation, when compared 

to all other subjects and groups. In contrast, there were no differences, in the magnitude or 

rate of adaptation or de-adaptation when initial split-belt perturbation exaggerated their 

baseline asymmetries, as compared to neurologically intact controls subjects. Finally, there 

were no differences in these measures when the temporal variable of limb phasing was 

evaluated, regardless of how the data was grouped.

Because persons post-stroke typically walk with spatial and temporal asymmetry at baseline, 

the initial perturbation imposed by the split-belt treadmill can be configured to push their 

walking pattern further away from perfect spatial and temporal symmetry (exaggerated 

asymmetry condition), or to push their pattern closer to perfect symmetry (reduced 

asymmetry condition). In contrast, participants who are neurologically intact typically walk 

with a spatially and temporally symmetric gait pattern at baseline (Reisman et al., 2007), so 

regardless of whether their right or their left leg is paired with the faster moving belt, the 

initial perturbation imposed by the split-belt treadmill pushes their pattern away from perfect 

symmetry (equivalent to the exaggerated asymmetry condition for the stroke survivors). Our 

results indicate that when participants are perturbed in a direction that takes their gait pattern 

away from perfect symmetry (neurologically intact group and exaggerated asymmetry 

condition), participants who are neurologically intact and those post-stroke have a similar 

magnitude and rate of adaptation. However, if participants with stroke are perturbed in a 

manner that pushes them closer to perfect symmetry, there is a significantly reduced 

magnitude and rate of step length adaptation. Thus, it appears that when locomotor 

adaptation would move the walking pattern away from the initially imposed spatial 

symmetry, the speed is slowed and the rate is reduced. Similarly, if, at the time of initial 

after-effect, symmetry is achieved by our stroke subjects, there is a tendency to stay closer to 

perfect symmetry without substantial de-adaptation. This suggests that after stroke, the 

nervous and musculoskeletal systems may, in fact, still recognize and prefer a more 

symmetrical spatial gait pattern.

One possible explanation for this finding is that there is some advantage or preference for 

spatially symmetric walking. Previous studies have shown that step length asymmetry has 

negative functional consequences after stroke. Step length asymmetry is associated with 

reduced forward propulsion, slow walking speed and reduced dynamic balance 

(Balasubramanian et al., 2007; Bowden et al., 2006; Patterson et al., 2010), as well as an 
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increased energy cost of walking (Awad et al., 2014; Mattes et al., 2000). Other evidence 

has shown that muscle activation in one leg directly facilitates out-of-phase muscle 

activation in the contralateral leg during cycling, thereby facilitating smooth reciprocal and 

symmetric timing of leg movement (Kautz et al., 2002; Ting et al., 2000). Thus, the nervous 

system seems to be configured to favor symmetric timing and activation of the lower 

extremity during the reciprocal movements of locomotion, which may therefore reinforce 

the maintenance of the spatial symmetry that the induced symmetry condition produces.

We did not find differences in the magnitude or rate of adaptation or de-adaptation between 

conditions or groups for our temporal variable. This finding is not unexpected. A number of 

recent studies have shown that in neurologically intact subjects spatial and temporal 

variables adapt at different rates and respond differently to conscious control and 

manipulations in practice structure during split-belt treadmill walking (Malone and Bastian, 

2010; Malone et al., 2012a). Moreover, temporal parameter adaptation has been shown to 

adapt at twice the rate of step length and be much more difficult to manipulate through 

conscious efforts compared to spatial parameter adaptation (Malone and Bastian, 2010; 

Malone et al., 2012a). Together these results have led to the suggestion that the temporal and 

spatial aspects of gait may have separate neural control, and that the temporal aspects of gait 

may be less influenced by cerebral control (Malone et al., 2012b). Thus, the cerebral damage 

resulting from stroke may be more likely to affect the adaptation of spatial, rather than the 

temporal aspects of gait. Moreover, when healthy adults are exposed to conditions that 

prevent spatial parameter adaptation during split-belt walking, they are unable to prevent the 

temporal adaptation from proceeding normally (Malone et al., 2012a). This may explain 

why the stroke survivors were able to maintain the induced spatial symmetry but adapted the 

temporal parameter similarly across conditions.

We found that the rate and magnitude of adaptation is reduced after stroke when the initial 

perturbation induced by the split-belt treadmill is configured to reduce asymmetry. If we 

accept the explanation that this is because the system recognizes a pattern of improved 

spatial symmetry, it follows that the exaggerated asymmetry group would have a reduced 

magnitude and slower rate of de-adaptation because we expect that the initial after-effect 

would result in near perfect symmetry. Our results, however, did not show a difference in 

magnitude or rate of de-adaptation between the two conditions. We suspect that this may be 

because in many participants, the initial after-effect in the exaggerated condition was 

actually beyond perfect symmetry (overshot perfect symmetry) or was between perfect 

symmetry and baseline (undershot perfect symmetry). Recent studies have confirmed that 

after-effects do not necessarily result in perfect symmetry (Malone and Bastian, 2014). 

Upon a more detailed analysis of the initial after-effect for step length in the exaggerated 

asymmetry group, we observed this same effect. Figure 7 represents the exaggerated 

asymmetry group's de-adaptation for step length, broken down into these sub-groups: those 

who showed symmetrical initial after-effect (n=6), those who undershot perfect symmetry 

(n=7), and those who overshot perfect symmetry (n=4). Interestingly, in parallel to what was 

observed during adaptation, the group that showed symmetrical step length during initial 

after-effect remained near perfect symmetry throughout the de-adaptation period and did not 

de-adapt back to baseline. Similarly, the group that overshot perfect symmetry very rapidly 

de-adapted to perfect symmetry and remained there throughout the de-adaptation period, 
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rather than further de-adapting to baseline. In contrast, the group that undershot perfect 

symmetry de-adapted back to their asymmetrical baseline and remained there throughout the 

de-adaptation period. This supports the idea that when adaptation or de-adaptation would 

move the participant with stroke away from symmetry, the rate of change is slowed and 

reduced.

Limitations

We chose to have the neurologically intact control subjects walk at speeds that matched their 

stroke subject counterparts. In many cases, this resulted in control subjects walking at speeds 

slower than their typical self-selected speed, and could therefore result in a perturbation too 

small to induce locomotor adaptation or de-adaptation. In order to evaluate this potential 

issue, we used statistical analysis to compare the magnitude of initial perturbation imposed 

by the treadmill, and the magnitude of the initial after-effect across groups. Because no 

statistical significance was found, we know that all groups were adapting or de-adapting to 

perturbations of similar magnitude with respect to their individual baselines, despite the 

individual gait speeds that were chosen for each subject.

Conclusions and clinical implications

This study expands previous work describing the capacity for locomotor adaptation after 

stroke (Reisman et al., 2007; Reisman et al., 2009; Savin et al., 2012). Here, we present 

evidence that the rate and magnitude of locomotor adaptation is similar between chronic 

stroke survivors and neurologically intact controls, except when the act of adaptation (or de-

adaptation) would take the stroke survivors away from a symmetric step length pattern. This 

suggests that the nervous and musculoskeletal systems may, in fact, recognize and prefer a 

more symmetrical spatial gait pattern after a stroke, despite tendency for baseline 

asymmetry. Therefore, our results support the use of therapeutic interventions that promote 

spatial symmetry during walking, because even the nervous system damaged by stroke may 

embrace this improved pattern.
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Figure 1. Experimental Protocol
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Figure 2. Representative Subjects for Step Length
Individual limb data during the baseline, adaptation, and de-adaptation periods from a 

representative participant who is neurologically intact (A), a stroke participant exposed to 

the exaggerated/HemiSlow condition (B), and the reduced aymmetry/HemiFast condition 

(C). Symmetry data during the baseline, adaptation, and de-adaptation periods from a 

representative participant who is neurologically intact (D), a representative stroke participant 

in the exaggerated/HemiSlow condition (E) and in the reduced asymmetry/HemiFast 

condition (F). Each data point represents the average over 3 strides of data. In E and F, the 

dashed line represents baseline data. It should be noted that although the HemiSlow 

condition resulted in exaggerated asymmetry for this subject for another subject the opposite 

may have been true.
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Figure 3. 
Step length symmetry (A) and limb phase symmetry (B) averaged across phases. Error bars 

represent standard error. Magnitude of step length (C) and limb phase (D) adaptation. 

Complete return to baseline is represented by the value of 0, positive values represent an 

average symmetry value higher than baseline at the end of adaptation, whereas negative 

values represent an average symmetry value lower than baseline at the end of adaptation. 

Neurologically intact group data is represented by white bars and each stroke condition is 

represented by a different shade of grey. Error bars represent standard error.
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Figure 4. 
Step length adaptation asymmetry (A) and limb phase adaptation asymmetry (B) at baseline 

(Base), early adaptation, and late adaptation averaged over subjects in each condition. 

Baseline data is averaged over the entire baseline period. Each data point in the Early 

adaptation period represents an average of 10 strides. Late adaptation data is averaged over 

the last 20 strides during adaptation. Error bars represent standard error. Black lines 

represent baseline for each individual group.
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Figure 5. Asymmetry of Adaptation over Strides
A: Step length asymmetry exaggerated and reduced conditions and neurologically intact 

group, B: limb phase asymmetry exaggerated and reduced conditions and neurologically 

intact group, C: Step length asymmetry HemiSlow and HemiFast conditions and 

neurologically intact group, D: limb phase asymmetry HemiSlow and HemiFast conditions 

and neurologically intact group. In order to compare across groups, negative adaptation data 

for the reduced condition was transformed across the x-axis before figures and calculations 

were completed. Each data point represents an average of 10 consecutive strides. Zero 

equals baseline. Error bars represent standard error. * indicates a significant difference 

between the reduced asymmetry group and the neurologically intact group.
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Figure 6. Asymmetry of De-Adaptation over Strides
A: Step length asymmetry exaggerated and reduced conditions and neurologically intact 

group, B: limb phase asymmetry exaggerated and reduced conditions and neurologically 

intact group, C: Step length asymmetry HemiSlow and HemiFast conditions and 

neurologically intact group, D: limb phase asymmetry HemiSlow and HemiFast conditions 

and neurologically intact group. In order to compare across groups, positive de-adaptation 

data for the exaggerated condition data were transformed across the x-axis before figures 

and calculations were completed. Each data point represents an average of 10 consecutive 

strides. Zero equals baseline. Error bars represent standard error.
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Figure 7. 
Step length de-adaptation asymmetry at baseline (Base), early de-adaptation, and late de-

adaptation for the exaggerated asymmetry condition. Error bars represent standard error.
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Table 2

Participant Groups Based on Baseline Asymmetry.

Subject # Subjects in Exaggerated 
Step Length Baseline 
Asymmetry condition

Subjects in Reduced Step 
Length Baseline 
Asymmetry condition

Subjects in Exaggerated 
Limb Phase Baseline 
Asymmetry condition

Subjects in Reduced Limb 
Phase Baseline Asymmetry 
condition

1 Sub1HF (s) Sub1HS Sub1HS Sub1HF

2 Sub2HS (u) Sub2HF Sub2HS Sub2HF

6 Sub6HS (o) Sub6HF Sub6HS Sub6HF

9 Sub9HS (u) Sub9HF Sub9HS Sub9HF

13 Sub13HS (u) Sub13HF Sub13HS Sub13HF

14 Sub14HS (s) Sub14HF Sub14HF Sub14HS

53 Sub53HS (u) Sub53HF Sub53HS Sub53HF

67 Sub67HF (o) Sub67HS Sub67HF Sub67HS

71 Sub71HS (s) Sub71HF Sub71HS Sub71HF

87 Sub87HF (o) Sub87HS Sub87HF Sub87HS

110 Sub110HS (u) Sub110HF Sub110HS Sub110HF

115 Sub115HF (u) Sub115HS Sub115HS Sub115HF

116 Sub116HS (s) Sub116HF Sub116HF Sub116HS

136 Sub136HF (s) Sub136HS Sub136HF Sub136HS

142 Sub142HS (o) Sub142HF Sub142HS Sub142HF

155 Sub155HS (s) Sub155HF Sub155HF Sub155HS

171 Sub171HF (u) Sub171HS Sub171HF Sub171HS

HF=HemiFast and HS=HemiSlow.
(s)=symmetrical initial after-effect
(o)=overshot perfect symmetry at initial after-effect
(u)=undershot perfect symmetry at initial after-effect
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