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Abstract

Trait impulsivity and poor inhibitory control are well-established risk factors for alcohol misuse, 

yet little is known about the associated neurobiological endophenotypes. Here we examined 

correlations among brain physiology and self-reported trait impulsive behavior, impaired control 

over drinking, and a behavioral measure of response inhibition. A sample of healthy drinkers 

(n=117) completed a pulsed arterial spin labeling (PASL) scan to quantify resting regional 

cerebral blood flow (rCBF), and measures of self-reported impulsivity (Eysenck I7 Impulsivity 

scale) and impaired control over drinking. A subset of subjects (n=40) performed a stop signal 

task during blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to 

assess brain regions involved in response inhibition. Eysenck I7 scores were inversely related to 

blood flow in the right precentral gyrus. Significant BOLD activation during response inhibition 

occurred in an overlapping right frontal motor/premotor region. Moreover, impaired control over 

drinking was associated with reduced BOLD response in the same region. These findings suggest 

that impulsive personality and impaired control over drinking are associated with brain physiology 

in areas implicated in response inhibition. This is consistent with the idea that difficulty 

controlling behavior is due in part to impairment in motor restraint systems.
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1. Introduction

Impulsivity, which refers broadly to acting without thinking, is a widely accepted risk factor 

for alcohol abuse (Potenza and de Wit, 2010). Measuring impulsive personality traits 

encompasses several distinct conceptual and methodological factors. One such factor that 

has been repeatedly implicated in alcohol abuse is difficulty controlling or inhibiting 

inappropriate behavior. Such poor behavioral control can be assessed by both self-report 

personality inventories and behavioral laboratory measures. On personality inventories, 

greater self-reported difficulty controlling behavior or acting without forethought is 

associated with increased drug and alcohol use (Petry, 2001; Finn, 2002). Behavioral 

measures of inhibitory control include stop signal and go/no-go tasks, which measure the 

ability to inhibit prepotent or instigated motor behavior, such as a finger press. Poor 

response inhibition on these tasks has also been repeatedly linked with greater alcohol use 

and problems (Bjork et al., 2004; Nigg et al., 2006; Rubio et al., 2008).

One potential explanation for the increased risk of alcohol-related problems in impulsive 

individuals is a specific instance of impaired impulse control: impaired control over 

drinking. Impaired control refers to a decreased ability to limit or abstain from alcohol 

consumption despite persistent intentions to do so (Heather et al., 1993). Impaired control is 

a well-established feature of problematic alcohol use, with two DSM-V criteria for alcohol 

use disorders that reflect impaired control (i.e., drinking greater amounts than intended and 

inability to quit or control drinking; American Psychiatric Association, 2013). Moreover, 

impaired control is becoming increasingly recognized as a problem for young adult drinkers, 

as this is one of the first symptoms endorsed by those transitioning from social- to 

dependent-drinking (Leeman et al., 2012; Leeman et al., 2014).

Impaired control and impulsivity/behavioral under-control are conceptually linked, in that 

impaired control refers to difficulty controlling the specific behavior of alcohol 

consumption. As such, it is reasonable to assume that individuals who have a general 

difficulty controlling behavior or inhibiting inappropriate responses might also display 

impaired control over drinking. Indeed, initial studies show correlations between impaired 

control and both self-report and behavioral measures of inhibitory control (for review, see 

Leeman et al., 2012). However, little is known about the neurobiological endophenotypes of 

trait impulsivity in general, and impaired control specifically. Understanding the neural 

correlates of impulsive traits and impaired control could have important implications for 

identifying individuals at risk for alcohol use disorders, as well as in developing treatments.

In a reasonably large sample of 117 healthy subjects who spanned a range of drinking, the 

current study examined anatomic regions in which measures of brain physiology were 

correlated with self-reported trait impulsive behavior in general, impaired control over 

drinking specifically, and a behavioral measure of motor response inhibition. Specifically, 

we identified regions where impulsive personality and impaired control correlated with 

resting cerebral blood flow. Additionally, we examined fMRI blood oxygenation level-

dependent (BOLD) activation during a response inhibition (stop signal) task as a function of 

impaired control. Given previous evidence about brain areas involved in response inhibition 
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(Congdon et al., 2010; Bari and Robbins, 2013; Rae et al., 2014), we expected trait 

impulsivity and impaired control to be associated with less activity in right frontal regions.

2. Methods

2.1. Subjects

The sample of 117 right-handed regular drinkers (98 men and 19 women), ranging from 

moderate to heavy, participated in one of three previous studies (functional magnetic 

resonance imaging or positron emission tomography) conducted at the Indiana University 

School of Medicine and the Indiana Alcohol Research Center. Subjects were recruited by 

community advertisements and provided informed consent as approved by the Indiana 

University Institutional Review Board. The study was carried out in accordance with the 

Declaration of Helsinki. Interested volunteers were first screened by phone and then 

completed an in-person interview to determine medical history and current and past drug 

and alcohol use. Exclusion criteria included self-reported neurological disorders (injury, 

disease) of cerebral origin, and any major DSM-IV Axis I psychiatric disorder (aside from 

alcohol abuse/dependence), including drug dependence. All participants had a zero breath 

alcohol content at the time of study. Six participants had a positive drug screen (marijuana/

THC, n=4; opiates, n=1; TCA, n=1); consequently, the data were analyzed with and without 

these participants. No differences were observed, and results reported here are based on the 

entire sample.

2.2. Measures

2.2.1. Alcohol use measures—During the in-person interview, subjects were given the 

Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA; Bucholz et al., 1994), 

a semi-structured interview that assesses the symptoms of an alcohol use disorder (AUD). 

The SSAGA was used to create a total AUD symptom count as outlined in the current DSM-

V. Subjects also completed the Timeline Follow-back (TLFB; Sobell and Sobell, 1992), a 

self-reported retrospective timeline calendar of alcohol consumption, estimating the number 

of standard drinks consumed each day over the past 90 days. From this we calculated 

participants’ average number of drinks per week and average number of drinks per drinking 

day. In addition, subjects completed the Alcohol Use Disorder Identification Test (AUDIT; 

Babor et al., 1989), a 10-item self-report measure that assesses patterns of drinking, 

dependence, and alcohol-related problems. Scores on the AUDIT range from 0 (no alcohol-

related problems) to 40 (most severe alcohol-related problems), with ≥ 8 being a commonly 

used threshold for hazardous drinking (Babor et al., 2001).

2.2.2. Impulsive personality—Impulsive personality was assessed using the Eysenck I7 

Impulsiveness Questionnaire (Eysenck et al., 1985). The impulsivity subscale consists of 19 

yes/no questions related to acting on impulse (e.g., ‘Do you often do and say things without 

stopping to think; Do you need to use a lot of self-control to keep out of trouble?’), with a 

total possible score range of 0–19. As originally reported by Eysenck et al. (1985) for adults 

aged 20–29, normative values are 7.9 (SD=4.1) for males and 9.0 (SD=4.2) for females.
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2.2.3. Impaired control over drinking (IC)—Subjects were classified as having 

impaired (IC) or no impaired control (no-IC) over their drinking based on the following two 

DSM-V symptoms of alcohol dependence as derived from the SSAGA: 1) drinking in larger 

amounts, or for over a longer period than intended, and 2) persistent desire, or one or more 

unsuccessful efforts, to cut down or control drinking. Subjects endorsing one or both of 

these symptoms were grouped in the IC group, and subjects endorsing neither were grouped 

in the no-IC group.

2.2.4. Response inhibition—A subset of subjects (n=40, 39 of whom were included in 

Kareken et al. (2013))1 performed a stop signal task during blood oxygenation level-

dependent (BOLD) fMRI to assess brain activation during response inhibition. Task 

procedures are described in detail by Kareken et al. (2013). Briefly, participants responded 

as quickly as possible to Go signals (horizontal green arrows), but attempted to withhold 

their responses on trials in which a Stop signal (vertical red arrow) appeared subsequent to 

the Go signal. An adaptive staircase algorithm adjusted the delay between the Go and Stop 

signals to target a stop failure rate of 50%. Stop signal reaction time (SSRT), an estimate of 

the time needed to stop (withdraw) the Go response, was calculated by subtracting a 

subject’s average stop-signal delay from that subject’s xth percentile Go RT (correct trials 

only), where x corresponds to the stop failure rate (Band et al., 2003).

2.3. Procedure

Procedural details specific to the individual studies are reported elsewhere (Kareken et al., 

2012; Kareken et al., 2013; Oberlin et al., 2013). All subjects completed the self-report 

measures of alcohol consumption and impulsivity during their initial study sessions at the 

Indiana Clinical Research Center. Subjects then returned for either one (Kareken et al., 

2012; Oberlin et al., 2013) or two (Kareken et al., 2013) magnetic resonance imaging (MRI) 

sessions. Detailed timelines of the specific MRI protocols for each of these studies are 

provided in Supplementary Fig. 1. All subjects completed a Pulsed Arterial Spin Labeling 

(PASL) scan to measure resting regional cerebral blood flow (rCBF) as part of the MRI 

protocol.

Those subjects participating in the stop signal functional MRI (fMRI) study were imaged 

under both intravenous alcohol and saline infusions in counter-balanced order (Kareken et 

al., 2013). Here we re-examined the BOLD fMRI data from these participants as a function 

of impaired control over drinking, but using data from the saline condition only. This 

permitted an examination of the overlap between regions where resting rCBF was associated 

with Eysenck I7 and areas where impaired control over drinking affected BOLD activation 

during response inhibition. PASL scans from this stop signal study were obtained at baseline 

(i.e., before saline infusion).

1One subject was excluded from the Kareken et al. (2013) sample but included here given the subject’s indeterminate status with 
regard to a family history of alcoholism; one subject included in the Kareken et al. (2013) article was excluded here given technical 
problems with the subject’s PASL image data.
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2.4. Imaging

Subjects were imaged on a Siemens (Erlangen, Germany) 3 T Magnetom Trio-Tim scanner 

equipped with a 12-channel head coil array. A T1-weighted magnetization prepared rapid 

gradient echo (MPRAGE) sequence was used to acquire high-resolution anatomical images 

(1.0×1.0×1.2 mm3 voxels) for co-registration and normalization to the Montreal 

Neurological Institute (MNI) coordinate system.

PASL scans (5:45 min duration) measured rCBF (ml/100 g/min) using a one-compartment 

model (Wang et al., 2003), and were acquired using Q2TIPS pulse sequence (Luh et al., 

1999) labeling scheme, as detailed in Wang et al. (2011) with a 64 label-control pair readout 

(single-shot gradient-echo echo planar imaging (EPI)); 18 ascending axial slices; matrix, 

64×64; 3.75×3.75×6 mm3 voxels; GRAPPA acceleration factor 2; 3D prospective 

acquisition correction algorithm). During the PASL acquisition, subjects were instructed to 

relax with their eyes closed. To ensure that subjects remained awake and in a lightly 

attentive state throughout the scan, subjects were directed to press a button on a response 

box (Current Designs, Inc. Philadelphia, PA) when they heard a distinct tone (750 Hz, 750 

ms long). This tone was played five times at a random time during 1-min intervals. As a 

criterion for inclusion, we required that participants respond to at least four of the five tones. 

Reaction time was not emphasized, and subjects were told that the tone and their response 

were solely to ensure that they were awake.

In the stop signal task subset, three BOLD contrast sensitive scans measured stop task 

responses (gradient echoplanar imaging, 193 volumes; repetition time, 2,000 ms; echo time, 

29 ms; flip angle, 76°; 35 interleaved 3-mm-thick axial slices; matrix, 88×88; 2.5×2.5×3.0 

mm3 voxels; GRAPPA acceleration factor 2; and 3D prospective acquisition correction 

algorithm).

2.5. Image processing

Images were preprocessed in SPM8 (Wellcome Trust Centre for Neuroimaging). For PASL 

data, SPM segmentation of participants’ MPRAGE image was used to identify voxels 

containing at least 75% gray matter, and rCBF analyses were restricted to these voxels 

(Jahng et al., 2005). The segmentation was also used to convert rCBF volumes to the 

Montreal Neurological Institute (MNI) stereotactic space, where the resulting volumes were 

interpolated to 2-mm/side isotropic voxels and smoothed by a 6×6×8 mm full-width at half-

maximum Gaussian kernel. To reduce inter-subject variability, each subject’s rCBF values 

were divided by that subject’s own gray matter rCBF averaged across the whole brain (see 

Pfefferbaum et al., 2010).

2.6. Data analyses

2.6.1. rCBF correlations—We first tested for differences in resting blood flow between 

participants with IV cannulae inserted (and who could have thus had some potential alcohol 

expectancy) and those without (see Supplementary Fig. 1). As we observed no differences, 

all participants were analyzed together. To estimate the relationship between Eysenck I7 

scores and rCBF, we used an SPM8 regression analysis. Gender, recent drinking (drinks/

week as reported on the TLFB), and smoking were included as covariates to control for 
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previously reported gender differences in rCBF values (Gur et al., 1982; Gur et al., 1995; 

Wang et al., 2011) and any influence of alcohol consumption or smoking on rCBF. IC status 

was also included as a covariate, which controlled for effects related to impaired control 

over drinking. Given the size of the sample, however, we did not model interactions between 

these covariates. As our hypotheses about impulsivity and brain physiology were specific to 

the frontal lobes, statistical inferences were made based on peak voxel significance corrected 

for family wise error (FWE, p < 0.05) within a frontal-insular-subcortical (FIS) mask. This 

382,584 mm3 (47,823 voxels) mask included the following structural regions from AAL 

library (Tzourio-Mazoyer et al., 2002) available in MarsBar: medial and lateral frontal and 

orbital regions, bilateral precentral gyri, anterior and middle cingulate cortex, anterior insula, 

as well as subcortical motor regions consisting of bilateral putamen, pallidum and caudate.

2.6.2. fMRI and stop signal—For the fMRI data, we conducted a voxel-wise analysis 

using an SPM factorial model to contrast the IC and no-IC groups during stop task 

performance. The primary contrast of interest, [StopInh>Go], compared stop trials where 

subjects successfully inhibited their responses (StopInh) and correct “Go” trials (see 

Kareken et al., 2013). Statistical inferences were made based on peak voxel significance 

(corrected for family-wise error (pFWE < 0.05) within the FIS mask described above. Then, 

to test for spatial overlap in regions where rCBF and I7 correlated, and where IC groups 

differed in stop task activation, a search region was generated from the peak of the negative 

correlation between rCBF and I7 (6-mm radius sphere centered at [56, 4, 26]; see Section 3); 

IC group differences were then tested within this small volume, and also corrected for the 

FIS mask volume’s family-wise error (pFWE < 0.05).

3. Results

3.1. Sample characteristics

Subjects were predominately male, young adult heavy drinkers whose mean and SD on the 

I7 (Table 1) closely approximated the normative average and variance of impulsivity scores 

in Eysenck et al. (1985). The subsample of participants who took part in the stop signal 

fMRI study were generally comparable to the overall sample, with a more balanced gender 

distribution and slightly lower AUDIT scores and DSM-V symptoms in the subsample.

3.2. Impaired control over drinking (IC)

Within the entire sample, 70 subjects (62 men) were classified as IC and 47 (36 men) were 

classified as no-IC. The IC group reported greater alcohol consumption and alcohol 

problems (ps < 0.05), without group differences in Eysenck I7 scores, age, or education 

(Table 1). Within the stop signal subsample, 18 subjects (11 men) were classified as IC and 

22 (12 men) were classified as no-IC. No significant group differences were observed in 

alcohol consumption, Eysenck I7 scores, or SSRT.

3.3. Associations between impulsivity/IC and rCBF

All participants responded to the tones during the PASL scan, ensuring that they were awake 

throughout the imaging. Impulsivity scores were normally distributed, but the alcohol 
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consumption measure (i.e., drinks/week) was positively skewed; the square-root-

transformed drinking data were therefore used for analysis.

Linear regression analysis (controlling for IC status, smoking, drinks/week, and gender) 

showed no significant positive associations between rCBF and Eysenck I7 scores. By 

contrast, there was a negative correlation between rCBF and I7 scores in the anterior right 

precentral gyrus (Fig. 1; Table 2), with a significant peak voxel (pFWE = 0.029) effect at the 

[56, 4, 26] MNI coordinate. Fig. 2 presents an illustrative plot of the distribution of the 

negative association between Eysenck I7 scores and average rCBF in the right precentral 

gyrus cluster formed at p< 0.001, uncorrected.

The same regression model was also examined for IC group differences (controlling for 

Eysenck I7 scores, smoking, drinks/week, and gender). While an IC group difference in 

blood flow (IC < no-IC) in the medial superior frontal gyrus area (Table 2) was present, this 

effect was not significant after correcting for family-wise error within the FIS mask. There 

were no group differences in the opposite direction (IC > no-IC).

There were no significant correlations between rCBF and drinks/week or smoking. See 

Supplementary Table and Supplementary Fig. 2 for significant gender differences in rCBF.

3.4. Overlap of correlation between Eysenck I7 and rCBF and stop task activation

Summary statistics of stop task performance for the sample were as follows: mean 

SSRT=242.8 (SD=23.8) ms, mean Go RT = 438.5 (SD= 104.0) ms, mean accuracy rate for 

Go trials = 97.5% (SD= 4.9), and mean stop failure rate = 51% (SD= 2.8). There was no 

significant correlation between Eysenck I7 scores and SSRT (p = 0.76), and a regression 

analysis within SPM did not show any significant associations between stop task activation 

and Eysenck I7 scores in the subsample.

Fig. 3 presents a 3D rendering of the region in which rCBF was negatively related with 

Eysenck I7 scores in the total sample (cyan) and regions of significant [StopInh>Go] BOLD 

activation in the subsample (yellow; both effects within the FIS mask). The figure illustrates 

the right lateralization of both effects, and suggests that some right frontal motor/premotor 

areas associated with impulsive personality and response inhibition overlap (green).

3.5. IC and stop task performance during fMRI

Group differences in [StopInh>Go] BOLD activation during response inhibition were 

evident in bilateral frontal regions, with IC showing reduced [StopInh>Go] response as 

compared to no-IC (Fig. 4 (yellow), with a significant peak voxel (pFWE = 0.047) effect at 

the [− 32, − 4, 50] MNI coordinate). In a spherical (6-mm radius) search volume centered on 

the peak of the frontal cluster (negative correlation between rCBF and Eysenck I7 scores), 

IC were significantly lower than no-IC (pFWE=0.019) in the right precentral gyrus. As 

illustrated by Fig. 4, the cluster of IC-group differences in the [StopInh>Go] BOLD 

response (yellow) is proximate to, and overlaps with (green), regions where resting rCBF is 

negatively associated with Eysenck I7 scores (cyan). There were no significant group 

differences in the opposite direction (IC>no-IC).
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4. Discussion

This study examined correlations between brain physiology and measures of impulsivity. 

Specifically, we identified brain areas where blood flow and BOLD activation related to 

impulsive personality, impaired control over drinking, and a behavioral measure of response 

inhibition. The results showed that impulsive personality was inversely associated with 

blood flow in the right precentral/prefrontal region. Importantly, this same region was also 

activated when restraining a motor behavior (i.e., inhibiting a finger press during the stop 

signal task). Moreover, IC group differences in BOLD activation while performing the 

motor inhibition task were present in an area that overlapped this same precentral region. 

Taken together, these findings show that both impulsive personality and self-reported 

impaired control over drinking are associated with decreased activity in brain regions 

associated with motor restraint.

Other studies have similarly implicated this precentral/prefrontal region in response 

inhibition. For example, Li et al. (2006) isolated processes of response inhibition (as distinct 

from other cognitive processes involved in stop task performance, including attention, error 

monitoring, and salience processing), and found that response inhibition was associated with 

activation of medial and precentral frontal cortices. Additionally, using disruptive 

transcranial magnetic stimulation (TMS) over dorsal premotor cortex decreased inhibition 

associated with motor control, suggesting a specific role for premotor cortex in motor 

response inhibition (Duque et al., 2012). Further, a meta-analysis of 16 fMRI studies (Rae et 

al., 2014) found that right pre- SMA and right pre-motor cortex were involved in the specific 

act of response stopping. Finally, in a comprehensive review of studies examining cortical 

influences of response inhibition, Bari and Robbins (2013) conclude that ‘it is probably the 

interaction between inferior frontal cortex and pre-SMA…that allows the successful 

inhibition of a pre-potent motor response.’ Taken together, these studies provide support for 

the conclusion that the area in which trait impulsivity is correlated with blood flow is also 

implicated in motor response inhibition.

Associations between simple response inhibition and self-report impulsive personality 

measures have been tested in several behavioral studies, with conflicting results. Some 

studies have shown correlations between self-reported impulsive personality and poor 

inhibitory control on laboratory motor tasks, including the stop signal and go/no-go tasks 

(Logan et al., 1997; Castellanos-Ryan et al., 2011;), while others have shown no such 

association (Enticott et al., 2006; Reynolds et al., 2006). A recent meta-analysis of 27 

studies showed a small, but significant, association between multi-dimensional self-report 

and behavioral measures of impulsivity (Cyders and Coskunpinar, 2011). Further, self-

reported impulsivity on the Barratt Impulsiveness Scale was associated with BOLD 

activation during salience processing of stop stimuli on the stop signal task, but not with 

activation during response inhibition (Farr et al., 2012). Despite our own observation of a 

significant inverse association between impulsive personality and blood flow in regions 

involved in motor restraint, we also did not observe direct associations between impulsive 

personality and either motor restraint (stop signal reaction time) or the BOLD response to 

inhibitory stimuli (although the number of subjects tested for stop signal responses was 

comparatively small and perhaps insufficient in power). Similarly, we did not observe 
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differences in self-reported impulsivity or SSRT in the two IC groups. Thus, rather than 

direct relationships between these three different manifestations of impulsivity, perhaps 

motor inhibition, the propensity to engage in impulsive acts, and impaired control over 

drinking specifically may have common origins in the functional efficiency and integrity of 

non-dominant hemisphere motor and premotor cortex. At least at the level of more 

elemental motor behavior, it is clear that activation of ipsilateral motor cortex inhibits the 

contralateral (right) dominant hand, likely through transcallosal mechanisms (Ferbert et al., 

1992).

Reduced activity in motor regions during the stop task was also implicated in loss of control 

over drinking, a finding suggesting that difficulty controlling the impulse to consume 

alcohol could also be governed in part by motor regions. This is consistent with findings 

reported in two recent reviews of fMRI studies of response inhibition in alcohol and 

substance dependent individuals that showed impaired activation in prefrontal areas, 

including dorsolateral prefrontal cortex and pre-SMA (Feil et al., 2010; Luijten et al., 2014). 

Such dysregulation of brain regions involved in response inhibition could lead to particular 

difficulty inhibiting behaviors induced by the urge to consume alcohol, despite the 

individual’s intent to limit drinking.

Deficits in brain activation in alcohol-dependent individuals during response inhibition 

suggest that improving inhibitory control could be a viable prevention and treatment strategy 

for alcohol use disorders. Indeed, researchers are beginning to investigate cognitive 

enhancers as potential pharmacotherapies for alcohol dependence. For example, Schmaal et 

al. (2013) recently showed that modafanil enhances response inhibition in alcohol dependent 

individuals by increasing activation in the SMA and motor (right ventrolateral) thalamus. 

Moreover, in a 10-week trial of modafinil treatment in alcohol dependent patients, the 

degree to which modafinil improved inhibition was directly associated with decreases in 

alcohol consumption (Joos et al., 2013). The current study shows that this decreased 

prefrontal activation during inhibition and while at rest may exist in young adult drinkers 

before clinical levels of chronic alcohol dependence (and without any differences in 

behavioral performance).

There are some limitations to this study. The sample was predominately male, precluding 

analyses of gender differences and limiting the generalizability of the findings to women. 

This limitation was due to logistical issues regarding recruitment for the individual studies, 

and it will be important to replicate these results in a future study with a more gender-

balanced sample. It is important to note, however, that within the stop task subsample, 

comparable numbers of men and women were represented. Moreover, we did not have the 

power to model interactions between some covariates, such as gender, smoking, and 

drinking. The drinking habits of the stop signal sample were also slightly different than 

those of the entire PASL sample. Overall rates of alcohol consumption were lower in the 

subsample, and a smaller percentage of participants reported impaired control than in the 

larger sample. Similarly, all participants were regular drinkers. Future studies will be needed 

to examine the associations observed here in light or non-drinkers. An additional 

consideration is that the PASL scan is not a true “resting” scan, as participants were asked to 

maintain a light level of vigilant attention (key press to an approximate once per minute 
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tone) to ensure wakefulness and better standardize mental states across subjects. It is 

therefore possible that the simple task could affect the nature of blood flow results and its 

association with impulsive personality traits and motor response inhibition. Additionally, the 

stop signal task was completed following IV saline infusion, in a protocol in which 

participants were told that they could receive alcohol or saline. Future studies should 

replicate these findings with no alcohol expectancy to confirm that such an expectancy did 

not significantly influence findings. Finally, it is important to note that other factors that 

were not measured here, including genetic factors and diet and exercise, could contribute to 

the reported findings.

In sum, and insofar as we are aware, the current study provides the first demonstration that 

self-reported impulsive personality is associated with resting cerebral blood flow in frontal 

regions implicated in response inhibition. It is also the first to demonstrate that self-reported 

loss of control in drinking is related to lower stop-signal activation in this and proximate 

regions. These findings are consistent with the idea that difficulty controlling behavior is 

due in part to impairment in motor restraint systems, contributing to a general difficulty in 

withholding urges to engage in maladaptive behaviors. Targeting brain systems involved in 

response inhibition could have significant utility in prevention and treatment of alcohol use 

disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We examined correlations between brain physiology and measures of 

impulsivity.

• Impulsivity was inversely correlated with blood flow in the right precentral 

gyrus.

• Significant BOLD activation during response inhibition was observed in an 

overlapping region.

• Reduced activation was observed in individuals with impaired control over 

drinking
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Fig. 1. 
Negative relationship between regional cerebral blood flow and Eysenck I7 scores in the 

right precentral gyrus (display height, p<0.001). Peak effect at [56 4 26] is significant after 

correcting for family wise error (pFWE<0.05) within a frontal-insular-subcortical (FIS) mask.
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Fig. 2. 
Scatter plot illustrating negative relationship between mean rCBF values extracted from the 

right precentral gyrus cluster (shown in Figure 1) and Eysenck I7 scores in 117 subjects.

Weafer et al. Page 15

Psychiatry Res. Author manuscript; available in PMC 2016 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The overlap (green) of negative relationship between rCBF and Eysenck Impulsivity I7 in 

n=117 (cyan) and the stop signal task [StopInh>Go] BOLD activation in a n=40 subsample 

(yellow). Displayed at a voxel-wise threshold, pFWE<0.05, family wise error corrected 

within the FIS mask. Cluster size, k=0.
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Fig. 4. 
IC<no-IC group difference in [StopInh>Go] BOLD response (yellow) and negative 

relationship between regional cerebral blood flow and Eysenck I7 scores (cyan) with green 

color indicating the right prefrontal area overlap. Both effects are shown within the FIS 

mask at a display height, p<0.001, uncorrected, and cluster size, k=0.
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Table 1

Sample characteristics for all subjects and by IC group (top panel) and sample characteristics for the stop task 

subsample as a whole and by IC group (bottom panel)

Total Sample (n=117) IC (n=70) No-IC (n=47) Contrasts

M (SD) M (SD) M (SD)

Gender M:F 98:19 62:8 36:11

% Male 83.8% 88.6% 76.6%

% Smokers 13.7% 18.6% 6.4% p = 0.06

Age 24.1 (3.1) 24.3 (3.5) 23.7 (2.3) ns

Education 15.2 (1.6) 14.9 (1.7) 15.5 (1.3) ns

Drinks/week 17.4 (11.7) 20.5 (12.5) 12.8 (8.7) 0.001

Drinks/drinking day 5.8 (3.4) 6.5 (3.6) 4.8 (2.8) 0.006

AUDIT 11.0 (5.6) 12.9 (6.0) 8.1 (3.3) <0.001

DSM-V count 2.4 (2.1) 3.4 (2.0) 0.8 (0.9) <0.001

Eysenck I7 7.8 (4.1) 8.2 (4.0) 7.1 (4.3) ns

Stop task subsample (n=40) IC (n=18) No-IC (n=22)

M (SD) M (SD) M (SD) Contrasts

Gender M:F 23:17 11:7 12:10

% Male 57.5% 61.1% 54.5%

% Smokers 5.0% 2.5% 2.5% ns

Age 23.3 (2.0) 23.3 (2.2) 23.3 (1.9) ns

Education 15.5 (1.5) 15.2 (1.8) 15.7 (1.1) ns

Drinks/week 14.9 (10.4) 18.2 (13.7) 12.1 (5.8) ns

Drinks/drinking day 5.1 (2.7) 5.1 (2.9) 5.1 (2.6) ns

AUDIT 8.7 (3.0) 9.7 (3.2) 8.0 (2.7) ns

DSM-V count 1.5 (1.1) 2.3 (0.9) 0.9 (0.9) <0.001

Eysenck I7 7.4 (4.2) 6.8 (2.9) 7.9 (5.0) ns

SSRT 242.7 (24.1) 235.5 (21.3) 248.5 (25.0) ns

Note. Contrasts were tested by between-groups t-tests (IC compared with no-IC). ns indicates a significance value of p > 0.05.

AUDIT = Alcohol Use Disorder Identification Test; DSM-V = Diagnostic and Statistical Manual of Mental Disorders, 5th ed; SSRT = stop signal 
reaction time. IC = impaired control over drinking.
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