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Abstract

Vaginal HIV transmission accounts for the majority of new infections worldwide. Currently,
multiple efforts to prevent HIV transmission are based on pre-exposure prophylaxis with
various antiretroviral drugs. Here, we describe two novel nanoformulations of the reverse
transcriptase inhibitor rilpivirine for pericoital and coitus-independent HIV prevention. Topi-
cally applied rilpivirine, encapsulated in PLGA nanoparticles, was delivered in a thermosen-
sitive gel, which becomes solid at body temperature. PLGA nanoparticles with
encapsulated rilpivirine coated the reproductive tract and offered significant protection to
BLT humanized mice from a vaginal high-dose HIV-1 challenge. A different nanosuspen-
sion of crystalline rilpivirine (RPV LA), administered intramuscularly, protected BLT mice
from a single vaginal high-dose HIV-1 challenge one week after drug administration. Using
transmitted/founder viruses, which were previously shown to establish de novo infection in
humans, we demonstrated that RPV LA offers significant protection from two consecutive
high-dose HIV-1 challenges one and four weeks after drug administration. In this experi-
ment, we also showed that, in certain cases, even in the presence of drug, HIV infection
could occur without overt or detectable systemic replication until levels of drug were
reduced. We also showed that infection in the presence of drug can result in acquisition of
multiple viruses after subsequent exposures. These observations have important implica-
tions for the implementation of long-acting antiretroviral formulations for HIV prevention.
They provide first evidence that occult infections can occur, despite the presence of sus-
tained levels of antiretroviral drugs. Together, our results demonstrate that topically- or sys-
temically administered rilpivirine offers significant coitus-dependent or coitus-independent
protection from HIV infection.

PLOS Pathogens | DOI:10.1371/journal.ppat.1005075 August 13,2015

1/19


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1005075&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@'PLOS | PATHOGENS

Topical and Systemic Antiretrovial Nanoformulations for HIV Prevention

study design, data collection and analysis, decision to
published, or preparation of the manuscript.

Competing Interests: | have read the journal's policy
and the authors of this manuscript have the following
competing interests: GK, SLD and PW are employed
by Janssen Research and Development, LLC. This
does not alter our adherence to all PLOS policies on
sharing data and materials. Other authors have
declared that no competing interests exist.

Author Summary

When taken consistently, PrEP has been shown to reduce the risk of HIV infection by up
to 92% in people who are at high risk. However, PrEP is much less effective if it is not
taken consistently. To improve adherence to the drug regimen, several new drug delivery
systems, that include novel gel formulations and long-acting delivery systems, are being
evaluated. In this manuscript, we used BLT humanized mice, an in vivo model of vaginal
HIV transmission, to evaluate two novel delivery systems for HIV prevention. In the first
approach, we combined the highly efficient encapsulation of antiretroviral drugs into
nanoparticles with a thermosensitive gel that remains liquid at room temperature and
solidifies at body temperature. Our results showed that this delivery system provided sig-
nificant protection from HIV vaginal infection. In a second approach, we evaluated a
long-acting nanoparticle formulation for coitus-independent protection from HIV acqui-
sition. Our results showed that a single injection of the long-acting antiviral drug also
resulted in reduced HIV infection. However, protection was not complete and transmis-
sion was concealed by a significant delay in the onset of plasma viremia that could result
in superinfection by two different viruses administered up to four weeks apart.

Introduction

Although the annual number of new HIV infections continues to decline, the global HIV-1
pandemic remains an unprecedented public health problem, with 2.1 million new infections in
2013 and an estimated 35 million people already infected [1]. This highlights the urgent need
for effective and safe prevention strategies for HIV infection. With the continued absence of an
effective vaccine, the efficacy of various antiretrovirals (ARVs) has been evaluated as pre-expo-
sure prophylaxis (PrEP). HIV PrEP refers to the strategy of using ARV drugs to decrease the
risk of HIV infection in uninfected individuals who are at high risk of infection. Multiple clini-
cal trials, including the CAPRISA 004, the Chemoprophylaxis for HIV Prevention in Men
(iPrEx), the Partners PrEP, and the TDF2 studies have shown that topical or oral pre-exposure
administration of ARV reduces the risk of HIV-1 infection by 39 to 75% [2-5]. Overall effi-
cacy, as well as low rates of protection in some trials, correlates with adherence to the dosing
regimen [3]. To improve adherence and PrEP efficacy, several strategies are being considered.
These include effective antiretrovirals, easily administered in single topical or systemic dose
pericoitally, and long-acting ARV formulations that release drugs over many weeks systemi-
cally, requiring infrequent parenteral administration [6-8].

Rilpivirine (RPV, TMC278), a non-nucleoside reverse transcriptase inhibitor (NNRTTI), is a
diarylpyrimidine derivative that inhibits HIV reverse transcriptase by binding to a hydropho-
bic pocket near the active site of the enzyme, and consequently preventing transcription of
viral RNA. RPV has activity against wild type and many NNRTI-resistant HIV-1 strains [9].
Although RPV has an excellent profile for HIV prevention, there is currently no information
regarding the effectiveness of oral RPV for HIV prevention, and no RPV formulations for topi-
cal use have been described. Recently, a long-acting crystalline nanoparticle suspension of RPV
(RPV LA) has been developed, with the objective of providing drug exposure over extended
periods of time following intramuscular administration [10]. A single intramuscular injection
of RPV LA provided sustained release of RPV into plasma over 3 months in dogs, 2 months in
rats, and 3 weeks in mice [10, 11]. In humans, a single intramuscular administration of RPV
LA leads to substantial levels of RPV in plasma, cervico-vaginal fluid and vaginal tissue for 84
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days. RPV levels measured at multiple sites of HIV transmission suggest a potential role for
RPV LA as coitus-independent PrEP in humans [10, 12].

Animal models are essential to the effective evaluation of new HIV prevention strategies. For
example, rhesus macaques (Macaca mulatta) and pigtail macaques (Macaca nemestrina) were
recently used to test whether a long acting formulation of an integrase inhibitor could prevent
transmission of HIV via rectal or vaginal routes [13-15]. However, the species-specific tropism
of HIV prevents the evaluation of relevant viruses, including transmitted/founder viruses, for in
vivo challenges in these models [16, 17]. Instead, chimeric simian/human immunodeficiency
viruses (SHIVs) must be used. Here we tested the efficacy of a topical pericoital and a long-act-
ing systemic nanoformulation of RPV to prevent vaginal HIV-1 transmission using humanized
bone marrow/liver/thymus mice (BLT). BLT mice are immunodeficient mice individually bio-
engineered to express a de novo-generated human immune system distributed throughout each
animal [18-21], allowing infection with a variety of transmitted/founder HIV-1 isolates via rele-
vant routes of transmission. The mouse female reproductive tract (FRT) has anatomic similari-
ties to that of humans, despite its smaller size and presence of two uterine horns that merge to
form the main body of uterus. The murine vagina and ectocervix are covered with stratified
squamous epithelium, whereas the endocervix and uterus consist of a simple columnar epithe-
lium. The physical barrier that HIV would encounter is, therefore, somewhat similar to that in
humans [22]. We previously demonstrated the presence of human CD4+ T cells, macrophages
and dendritic cells throughout the mouse female reproductive tract (FRT), that render BLT
mice susceptible to vaginal HIV-1 transmission [23, 24]. Both topical and systemic HIV preven-
tion interventions, which parallel human clinical trials, have been successfully performed in
BLT mice [23, 25-28]. These studies validate BLT mice as a suitable model for the evaluation of
novel or improved drug formulations for the prevention of HIV transmission.

Results

Approach for the evaluation of new RPV formulations for the prevention
of vaginal HIV infection in humanized BLT mice

We used humanized BLT mice to test two different strategies to prevent vaginal HIV transmis-
sion by RPV. Each strategy used a distinct nanotechnology formulation of RPV. RPV gel, a
potential pericoital microbicide (developed at Creighton University, Omaha, Nebraska USA),
was applied to the vaginal mucosa in single doses 1.5h or 24h before HIV challenge (Fig 1A).
In other studies, a coitus-independent, systemic long-acting formulation of rilpivirine RPV LA
(developed by Janssen Research and Development, Beerse, Belgium), was administered intra-
muscularly, 1 week before HIV-1 challenge (Fig 1B). The presence of plasma viral RNA was
monitored over time as an early indication of infection. At the end of these experiments, multi-
ple tissues were analyzed for the presence of cell-associated viral DNA. Only animals treated
with RPV nanoformulations, and negative for both viral RNA and DNA in peripheral blood
and tissues, were considered protected from vaginal HIV-1 transmission.

RPV, encapsulated in PLGA nanoparticles and delivered in a
thermosensitive gel, inhibits HIV-1 infection in vitro

The majority of clinical trials evaluating pericoital HIV prevention approaches, including
CAPRISA 004, used conventional gels for vaginal microbicide delivery. However, such gels have
major disadvantages, including gel leakage, uneven distribution, and messiness, which can
decrease adherence to the dosing regimen [29]. To overcome these potential drawbacks, we for-
mulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with RPV (PLGA/RPV NP),
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Fig 1. Experimental design for the evaluation of efficacy of RPV nanoformulations in prevention of vaginal HIV transmission in humanized BLT
mice. (A) Experimental design for evaluation of efficacy of PLGA nanoparticles loaded with RPV (PLGA/ RPV NPs) in thermosensitive gel as a pericoital
PrEP administered as a single topical application 1.5 h or 24 h before HIV-1 challenge. (B) Experimental design for evaluation of efficacy of long acting
nanosuspension of RPV administered in a single dose intramuscularly 1 week before HIV-1 challenge, as a coitus-independent approach to prevent vaginal
HIV transmission.

doi:10.1371/journal.ppat.1005075.g001

in a thermosensitive gel which is liquid at room temperature but highly viscous at body temper-
ature. This property minimizes chances of gel leakage. Moreover, as reported previously, ther-
mosensitive pluronic gels are insensitive to dilution by simulated vaginal fluid [30-33]. PLGA
NPs are US FDA-approved biodegradable particles, which can encapsulate ARV and provide
their sustained release [34-38]. PLGA/RPV NPs were prepared by emulsion-solvent evapora-
tion. Average particle size was 66.0 + 4.2nm (mean + SEM, n = 3) measured by dynamic light
scattering, which was further validated using Scanning Electron Microscopy (Fig 2A). The aver-
age polydispersity index was 0.14 + 0.05, zeta potential of the NPs was -10.96 + 1.4mV

(mean + SEM, n = 3). The RPV encapsulation efficiency in the polymeric nanoparticle, deter-
mined by an indirect method as described in the Materials and Methods section, was 98 + 0.7%
and the RPV loading in nanoparticles was ~ 5% w/w of polymer. As shown in Fig 2B, the intra-
cellular uptake of RPV by HeLa cells cultured in presence of a 5pg/ml RPV solution or in the
presence of 5ug/ml RPV in PLGA/RPV NPs, was comparable. In TZM-bl indicator cells,
PLGA/RPV NPs showed similar in vitro inhibition of HIV-1 infection as RPV in solution (Fig
2C). Together, these data confirmed the potential of PLGA/RPV NPs to effectively deliver ARV
to target cells. For in vivo evaluation in BLT humanized mice, PLGA/RPV NPs were formulated
into a previously characterized thermosensitive gel containing Pluronic F127 and Pluronic F68
[32]. The concentration of RPV in thermosensitive gel was 0.876mg/ml.

Distribution of PLGA/RPV nanoparticles in thermosensitive gel in the
female reproductive tract of BLT mice and prevention of vaginal HIV
acquisition after vaginal administration

In humans, cervicovaginal mucus is a significant barrier and clearance mechanism that limits

vaginal drug delivery and retention. To achieve sustained drug release and maintain protective
drug concentrations during pre-exposure prophylaxis, drug-loaded nanoparticles need to
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Fig 2. In vitro characterization of PLGA/RPV NPs in thermosensitive gel. (A) Scanning electron
microscope image of PLGA/RPV nanoparticles. (B) RPV uptake by HeLa cells. Cells were incubated with

5 pg/ml RPV in solution or in the PLGA/RPV NP formulation. Intracellular RPV and RPV in medium were
analyzed by HPLC (n = 3). (C) In vitro analysis of the inhibition of HIV infection by PLGA/ RPV NPs. TZM-bl
HIV indicator cells were treated with the indicated concentrations of RPV solution or PLGA/RPV NPs. Cells
were challenged with HIV-1y, x 24 h after RPV treatment. Infection of cells was evaluated by ONE-Glo assay
48 h post infection (n = 3). Data were normalized to luminescence of untreated cells (100%); p = 0.0963.

doi:10.1371/journal.ppat.1005075.9002

penetrate cervicovaginal mucus and be efficiently distributed across the female reproductive
tract [39]. The ability of PLGA/RPV NPs in thermosensitive gel to distribute in the FRT of
humanize mice was evaluated using rhodamine-labeled PLGA NPs. Rhodamine-labeled PLGA
NPs in thermosensitive gel were instilled into the mouse vagina and their presence and locali-
zation was assessed by confocal microscopy. Ninety minutes after vaginal administration, the
fluorescence signal was seen as a continuous layer at the luminal site of the vaginal epithelium.
Interestingly, some fluorescence, although with much lower intensity, was still found on the
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vaginal epithelium 24h after administration. Fluorescence signals were also observed deeper in
the tissue in close proximity of hCD45, hCD3, hCD4, hCD8, and hCD11c cells (Fig 3A and
3B). Given the stability of Rhodamine encapsulation in this type of nanoparticles [40], these
results demonstrate that PLGA nanoparticles, delivered in thermosensitive gel, can reach the
vaginal epithelium and the location of HIV target cells, and persist for 24h.

To test the effectiveness of PLGA/RPV NPs in preventing HIV-1 vaginal transmission,
humanized BLT mice were topically treated with PLGA/RPV NPs in thermosensitive gel (20ul
of gel, 17.5ug of RPV per mouse; n = 12), thermosensitive gel containing PLGA NP without
RPV, or vehicle (n = 8). Treated animals were challenged 1.5h (n = 4) or 24h (n = 8) after gel
application with a high dose of HIV-1ggpa, a CCR5-tropic transmitted/founder virus (3.1x10°
TCID) [16]. The presence of plasma viral RNA in peripheral blood was determined at intervals
thereafter. No plasma viral RNA was found in the peripheral blood of any of the animals chal-
lenged with HIV-1 1.5h after the administration of PLGA/RPV NPs in thermosensitive gel (0/4)
nor in 4/8 of the animals that received PLGA/RPV NPs in thermosensitive gel 24h prior to expo-
sure to HIV-1 (p = 0.0084 and p = 0.0582 respectively). Seven to eight weeks post-exposure,
cells isolated from multiple organs were analyzed for the presence of viral DNA. The lack of
detectable cell-associated viral DNA in tissues confirmed the absence of HIV infection in these
animals (Fig 3C-3E, S1 Table). The presence of plasma viral RNA and cell-associated viral DNA
in peripheral blood and tissues of all the control mice confirmed efficient HIV transmission (Fig
3C and 3D). The protection of all BLT mice challenged with HIV-1 1.5h after treatment with
PLGA/RPV NPs in thermosensitive gel, and the protection of 50% of the mice treated 24h prior
to challenge with HIV-1, demonstrated the effectiveness of PLGA/RPV NPs in HIV prevention.

Administration of a single dose of RPV LA results in sustained plasma
levels of drug

To evaluate the efficacy of a coitus-independent systemic RPV LA formulation to prevent
HIV-1 infection, we first determined the plasma RPV concentrations in mice for 28 days after
intramuscular injections of either 15mg (50pl of 300mg/ml RPV LA nanosuspension) or 7.5mg
(25ul of 300mg/ml RPV LA nanosuspension) of RPV LA (n = 4 per group). As shown in Fig
4A, high levels of RPV were detected in the plasma of all treated animals 24h post-injection.
Plasma drug levels decreased rapidly over the following 4 days. After this point, the levels of
RPV in plasma remained relatively constant for 10 days and then decreased gradually over the
next two weeks. Throughout the 28 days of the study, RPV plasma levels exceeded the protein-
adjusted ICqq of 12ng/ml [41]. These results demonstrated that a single intramuscular injection
of RPV LA resulted in sustained levels of drug in plasma in mice and established its potential
to serve as a prevention strategy for intermittent use.

A single administration of RPV LA efficiently prevents HIV-1 infection in
BLT humanized mice

BLT mice (n = 12) were injected intramuscularly with 15mg of RPV LA (n = 6), vehicle or left
untreated (n = 6). One week later, mice were challenged vaginally with a high dose (3.5x10°
TCID) of HIV-1cpo40, @ transmitted/founder virus [17]. Viral RNA in plasma was evaluated
over the following 8 weeks. Five out of six control mice were infected within 2 weeks after chal-
lenge, as evidenced by the presence of viral RNA in plasma. In sharp contrast, no viral RNA
was detected in the plasma of the animals treated with RPV LA (Fig 4B, S2 Table). Analysis of
tissue DNA of RPV LA-treated mice demonstrated the absence of viral DNA in all samples
analyzed (S2 Table, Fig 4C). These results demonstrated that a single administration of RPV
LA 7 days prior to challenge offered significant protection from vaginal HIV-1cgo40 infection.
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Fig 3. Distribution of rhodamine-labeled NPs in thermosensitive gel in the mouse female reproductive
tract (FRT) and the ability of PLGA/RPV to offer pericoital protection against HIV-1 transmission. (A, B)
Distribution of rhodamine-labeled PLGA nanoparticles in transverse sections of mouse FRT. Nanoparticles in
thermosensitive gel were administered vaginally to humanized BLT mice. FRT was isolated and processed at
indicated times and sections were stained for hCD45 (A), hCD3, hCD4, hCD8, hCD11c (B) and DAPI (A, B).
Control nanoparticles contain only PLGA. Scale bar = 100 ym. Arrowheads are showing nanoparticles in
tissue, arrows are showing nanoparticles on the edge of vaginal epithelium. (C, D) Protection of BLT mice
from vaginal HIV-1 infection by topically applied thermosensitive gel containing PLGA/RPV NPs (20 pl of gel,
17.5 pg of RPV per mouse). Controls were treated with vehicle or with thermosensitive gel containing blank
NPs. Mice were exposed vaginally to HIV-1gypa 1.5 h (n=4) (C) or 24 h (n = 8, two independent
experiments) (D) after vaginal administration of gels. Viral RNA was quantified by real time PCR (RT PCR)
with a limit of quantitation (LOQ) of 400 copies of RNA per ml (dotted line); graphs represent means +SD. (E).
Kaplan-Meier plots representing the percentage of BLT mice protected by PLGA/RPV NPs in
thermosensitive gel over time until the first peripheral blood viral RNA detection. Protected animals were
negative for viral RNA in plasma as well as viral DNA in tissue analyzed after necropsy. Statistical analysis:
Log-rank (Mantel-Cox) test; controls vs. 1.5 h p = 0.0084, controls vs. 24 h p = 0.0582

doi:10.1371/journal.ppat.1005075.9003
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Fig 4. Ability of RPV LA to offer coitus-independent protection from vaginal HIV-1 transmission in BLT mouse. (A) Longitudinal analysis of RPV
levels in plasma of NSG mice injected intramuscularly once with 7.5 mg or 15 mg RPV LA (n = 4 for each group, dotted line indicates ICgq). (B) Plasma viral
RNA in BLT mice challenged vaginally with HIV-1cp040 (3.5x10° TCID), a transmitted/founder virus 1-week post administration of RPV LA (15 mg, n = 6) or
vehicle (n = 6) intramuscularly. Shown are plasma viral RNA (dotted line-LOQ 400 copies of RNA per ml of plasma). (C) Kaplan-Meier plots representing the
percentage of BLT mice protected from HIV transmission by RPV LA as a function of the number of weeks post challenge until the first peripheral blood viral
RNA detection. Protected animals were negative for viral RNA in plasma and viral DNA in tissue analyzed after necropsy (P = 0.0047, Log rank/Mantel Cox
test). (D). Human CD45 cell levels in peripheral blood (percent of total live cells) and human CD4 levels (percent of human CD3 positive cells) were analyzed
by flowcytometry at the indicated times. Solid lines: RPV LA treated mice, dashed lines: control animals.

doi:10.1371/journal.ppat.1005075.9004

It should be noted that longitudinal flow cytometry analysis of the mouse peripheral blood con-
firmed that the absence of viral RNA and DNA in the mice treated with RPV LA and exposed
to HIV-1cpo40 Was not due to a loss or to reduced levels of human CD45" cells or human CD3"
"CD4" cells throughout the course of the experiment. Only in the infected mice were we able
to demonstrate a gradual decrease in the levels of human CD3*CD4" cells (Fig 4D).

Efficacy of RPV LA in preventing HIV infection after two high dose
challenges by different HIV isolates 1 and 4 weeks after drug
administration

The overall experimental approach to evaluate the ability of RPV LA to prevent vaginal HIV
transmission after two high dose challenges is shown in Fig 5A. BLT mice received a single
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15mg intramuscular injection of RPV LA (n = 10) or vehicle (n = 4). Mice were challenged one
week later with a high dose of either HIV-1r_cor [an early passage CCR5-tropic primary iso-
late] (n = 3, TCID 3.5x10°), HIV-1 040 (n = 4, TCID 3.5x10°) or HIV-1gyps (n = 3, TCID
3.1x10°) transmitted/founder CCR5-tropic viruses. Control mice were challenged with HIV-
1cho40 OF HIV-1rppa (n = 2 each). Plasma viral RNA was monitored over time. Viral RNA was
detected in 4/4 of the control mice. Two weeks post-challenge, no viral RNA was detected in
any of the animals that received RPV LA (Fig 5b, S2 Table). Four weeks after RPV LA adminis-
tration (3 weeks after the first challenge), mice were challenged vaginally with HIV-11ygro, a
different CCR5-tropic transmitted/founder virus (TCID 3.5x10°), in parallel with 6 additional
control (no drug) BLT mice (also challenged with HIV-11yr0). Mice were monitored for the
presence of plasma viral RNA for an additional 5 weeks. Seven of ten RPV LA-treated mice
became infected within 4 weeks after the second HIV-1 challenge. In order to identify the virus
that resulted in the infection of the RPV LA-treated mice, plasma viral RNA from each infected
mouse was sequenced. Sequence analysis revealed that, despite the fact that no viral load was
detected in plasma for over 2 weeks after the first challenge, 2 of these mice had actually
acquired infection from the first challenge. A third mouse acquired infection after both chal-
lenges (dually infected mouse). Sequence analysis of the other 4 mice showed that they were
only infected with the second challenge virus (Fig 5B, S1 Fig, S3 Table). No mutations associ-
ated with RPV resistance were found in the virus present in any of the RPV LA-treated and
infected mice. Analysis of DNA from tissues of the three remaining uninfected mice treated
with RPV LA revealed the absence of viral DNA in all tissues analyzed and confirmed their
protection from HIV transmission after two high dose challenges (Fig 5C). In summary, during
the dual challenge experiment, 7/10 RPV LA-treated animals were protected from the first
challenge and 4/9 from the second challenge. These results demonstrate that RPV LA offered
significant (>80%; p<0.0001) protection from a high dose of virus administered one week
later, and partial (44%; p = 0.0038) protection from a second high dose HIV challenge 4 weeks
after drug administration.

Discussion

There have been numerous attempts to prevent HIV infection with the topical application of
microbicides [42]. Topical PrEP is based on the premise that blocking HIV at the site of entry
offers the best opportunity to prevent HIV infection and avert systemic toxicity. Topical appli-
cation of non-specific HIV inhibitors has failed to show protection against HIV infection in
several large clinical trials [43]. In contrast, the first clinical trial, evaluating the potential of
tenofovir in a vaginal gel formulation (CAPRISA 004), demonstrated significant protection [2].
Subsequent trials, using topically applied tenofovir, were not able to demonstrate protection,
most likely due to a lack of product use [44, 45]. Here, we evaluated the efficacy of RPV formu-
lated in PLGA nanoparticles suspended in a thermosensitive gel that remains liquid at room
temperature but solidifies at body temperature. We evaluated the distribution of nanoparticles
in the vagina of BLT mouse using PLGA nanoparticles with encapsulated rhodamine as a sur-
rogate for rilpivirine. We chose rhodamine because it had been previously shown to be released
slowly from the PLGA nanoparticles, with initial burst release seen in the first several hours fol-
lowed by a more sustained, uniform release [40]. Our results showed that rhodamine-PLGA
NPs formed a layer on the lumen of the vaginal epithelium. Some of the particles persisted at
the vaginal epithelium 24h post-administration. However, PLGA NPs also infiltrated into the
tissue, as fluorescence signal was also found in close proximity to HIV target cells. BLT mice,
vaginally treated with PLGA/RPV NPs in the thermosensitive gel, were protected against a
high dose challenge with a transmitted/founder virus administered 1.5h later. Protection,
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Fig 5. Analysis of RPV LA protection after exposure to high doses of multiple transmitted/founder
viruses and an early passage primary isolate. (A) Experimental design. BLT mice were challenged with
CH040, RHPA or JR-CSF HIV-1 isolates 1 week after RPV LA administration. Four weeks after RPV LA
administration, mice were challenged again, but this time with HIV-11ro, a transmitted/founder virus. (B)
Plasma viral load in RPV LA treated BLT mice (n = 10) and controls (n = 4 for 1% challenge, n = 6 for ond
challenge). Dash line indicates LOQ. Data are presented as mean + SD. (C) Kaplan-Meier plots representing
the percentage of BLT mice protected against HIV transmission by RPV LA intramuscular injection as a
function of the number of weeks post 15! and 2™ challenges until the first peripheral blood viral RNA
detection. Arrows in panels (B) and (C) indicate time of 15! and 2™ challenges. RHPA (n = 2) and CH040

(n =2) were used as controls for the first challenge (Control 1); for the 2" challenge, all control animals were
exposed to THRO (n = 6; Control 2); RPV LA indicates RPV LA treatment. Statistical analysis: Log-rank
(Mantel-Cox) test, 15t and 2" challenge were analyzed separately, controls 1 vs. 15t challenge p = <0.0001,
controls 2 vs. 2" challenge p = 0.0038.

doi:10.1371/journal.ppat.1005075.9005

diminished (by 50%) when BLT mice were challenged 24h after gel administration. These
results demonstrated that topical administration of this novel PLGA/RPV NP thermosensitive
gel formulation efficiently prevented vaginal HIV transmission in this animal model.

An alternative to topical PrEP is the systemic administration of antiretrovirals for the pre-
vention of HIV acquisition. The results from multiple clinical trials (iPrEx, TDF2 and Partners
PrEP study) demonstrate that systemic PrEP can prevent HIV acquisition via rectal and vagi-
nal exposure [3-5]. The results from virtually all clinical trials of HIV prevention using antire-
trovirals demonstrate that efficacy depends on product usage. Long-acting injectable
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formulations of antiretrovirals are one of several approaches that are being considered to
enhance adherence to preventive measures.

GSK744 (Cabotegravir) LA is an injectable nanosuspension formulation of an integrase
inhibitor that has been shown to be safe and to sustain adequate levels of drug when adminis-
tered intermittently. Recent results from investigations in non-human primates also demon-
strate that GSK744 LA can efficiently prevent infection after repeated low dose viral challenges
[13-15]. However, it should be noted that this formulation has demonstrated lower efficacy at
preventing infection after a high dose challenge [14].

RPV LA is a long-acting injectable nanosuspension formulation of the NNRTT rilpivirine.
Sustained levels of RPV in plasma after single intramuscular injection of RPV LA were
reported in dogs, rats and mice, and in plasma, cervico-vaginal fluid and vaginal tissue of
humans [10, 12]. However, an assessment of RPV LA in preventing HIV-1 vaginal transmis-
sion in a relevant animal model has not yet been reported. Here, we showed that a single
administration of RPV LA in BLT mice conferred significant protection against a high dose
vaginal challenge with HIV-1 one week after drug administration. Our results also demon-
strated that a single administration of RPV LA offered protection, albeit reduced, from a sec-
ond virus challenge 1 month after drug administration. Importantly, while all our control mice
were infected within 2 weeks after challenge, breakthrough infections in treated animals were
delayed and occurred 3 weeks after first challenge (4 weeks after drug administration) or 2-4
weeks after second challenge (6-8 weeks after drug administration). These results are consis-
tent with a model in which the initial infection occurs at the site of exposure, but is contained
by the presence of sustained levels of drug, preventing systemic replication. Once the levels of
drug are unable to efficiently inhibit virus replication, viral spread can occur. Due to faster
clearance in mice, a sustained level of RPV in plasma after single injection of RPV LA lasts sig-
nificantly longer in humans than mice (3 months in humans vs. 3 weeks in mice, [10, 11]).
Therefore, it is reasonable to anticipate a longer protective effect of RPV LA in humans. In
summary, our results in humanized BLT mice highlight the potential of RPV as a candidate for
HIV pre-exposure prophylaxis in both a topical coitus-dependent thermosensitive gel formula-
tion as well as in a long acting injectable nanosuspension.

Materials and Methods
Preparation and characterization of RPV-loaded PLGA nanoparticles

Resomer 752 H (acid terminated poly-lactic-co-glycolic acid; Avg. Mol. Wt. 15000Da) was pur-
chased from Sigma Chemicals (St. Louis, MO, USA). Rilpivirine (RPV) was purchased from
Sequoia Research Ltd. (Pangbourne, UK). Potassium dihydrogen phosphate (HPLC grade),
acetonitrile (HPLC grade), dimethyl sulfoxide (DMSO, AR Grade), ethyl acetate (AR grade),
citric acid (AR grade) and trisodium citrate (AR grade) were purchased from Fisher Scientific
Ltd (NJ, USA). Pluronic F127 and Pluronic F68 (BASF, NJ, USA) were received as gift samples.
The ultra-pure water was obtained for all the experiments with the use of PURELAB Ultra sys-
tem (Elga LLC, IL, USA).

RPV-loaded PLGA nanoparticles were prepared using a previously described emulsion-sol-
vent evaporation method [46]. Briefly, Resomer 752H (200mg) and Pluronic F127 (200mg)
were dissolved in 3ml ethyl acetate by heating at 40°C in an incubating shaker bath. RPV
(10mg) was dissolved in DMSO (50pl) by heating at 40°C in an incubating shaker bath and
then transferred to the Resomer 752H solution to obtain a homogenous organic phase. The
organic phase was added drop-wise to 10ml ultrapure water and homogenized using a probe
sonicator (UP100H; Hielscher USA, Inc., NJ, USA). The resultant oil-in-water emulsion was
stirred for 4h using a magnetic stirrer. Due to the photosensitive nature of RPV, the contents in
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the beaker were protected from light during the evaporation of ethyl acetate. The mean particle
size, polydispersity index and zeta potential of the PLGA/RPV nanoparticles were measured in
triplicate using dynamic light scattering at an angle of 90° at 25°C, by a “ZetaPlus” Zeta Poten-
tial Analyzer (Brookhaven Instruments Corp, NY, USA). For fabricating rhodamine-6G-
labeled fluorescent PLGA nanoparticles, RPV was replaced with rhodamine-6G (1mg) and
nanoparticles were formulated as described earlier.

SEM imaging of nanoparticles. For SEM imaging, PLGA/RPV NPs (~ 30ul) were trans-
ferred onto two-sided conductive tape (PELCO Tabs, 12mm OD, TED PELLA, Inc, Redding,
CA) mounted on a aluminum stub. PLGA/RPV NPs were air-dried for >24h and sputter-
coated with palladium under an argon gas atmosphere, using a Denton Desk V HP TSC Sput-
ter Coater (Denton Vacuum, LLC-USA, Moorestown, NJ). The coated NPs were examined
using a Hitachi S4700 field-emission Scanning Electron Microscope (SEM).

Encapsulation efficiency. To determine the amount of RPV encapsulated in nanoparti-
cles, PLGA/RPV nanoparticles (0.4ml) were applied to an Amicon Ultra centrifugal filter
(Sigma-Aldrich, MO, USA). The filtrate was obtained by spinning the filter at 14000 rpm for
20min at 4°C in an Eppendorf 5417R centrifuge. The amount of free RPV in the filtrate was
measured using a validated reverse-phase HPLC method. The encapsulation efficiency was cal-
culated by the following equation:

%EE = ((W W"free") /W”initial"> XlOO

“initial "

where ‘Wi,iiia’ is the amount of RPV/ml of nanoparticle dispersion and Wy, is amount of
RPV/ml of filtrate obtained by centrifugation of nanoparticles. All experiments were performed
in triplicate.

High-pressure liquid chromatography (HPLC)

A reverse phase-HPLC method was developed and validated for determination of RPV from
various matrices derived in the topical gel studies. The HPLC apparatus (Shimadzu Corporation,
Columbia, MD) consisted of a pump (LC-20AB), system controller (CBM-20A), degasser unit
(DGU-20A), refrigerated auto-sampler (SIL-20AC), a UV-Vis detector (SPD-20A) and a col-
umn heater (CTO-20A). Samples were run through a C18 pre-column and a Gemini Cg
reverse-phase [150mm x 4.5mm (I.D.)] with 5um particle size packing (Phenomenex, Torrance,
CA). The mobile phase consisted of acetonitrile and 25mM KH,PO, solution (50:50). For HPLC
analysis, the flow rate of the mobile phase was at 0.6ml/min, column oven was set at 35°C, injec-
tion volume was 20pl and the analysis was carried out at 290nm. The retention time for the RPV
was 12.9min. For standard curve, RPV stock solution (1mg/ml) was prepared in methanol. The
stock solution was diluted with acetonitrile to obtain solutions of various concentrations. A stan-
dard curve was obtained by injecting 0.025-2pg/ml of RPV. The limit of detection for RPV was
8ng/ml. Intra-day and inter-day variability of the analytical method was <10%.

Development of a thermosensitive vaginal gel containing RPV NPs

A thermosensitive vaginal gel containing PLGA/RPV-NPs was prepared as described earlier
[32]. Briefly, the pH of RPV NPs was adjusted to 4.5 with citric acid and sodium citrate. Glyc-
erol (0.225g) was added to PLGA/RPV NPs (10ml) to adjust the osmolarity of nanoparticles.
PLGA/RPV NPs were transferred to a screw-capped bottle and Pluronic F127 (2g) and Pluro-
nic F68 (100mg) were added to PLGA/RPV-NPs with intermittent stirring. The screw-capped
bottle containing PLGA/RPV NPs and Pluronics was stored overnight in the refrigerator to
dissolve Pluronics. On the next day, the dispersions were gently stirred to obtain a homogenous
translucent solution. The solution was observed for signs of nanoparticle aggregation and/or
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phase separation. Thermosensitivity of the gel was confirmed by incubating the gel in a 37°C
water bath. The preparation of thermosensitive gel containing Rhodamine-6G-labeled fluores-
cent PLGA nanoparticles was carried out in a similar manner.

Cell culture

Human cervical (HeLa) cells were purchased from the American Type Culture Collection
(ATCC, Manassas, VA), TZM-bl cells were procured through the NIH AIDS Research and Ref-
erence Reagent Program. HeLa and TZM-bl cells were maintained in complete Dulbecco’s
Modified Eagle’s Media ((DMEM, MediaTech Inc., Manassas, VA) supplemented with 10%
fetal bovine serum (FBS, Hyclone Inc., Utah), 4mM L-glutamine, 100U/ml penicillin and
100pg/ml streptomycin (MP Biomedical Inc., Solon, OH) and maintained in a logarithmic
growth phase. All cells were grown at 37°C and 5% CO,.

In vitro HIV-1 inhibition by RPV NPs and RPV solution

TZM-bl HIV indicator cells were seeded in 24-well plates at a density of 2 x 10° per well. After
24h, the cells were treated with different concentrations of PLGA/RPV NPs and RPV solution
(concentration range: 10ug/ml to 100pg/ml) for 24h. Cells were washed and cultured for 24h in
fresh complete DMEM. Cells were infected with HIV-1 yp4.5 virus (25pl) for 4h and incubated
for an additional 48h. One-Glo reagent (Promega, Madison, WI), supplemented with Triton
X-100 (final concentration 0.01%) was added to inactivate virus and to allow for the measure-
ment of luciferase activity. Results were normalized to the luciferase activity of cells infected
with virus incubated with plain RPMI medium.

RPV LA nanosuspension and RPV plasma level analysis

RPV LA was prepared as previously described [11]. Briefly, a sterile isotonic nanosuspension,
consisting of rilpivirine particles, was prepared by wet nanomilling of the rilpivirine base, sur-
factant, and buffer to ensure neutral pH under aseptic conditions. The median particle size was
200nm. Poloxamer 338 (Pluronics F108), a hydrophilic, nonionic surfactant, was used to
enhance solubility and stabilize the colloidal suspension against aggregation. The final drug
concentration was 300mg/ml.

Plasma was isolated from 0.05-0.1ml peripheral blood samples on EDTA collected from
mouse retro-orbital venous sinus and stored at -80°C until analysis. Plasma samples were ana-
lyzed individually for unchanged rilpivirine by liquid chromatography-tandem mass spectrom-
etry (LC/MS-MS) as described previously [11].

Generation of humanized BLT mice

BLT mice were generated as described previously [19, 23, 26, 27, 47, 48]. Briefly, a 1-2mm
piece of human fetal liver tissue was sandwiched between two pieces of autologous fetal thymus
tissue (Advanced Bioscience Resources, Alameda, CA) under the kidney capsule of sublethally
irradiated (0.250Sv) 6-8 wk old NOD.Cg- Prkdcscid I12rgtm1Wijl/Sz] mice (NSG; The Jackson
Laboratory, Bar Harbor, ME). Following implantation, mice were transplanted intravenously
with hematopoietic CD34+ stem cells isolated from autologous human fetal liver tissue.
Human immune cell reconstitution was monitored by flow cytometrical analysis of the periph-
eral blood every 2 weeks, as previously described [23, 26, 27, 48]. At the end of experiments,
mice were euthanized by exposure to avertin followed by euthanasia. Mice were maintained at
the Division of Laboratory Animal Medicine, University of North Carolina at Chapel Hill
(UNC-CH).
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Ethics statement

All animal experiments were carried out in accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The
protocol was approved by the Institutional Animal Care and Use Committee guidelines of the
University of North Carolina (protocol number:12-170).

Distribution of nanopatrticles in the female reproductive tract

Female humanized-BLT mice were anesthetized with Nembutal. Rhodamine-labeled NPs or
control nanoparticles (without rhodamine) in thermosensitive gel (20pl) was instilled into the
mouse vagina. 1.5h or 24h later, mice were sacrificed and the FRT harvested, fixed in 4% para-
formaldehyde solution (SafeFix, Fisher Science) and embedded in OCT compound (Sakura).
Mouse vaginal frozen sections (5um) were stained with monoclonal antibody for hCD45
(Dako, mouse IgG1), hCD3 (Thermo Scientific, rabbit IgG), hCD4 (GenWay, Rabbit IgG),
hCD8 (Dako, Mouse IgG1), hCD11c (Leica, mouse IgG2a), mouse IgG1 (Dako), mouse IgG2a
(Dako) or rabbit Ig (Dako) after blocking with Background Sniper (Biocare Medical). The sec-
tions were then stained with either DyLight 488-conjugated donkey anti-mouse IgG or DyLight
488-conjugated donkey anti-rabbit IgG (Jackson Immunoresearch). All sections were finally
counterstained with DAPI (Sigma) and analyzed by confocal microscopy (TCS SP2, Leica).

Treatment and intravaginal exposure of BLT mice to transmitted/founder
HIV-1

For topical administration of PLGA/RPV NP, BLT mice were administered intravaginally with
17.5ug RPV in the form of PLGA/RPV NPs in 20yl thermosensitive gel containing PLGA/RPV
NPs. 1.5h or 24h later, the animals were anesthetized with Nembutal and challenged with
4.5x10° TCID HIV transmission/founder virus HIVggpa. Control BLT mice (n = 4) received
vehicle or thermosensitive gel with blank nanoparticles, and were challenged with the same
transmission/founder virus.

For systemic administration of RPV LA, female BLT mice received single injection of 15 mg
of nanosuspension intramuscularly. One week later, mice were anesthetized with Nembutal
and intravaginally challenged with transmission/founder viruses (HIV cio40 3.0x10° TCID or
HIVgupa 4.5%10° TCID) or HIVjr_cse (7.0x10° TCID). 3 weeks later, uninfected mice were
challenged vaginally with transmission/founder HIVyro (4.0x10° TCID).

Viral stocks were generated by transfecting proviral DNA into 293T cells using Lipofecta-
mine 2000 (Invitrogen) and tissue culture infectious units (TCID) were determined using
TZM-bl cells, essentially as we have previously reported [49, 50]. HIV-1 JR-CSF, CHOA0,
THRO and RHPA were obtained from Dr. Irving Chen and John Kappes via the AIDS
Research and Reagent Repository Program.

Analysis of HIV-1 infection in humanized BLT mice

Infection of BLT mice with HIV-1 was monitored in peripheral blood by determining levels of
viral RNA in plasma by one-step real-time reverse transcriptase PCR assay, using the following
primers: CATGTTTTCAGCATTATCAGAAGGA, TGCTTGATGTCCCCCCACT, and the
MGB-probe carboxyfluorescein (FAM)-CCACCCCACAAGATTTAAACACCATGCTAA-Q
(nonfluorescent quencher) (Applied Biosystems) (sensitivity of 400 HIV RNA copies/ml). The
percentage of human CD4+ T cells in peripheral blood of BLT mice before challenge (0-2
weeks prior to exposure) and after challenge was determined by flow cytometry with respective
antibodies: hCD45-APC, hCD3-FITC, hCD4-PE and hCD8-PerCP (eBioscience). Flow
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cytometry data were collected using a BD FACSCanto cytometer and analyzed using BD
FACSDiva software. The presence of viral DNA in tissues and peripheral blood collected from
BLT mice was determined by real-time PCR analysis of DNA extracted from 5x10*-4x10°
cells from harvested tissue (spleen, lymph nodes, bone marrow, liver, lung, female reproductive
tract) or from 15-50pl peripheral blood cells, as previously described [23, 26, 27, 51]; (assay
sensitivity of 10 DNA copies per sample).

Identification of transmitted viruses

Viruses replicating in infected animals were identified by sequence analysis. Viral RNA was
isolated from plasma using QIAamp viral RNA columns (Qiagen) according to the manufac-
turer’s protocol, and cDNA was generated using Superscript III Reverse Transcriptase (Invitro-
gen) with the primer GTGGGTACACAGGCATGTGTGG. cDNA was amplified by nested
PCR using the Expand High Fidelity PCR System (Roche). PCR primers were designed to
anneal in regions with the fewest possible primer mismatches to HIV}r_csg, HIV cro40
HIVgypa and HIVyro sequences. Primer sequences were as follows: outer forward primer,
TGCATATTGTGAGTCTGTTACTATGTTTACT; reverse prime CAGGAGCAGATGATA
CAG; inner forward primer, GTAGGACCTACACCTGTCAAG; reverse primer
CCTGCAAAGCTAGGTGAATTGC. Amplified viral DNA was sequenced and compared to
sequences of transmitted/founder viruses.

Statistical analysis

Drug concentrations in plasma over time were compared using Tukey’s multiple comparison
test. Statistical differences between treated and control animals in the efficacy of tested nano-
formulations in protection protecting from vaginal HIV-1 transmission were determined by
log-rank/ Mantel-Cox test. All statistical analyses were performed using GraphPad Prism soft-
ware (version 6).

Supporting Information

S1 Fig. Plasma viral RNA of individual RPV LA treated animals. (A) and controls for 1%
challenge (dotted lines) and ond challenge (solid lines)(B) for the experiment depicted in Fig 5.
Arrows indicate time of challenges. Experimental details for individual mouse are indicated in
S3 Table. RNA was quantified by RT PCR with LOQ 400 copies RNA per ml (dash line).
(EPS)

S1 Table. Protection of BLT mice, topically treated with RPV NP in thermosensitive gel,
from vaginal HIV-1 transmission. BLT mice with indicated levels of human CD45" (hCD45)
cells and human CD3"CD4" (hCD4) in peripheral blood were vaginally treated with RPV NP,
blank NP or vehicle. At indicated time after the treatment mice were challenged with HIV-
1rupa-. Presence of viral RNA in plasma was monitored over time. Cell-associated DNA was
analyzed in indicated tissues after necropsy. n.a. not analyzed;—negative for viral RNA or
DNA; + positive for viral RNA or DNA; org. thymic organoid, FRT female reproductive tract.
*mouse #3 was found dead in the cage; analysis of tissue for cell-associated DNA was not possi-
ble.

(DOCX)

S2 Table. Protection of BLT mice treated with RPV LA from single high dose vaginal chal-
lenge with HIV-1. BLT mice with indicated levels of human CD45" (hCD45) cells and human
CD3*CD4" (hCD4) in peripheral blood were treated intramuscularly with RPV LA formula-

tion (RPV LA) or vehicle. One week after the treatment, mice were challenged with HIV cpo40.
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Presence of viral RNA in plasma was monitored weekly. Cell-associated DNA was analyzed in
indicated tissue. n.a.: not analyzed;—negative for viral DNA; + positive for viral DNA; org. thy-
mic organoid.

(DOCX)

S$3 Table. Protection of BLT mice treated with RPV LA from two high dose vaginal chal-
lenges with HIV-1. BLT mice with indicated levels of human CD45" (hCD45) cells and
human CD3*CD4" (hCD4) in peripheral blood were treated intramuscularly with RPV LA for-
mulation (RPV LA) or vehicle. One week after the treatment, mice were challenge with indi-
cated HIV isolates (virus for 1°* challenge). Three weeks later 9 mice were challenge with

HIV ry5ro (virus for 274 challenge). Presence of viral RNA in plasma was monitored weekly.
*Viruses in infected mice were identified by sequencing. Cell-associated DNA was analyzed in
indicated tissue. n.a.: not analyzed;—negative for viral DNA; + positive for viral DNA; org. thy-
mic organoid. Notes: mouse # 2R1 died while the 2™ inoculation was being administered,
mouse #2R4 died 3 weeks after 2" inoculation; mouse #2R5 died 2 weeks after 2" inoculation.
(DOCX)

Acknowledgments

HIV-1 JR-CSF, CHO40, THRO and RHPA were obtained from Dr. Irving Chen and John
Kappes via the AIDS Research and Reagent Repository Program. We thank Drs. M. Chua and
N. Kramarcy for their technical support with microscopy analysis at the UNC-Chapel Hill
Michael Hooker Microscope Facility; Dr. A. Rogers, Ms. J. Weaver, Ms. Y. Xia and Ms. L. Wai
for the generous use of the UNC-Chapel Hill Animal Histopathology Core Facility; Dr. N.
Nikolaishvili-Feinberg and Mr. B. Midkiff for scanning and analysis of IHC images at the
UNC-Chapel Hill Translational Pathology Laboratory; former and current lab members and
veterinary technicians at UNC Division of Laboratory Animal Medicine for their assistance
with various technical aspects of this work. We would also like to acknowledge You Zhou, Ph.
D., Director of Microscopy Core Facility, Center for Biotechnology, University of Nebraska-
Lincoln for electron microscopy images and Dr. Vera Hillewaert, Janssen R&D, Beerse, Bel-
gium for RPV bioanalyses. We would like to acknowledge the editorial assistance of David Car-
roll from the North Carolina Translational and Clinical Sciences Institute (NC TraCS).

Author Contributions

Conceived and designed the experiments: CJD JVG. Performed the experiments: MK ODC
AAD JML TN MB AS HV CEB WOT SLD. Analyzed the data: MK ODC AAD JML TN MB
AS HV CEB WOT GK SLD. Contributed reagents/materials/analysis tools: GK SLD PW.
Wrote the paper: MK PW CJD JVG.

References
1.  WHO. Global summary of AIDS epidemic 2013 http://www.who.int/hiv/data/epi_core_dec2014.png?
ua=12014.

2. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, et al. Effectiveness
and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women.
Science. 2010; 329(5996):1168—74. Epub 2010/07/21. doi: 10.1126/science.1193748 PMID:
20643915; PubMed Central PMCID: PMCPmc3001187.

3. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, et al. Preexposure chemoprophy-
laxis for HIV prevention in men who have sex with men. N Engl J Med. 2010; 363(27):2587-99. Epub
2010/11/26. doi: 10.1056/NEJMoa1011205 PMID: 21091279; PubMed Central PMCID:
PMCPmMc3079639.

PLOS Pathogens | DOI:10.1371/journal.ppat.1005075 August 13,2015 16/19


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1005075.s004
http://www.who.int/hiv/data/epi_core_dec2014.png?ua=12014
http://www.who.int/hiv/data/epi_core_dec2014.png?ua=12014
http://dx.doi.org/10.1126/science.1193748
http://www.ncbi.nlm.nih.gov/pubmed/20643915
http://dx.doi.org/10.1056/NEJMoa1011205
http://www.ncbi.nlm.nih.gov/pubmed/21091279

@’PLOS | PATHOGENS

Topical and Systemic Antiretrovial Nanoformulations for HIV Prevention

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21,

22,

Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, Wangisi J, et al. Antiretroviral prophylaxis for
HIV prevention in heterosexual men and women. N Engl J Med. 2012; 367(5):399-410. Epub 2012/07/
13. doi: 10.1056/NEJMoa1108524 PMID: 22784037; PubMed Central PMCID: PMCPmc3770474.

Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE, Segolodi TM, et al. Antiretroviral pre-
exposure prophylaxis for heterosexual HIV transmission in Botswana. N Engl J Med. 2012; 367
(5):423-34. doi: 10.1056/NEJMoa1110711 PMID: 22784038.

D'Cruz OJ, Uckun FM. Vaginal microbicides and their delivery platforms. Expert opinion on drug deliv-
ery. 2014; 11(5):723—-40. Epub 2014/02/11. doi: 10.1517/17425247.2014.888055 PMID: 24506783.

Spreen WR, Margolis DA, Pottage JC Jr. Long-acting injectable antiretrovirals for HIV treatment and
prevention. Current opinion in HIV and AIDS. 2013; 8(6):565—71. Epub 2013/10/09. doi: 10.1097/coh.
0000000000000002 PMID: 24100877; PubMed Central PMCID: PMCPmc3815009.

Vermund SH, Van Damme L. HIV prevention in women: next steps. Science. 2011; 331(6015):284.
Epub 2011/01/22. doi: 10.1126/science.331.6015.284-a PMID: 21252332.

Ford N, Lee J, Andrieux-Meyer |, Calmy A. Safety, efficacy, and pharmacokinetics of rilpivirine: system-
atic review with an emphasis on resource-limited settings. HIV/AIDS (Auckland, NZ). 2011; 3:35—44.
Epub 2011/11/19. doi: 10.2147/hiv.s14559 PMID: 22096405; PubMed Central PMCID:
PMCPmc3218710.

Baert L, van 't Klooster G, Dries W, Francois M, Wouters A, Basstanie E, et al. Development of a long-
acting injectable formulation with nanoparticles of rilpivirine (TMC278) for HIV treatment. Eur J Pharm
Biopharm. 2009; 72(3):502—-8. Epub 2009/03/31. doi: 10.1016/j.ejpb.2009.03.006 PMID: 19328850.

van 't Klooster G, Hoeben E, Borghys H, Looszova A, Bouche MP, van Velsen F, et al. Pharmacokinet-
ics and disposition of rilpivirine (TMC278) nanosuspension as a long-acting injectable antiretroviral for-
mulation. Antimicrob Agents Chemother. 2010; 54(5):2042-50. Epub 2010/02/18. doi: 10.1128/aac.
01529-09 PMID: 20160045; PubMed Central PMCID: PMCPmc2863620.

Jackson AG, Else LJ, Mesquita PM, Egan D, Back DJ, Karolia Z, et al. A Compartmental Pharmacoki-
netic Evaluation of Long-Acting Rilpivirine in HIV-Negative Volunteers for Pre-Exposure Prophylaxis.
Clin Pharmacol Ther. 2014; 96:314-23. Epub 2014/05/28. doi: 10.1038/clpt.2014.118 PMID: 24862215.

Andrews CD, Spreen WR, Mohri H, Moss L, Ford S, Gettie A, et al. Long-Acting Integrase Inhibitor Pro-
tects Macaques from Intrarectal Simian/Human Immunodeficiency Virus. Science. 2014; 343(6175%U
http://www.sciencemag.org/content/343/6175/1151.abstract):1151—-4. doi: 10.1126/science.1248707
PMID: 24594934

Andrews CD, Yueh YL, Spreen WR, St Bernard L, Boente-Carrera M, Rodriguez K, et al. A long-acting
integrase inhibitor protects female macaques from repeated high-dose intravaginal SHIV challenge.
Sci Transl Med. 2015; 7(270):270ra4. Epub 2015/01/16. doi: 10.1126/scitransimed.3010298 PMID:
25589630.

Radzio J, Spreen W, Yueh YL, Mitchell J, Jenkins L, Garcia-Lerma JG, et al. The long-acting integrase
inhibitor GSK744 protects macaques from repeated intravaginal SHIV challenge. Sci Transl Med.
2015; 7(270):270ra5. Epub 2015/01/16. doi: 10.1126/scitransimed.3010297 PMID: 25589631.

Ochsenbauer C, Edmonds TG, Ding H, Keele BF, Decker J, Salazar MG, et al. Generation of transmit-
ted/founder HIV-1 infectious molecular clones and characterization of their replication capacity in CD4
T lymphocytes and monocyte-derived macrophages. J Virol. 2012; 86(5):2715-28. Epub 2011/12/23.
doi: 10.1128/jvi.06157-11 PMID: 22190722; PubMed Central PMCID: PMCPmc3302286.

Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, et al. Genetic identity, biologi-
cal phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1
infection. J Exp Med. 2009; 206(6):1273-89. Epub 2009/06/03. doi: 10.1084/jem.20090378 PMID:
19487424; PubMed Central PMCID: PMCPmc2715054.

Denton PW, Garcia JV. Humanized mouse models of HIV infection. AIDS reviews. 2011; 13(3):135—
48. Epub 2011/07/30. PMID: 21799532; PubMed Central PMCID: PMCPmc3741405.

Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, et al. Humanized mice
mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006; 12
(11):1316-22. Epub 2006/10/24. PMID: 17057712.

Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice forimmune system investiga-
tion: progress, promise and challenges. Nat Rev Immunol. 2012; 12(11):786-98. Epub 2012/10/13.
doi: 10.1038/nri3311 PMID: 23059428; PubMed Central PMCID: PMCPmc3749872.

Wege AK, Melkus MW, Denton PW, Estes JD, Garcia JV. Functional and phenotypic characterization
of the humanized BLT mouse model. Curr Top Microbiol Immunol. 2008; 324:149-65. Epub 2008/05/
17. PMID: 18481459.

Deruaz M, Luster AD. BLT humanized mice as model to study HIV vaginal transmission. J Infect Dis.
2013; 208 Suppl 2:5131-6. Epub 2013/10/30. doi: 10.1093/infdis/jit318 PMID: 24151319; PubMed
Central PMCID: PMCPMC3807970.

PLOS Pathogens | DOI:10.1371/journal.ppat.1005075 August 13,2015 17/19


http://dx.doi.org/10.1056/NEJMoa1108524
http://www.ncbi.nlm.nih.gov/pubmed/22784037
http://dx.doi.org/10.1056/NEJMoa1110711
http://www.ncbi.nlm.nih.gov/pubmed/22784038
http://dx.doi.org/10.1517/17425247.2014.888055
http://www.ncbi.nlm.nih.gov/pubmed/24506783
http://dx.doi.org/10.1097/coh.0000000000000002
http://dx.doi.org/10.1097/coh.0000000000000002
http://www.ncbi.nlm.nih.gov/pubmed/24100877
http://dx.doi.org/10.1126/science.331.6015.284-a
http://www.ncbi.nlm.nih.gov/pubmed/21252332
http://dx.doi.org/10.2147/hiv.s14559
http://www.ncbi.nlm.nih.gov/pubmed/22096405
http://dx.doi.org/10.1016/j.ejpb.2009.03.006
http://www.ncbi.nlm.nih.gov/pubmed/19328850
http://dx.doi.org/10.1128/aac.01529-09
http://dx.doi.org/10.1128/aac.01529-09
http://www.ncbi.nlm.nih.gov/pubmed/20160045
http://dx.doi.org/10.1038/clpt.2014.118
http://www.ncbi.nlm.nih.gov/pubmed/24862215
http://www.sciencemag.org/content/343/6175/1151.abstract
http://dx.doi.org/10.1126/science.1248707
http://www.ncbi.nlm.nih.gov/pubmed/24594934
http://dx.doi.org/10.1126/scitranslmed.3010298
http://www.ncbi.nlm.nih.gov/pubmed/25589630
http://dx.doi.org/10.1126/scitranslmed.3010297
http://www.ncbi.nlm.nih.gov/pubmed/25589631
http://dx.doi.org/10.1128/jvi.06157-11
http://www.ncbi.nlm.nih.gov/pubmed/22190722
http://dx.doi.org/10.1084/jem.20090378
http://www.ncbi.nlm.nih.gov/pubmed/19487424
http://www.ncbi.nlm.nih.gov/pubmed/21799532
http://www.ncbi.nlm.nih.gov/pubmed/17057712
http://dx.doi.org/10.1038/nri3311
http://www.ncbi.nlm.nih.gov/pubmed/23059428
http://www.ncbi.nlm.nih.gov/pubmed/18481459
http://dx.doi.org/10.1093/infdis/jit318
http://www.ncbi.nlm.nih.gov/pubmed/24151319

@’PLOS | PATHOGENS

Topical and Systemic Antiretrovial Nanoformulations for HIV Prevention

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Denton PW, Othieno F, Martinez-Torres F, Zou W, Krisko JF, Fleming E, et al. One percent tenofovir
applied topically to humanized BLT mice and used according to the CAPRISA 004 experimental design
demonstrates partial protection from vaginal HIV infection, validating the BLT model for evaluation of
new microbicide candidates. J Virol. 2011; 85(15):7582—-93. Epub 2011/05/20. doi: 10.1128/jvi.00537-
11 PMID: 21593172; PubMed Central PMCID: PMCPmc3147928.

Olesen R, Wahl A, Denton PW, Garcia JV. Immune reconstitution of the female reproductive tract of
humanized BLT mice and their susceptibility to human immunodeficiency virus infection. J Reprod
Immunol. 2011; 88(2):195-203. Epub 2011/01/25. doi: 10.1016/}.jri.2010.11.005 PMID: 21256601;
PubMed Central PMCID: PMCPmc3407567.

Denton PW, Garcia JV. Mucosal HIV-1 transmission and prevention strategies in BLT humanized mice.
Trends Microbiol. 2012; 20(6):268—74. Epub 2012/04/17. doi: 10.1016/}.tim.2012.03.007 PMID:
22503637; PubMed Central PMCID: PMCPmc3680353.

Denton PW, Estes JD, Sun Z, Othieno FA, Wei BL, Wege AK, et al. Antiretroviral pre-exposure prophy-
laxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med. 2008; 5(1):e16. Epub
2008/01/18. doi: 10.1371/journal.pmed.0050016 PMID: 1819894 1; PubMed Central PMCID:
PMCPmc2194746.

Denton PW, Krisko JF, Powell DA, Mathias M, Kwak YT, Martinez-Torres F, et al. Systemic administra-
tion of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in human-
ized BLT mice. PLoS One. 2010; 5(1):€8829. Epub 2010/01/26. doi: 10.1371/journal.pone.0008829
PMID: 20098623; PubMed Central PMCID: PMCPmc2809117.

US-FDA. Truvada for PrEP Fact Sheet: Ensuring Safe and Proper Use. Silver Spring, MD: http://www.
fda.gov/downloads/NewsEvents/Newsroom/FactSheets/UCM312279.pdf, 2012.

Adams JL, Kashuba AD. Formulation, pharmacokinetics and pharmacodynamics of topical microbi-
cides. Best Pract Res Clin Obstet Gynaecol. 2012; 26(4):451-62. doi: 10.1016/j.bpobgyn.2012.01.004
PMID: 22306523; PubMed Central PMCID: PMC3662244.

Roy S, Gourde P, Piret J, Desormeaux A, Lamontagne J, Haineault C, et al. Thermoreversible gel for-
mulations containing sodium lauryl sulfate or n-Lauroylsarcosine as potential topical microbicides
against sexually transmitted diseases. Antimicrob Agents Chemother. 2001; 45(6):1671-81. PMID:
11353610; PubMed Central PMCID: PMC90530.

Ruel-Gariepy E, Leroux JC. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J
Pharm Biopharm. 2004; 58(2):409—-26. PMID: 15296964.

Date AA, Shibata A, Goede M, Sanford B, La Bruzzo K, Belshan M, et al. Development and evaluation
of a thermosensitive vaginal gel containing raltegravir+efavirenz loaded nanoparticles for HIV prophy-

laxis. Antiviral Res. 2012; 96(3):430-6. doi: 10.1016/j.antiviral.2012.09.015 PMID: 23041201; PubMed
Central PMCID: PMC3513487.

Aka-Any-Grah A, Bouchemal K, Koffi A, Agnely F, Zhang M, Djabourov M, et al. Formulation of
mucoadhesive vaginal hydrogels insensitive to dilution with vaginal fluids. Eur J Pharm Biopharm.
2010; 76(2):296—-303. Epub 2010/07/27. doi: 10.1016/j.ejpb.2010.07.004 PMID: 20656027.

Cu 'Y, Booth CJ, Saltzman WM. In vivo distribution of surface-modified PLGA nanoparticles following
intravaginal delivery. J Control Release. 2011; 156(2):258—64. doi: 10.1016/j.jconrel.2011.06.036
PMID: 21763739; PubMed Central PMCID: PMC3220785.

Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC. Targeted delivery of PSC-RANTES for HIV-1
prevention using biodegradable nanoparticles. Pharm Res. 2009; 26(3):502—11. doi: 10.1007/s11095-
008-9765-2 PMID: 19002569.

Steinbach JM, Weller CE, Booth CJ, Saltzman WM. Polymer nanoparticles encapsulating siRNA for
treatment of HSV-2 genital infection. J Control Release. 2012; 162(1):102—10. doi: 10.1016/j.jconrel.
2012.06.008 PMID: 22705461; PubMed Central PMCID: PMC3543782.

Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Saltzman WM. Intravaginal gene silenc-
ing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nature
materials. 2009; 8(6):526—33. doi: 10.1038/nmat2444 PMID: 19404239; PubMed Central PMCID:
PMC2693358.

Destache CJ, Belgum T, Goede M, Shibata A, Belshan MA. Antiretroviral release from poly(DL-lactide-
co-glycolide) nanoparticles in mice. J Antimicrob Chemother. 2010; 65(10):2183-7. doi: 10.1093/jac/
dkq318 PMID: 20729545; PubMed Central PMCID: PMC2941676.

Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R, et al. Mucus-penetrating nanoparticles for
vaginal drug delivery protect against herpes simplex virus. Sci Trans| Med. 2012; 4(138):138ra79. doi:
10.1126/scitranslmed.3003453 PMID: 22700955; PubMed Central PMCID: PMC3817739.

Cartiera MS, Johnson KM, Rajendran V, Caplan MJ, Saltzman WM. The Uptake and Intracellular Fate
of PLGA Nanoparticles in Epithelial Cells. Biomaterials. 2009; 30(14):2790-8. PMID: 19232712. doi:
10.1016/j.biomaterials.2009.01.057

PLOS Pathogens | DOI:10.1371/journal.ppat.1005075 August 13,2015 18/19


http://dx.doi.org/10.1128/jvi.00537-11
http://dx.doi.org/10.1128/jvi.00537-11
http://www.ncbi.nlm.nih.gov/pubmed/21593172
http://dx.doi.org/10.1016/j.jri.2010.11.005
http://www.ncbi.nlm.nih.gov/pubmed/21256601
http://dx.doi.org/10.1016/j.tim.2012.03.007
http://www.ncbi.nlm.nih.gov/pubmed/22503637
http://dx.doi.org/10.1371/journal.pmed.0050016
http://www.ncbi.nlm.nih.gov/pubmed/18198941
http://dx.doi.org/10.1371/journal.pone.0008829
http://www.ncbi.nlm.nih.gov/pubmed/20098623
http://www.fda.gov/downloads/NewsEvents/Newsroom/FactSheets/UCM312279.pdf
http://www.fda.gov/downloads/NewsEvents/Newsroom/FactSheets/UCM312279.pdf
http://dx.doi.org/10.1016/j.bpobgyn.2012.01.004
http://www.ncbi.nlm.nih.gov/pubmed/22306523
http://www.ncbi.nlm.nih.gov/pubmed/11353610
http://www.ncbi.nlm.nih.gov/pubmed/15296964
http://dx.doi.org/10.1016/j.antiviral.2012.09.015
http://www.ncbi.nlm.nih.gov/pubmed/23041201
http://dx.doi.org/10.1016/j.ejpb.2010.07.004
http://www.ncbi.nlm.nih.gov/pubmed/20656027
http://dx.doi.org/10.1016/j.jconrel.2011.06.036
http://www.ncbi.nlm.nih.gov/pubmed/21763739
http://dx.doi.org/10.1007/s11095-008-9765-2
http://dx.doi.org/10.1007/s11095-008-9765-2
http://www.ncbi.nlm.nih.gov/pubmed/19002569
http://dx.doi.org/10.1016/j.jconrel.2012.06.008
http://dx.doi.org/10.1016/j.jconrel.2012.06.008
http://www.ncbi.nlm.nih.gov/pubmed/22705461
http://dx.doi.org/10.1038/nmat2444
http://www.ncbi.nlm.nih.gov/pubmed/19404239
http://dx.doi.org/10.1093/jac/dkq318
http://dx.doi.org/10.1093/jac/dkq318
http://www.ncbi.nlm.nih.gov/pubmed/20729545
http://dx.doi.org/10.1126/scitranslmed.3003453
http://www.ncbi.nlm.nih.gov/pubmed/22700955
http://www.ncbi.nlm.nih.gov/pubmed/19232712
http://dx.doi.org/10.1016/j.biomaterials.2009.01.057

@’PLOS | PATHOGENS

Topical and Systemic Antiretrovial Nanoformulations for HIV Prevention

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

Azijn H, Tirry |, Vingerhoets J, de Bethune MP, Kraus G, Boven K, et al. TMC278, a next-generation
nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and NNRTI-resistant
HIV-1. Antimicrob Agents Chemother. 2010; 54(2):718-27. Epub 2009/11/26. doi: 10.1128/aac.00986-
09 PMID: 19933797; PubMed Central PMCID: PMCPmc2812151.

Baeten JM, Haberer JE, Liu AY, Sista N. Preexposure prophylaxis for HIV prevention: where have we
been and where are we going? J Acquir Immune Defic Syndr. 2013; 63 Suppl 2:5122-9. Epub 2013/
06/21. doi: 10.1097/QAI.0b013e3182986f69 PMID: 23764623; PubMed Central PMCID:
PMCPmc3710117.

Van Damme L, Ramjee G, Alary M, Vuylsteke B, Chandeying V, Rees H, et al. Effectiveness of COL-
1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: a randomised controlled
trial. Lancet. 2002; 360(9338):971-7. Epub 2002/10/18. PMID: 12383665.

Van Damme L, Corneli A, Ahmed K, Agot K, Lombaard J, Kapiga S, et al. Preexposure prophylaxis for
HIV infection among African women. N Engl J Med. 2012; 367(5):411-22. doi: 10.1056/
NEJMoa1202614 PMID: 22784040; PubMed Central PMCID: PMC3687217.

Marrazzo JM, Ramjee G, Richardson BA, Gomez K, Mgodi N, Nair G, et al. Tenofovir-Based Preexpo-
sure Prophylaxis for HIV Infection among African Women. N Engl J Med. 2015; 372(6):509-18. Epub
2015/02/05. doi: 10.1056/NEJMoa1402269 PMID: 25651245,

Destache CJ, Belgum T, Christensen K, Shibata A, Sharma A, Dash A. Combination antiretroviral
drugs in PLGA nanoparticle for HIV-1. BMC Infect Dis. 2009; 9:198. doi: 10.1186/1471-2334-9-198
PMID: 20003214; PubMed Central PMCID: PMC2807870.

Denton PW, Olesen R, Choudhary SK, Archin NM, Wahl A, Swanson MD, et al. Generation of HIV
latency in humanized BLT mice. J Virol. 2012; 86(1):630—4. Epub 2011/10/21. doi: 10.1128/jvi.06120-
11 PMID: 22013053; PubMed Central PMCID: PMCPmc3255928.

Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, Wege AK, et al. Intrarectal transmission, systemic
infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med. 2007; 204
(4):705—-14. Epub 2007/03/29. PMID: 17389241; PubMed Central PMCID: PMCPmc21185583.

Wei BL, Denton PW, O'Neill E, Luo T, Foster JL, Garcia JV. Inhibition of lysosome and proteasome
function enhances human immunodeficiency virus type 1 infection. J Virol. 2005; 79(9):5705—-12. Epub
2005/04/14. PMID: 15827185; PubMed Central PMCID: PMCPmc1082736.

Krisko JF, Martinez-Torres F, Foster JL, Garcia JV. HIV restriction by APOBECS3 in humanized mice.
PLoS Pathog. 2013; 9(3):e1003242. Epub 2013/04/05. doi: 10.1371/journal.ppat.1003242 PMID:
23555255; PubMed Central PMCID: PMCPmc3610649.

Wahl A, Swanson MD, Nochi T, Olesen R, Denton PW, Chateau M, et al. Human breast milk and antire-
trovirals dramatically reduce oral HIV-1 transmission in BLT humanized mice. PLoS Pathog. 2012; 8
(6):21002732. Epub 2012/06/28. doi: 10.1371/journal.ppat.1002732 PMID: 22737068; PubMed Central
PMCID: PMCPmc3380612.

PLOS Pathogens | DOI:10.1371/journal.ppat.1005075 August 13,2015 19/19


http://dx.doi.org/10.1128/aac.00986-09
http://dx.doi.org/10.1128/aac.00986-09
http://www.ncbi.nlm.nih.gov/pubmed/19933797
http://dx.doi.org/10.1097/QAI.0b013e3182986f69
http://www.ncbi.nlm.nih.gov/pubmed/23764623
http://www.ncbi.nlm.nih.gov/pubmed/12383665
http://dx.doi.org/10.1056/NEJMoa1202614
http://dx.doi.org/10.1056/NEJMoa1202614
http://www.ncbi.nlm.nih.gov/pubmed/22784040
http://dx.doi.org/10.1056/NEJMoa1402269
http://www.ncbi.nlm.nih.gov/pubmed/25651245
http://dx.doi.org/10.1186/1471-2334-9-198
http://www.ncbi.nlm.nih.gov/pubmed/20003214
http://dx.doi.org/10.1128/jvi.06120-11
http://dx.doi.org/10.1128/jvi.06120-11
http://www.ncbi.nlm.nih.gov/pubmed/22013053
http://www.ncbi.nlm.nih.gov/pubmed/17389241
http://www.ncbi.nlm.nih.gov/pubmed/15827185
http://dx.doi.org/10.1371/journal.ppat.1003242
http://www.ncbi.nlm.nih.gov/pubmed/23555255
http://dx.doi.org/10.1371/journal.ppat.1002732
http://www.ncbi.nlm.nih.gov/pubmed/22737068

